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ABSTRACT: In the reliability analysis of safety critical complex engineering structures a very large number of
the system parameters can be considered to be random variables. The difficulty in computing the failure prob-
ability using the classical First and Second-Order Reliability Methods (FORM and SORM) increases rapidly
with the number of variables or ‘dimension’. There are mainly two reasons behind this. The first is the increase
in computational time with the increase in the number of random variables. In principle this problem can be
handled with superior computational tools. The second, which is perhaps more fundamental, is that there are
some conceptual difficulties associated typically with high dimensions. This means that even one manages to
carry out the necessary computations, the application of existing FORM and SORM may still lead to incorrect
results in high dimensions. This paper is aimed at addressing this issue. Based on the asymptotic distribution
of quadratic form in Gaussian random variables, two formulations for the case when the number of random
variables n → ∞ is provided. The first is called strict asymptotic formulation and the second is called weak
asymptotic formulation. Both approximations results in simple closed-form expressions for the probability
of failure of an engineering structure. The proposed asymptotic approximations are compared with existing
approximations and Monte Carlo simulations using numerical examples.

1 INTRODUCTION

Uncertainties in specifying material properties, geo-
metric parameters, boundary conditions and applied
loadings are unavoidable in describing real-life engi-
neering structural systems. Traditionally this has been
catered for in an ad-hoc way through the use of safety
factors at the design stage. Such an approach is un-
likely to be satisfactory in today’s competitive design
environment, for example, in minimum weight de-
sign of aircraft structures. The situation may also arise
when system safety is being jeopardized due to the
lack of detailed treatment of uncertainty at the design
stage, for example, finite probability of occurring a
resonance is unlikely to be captured by a safety-factor
based approach due to the intricate nonlinear relation-
ships between the system parameters and the natural
frequencies. For these reasons a scientific and system-
atic approach is required to predict the probability of
failure of a structure at the design stage. Accurate reli-
ability assessment is also critical for optimal design of
structures. Suppose the random variables describing
the uncertainties in the structural properties and load-
ing are considered to form a vector x ∈ Rn where n is
the number of random variables. The statistical prop-
erties of the system are fully described by the joint

probability density function p(x) : Rn → R. For a
given set of variables x the structure will either fail
under the applied (random) loading or will be safe.
The condition of the structure for every x can be de-
scribed by a safety margin g(x) : Rn → R such the
structure has failed if g(x) ≤ 0 and is safe if g(x) > 0.
Thus, the probability of failure is given by

Pf =



g(x)≤0

p(x)dx. (1)

The function g(x) is also known as the limit-state
function and the (n−1)-dimensional surface g(x) = 0
is known as the failure surface. The central theme of
a reliability analysis is to evaluate the multidimen-
sional integral (1). The exact evaluation of this in-
tegral, either analytically or numerically, is not pos-
sible for most practical problems because n is usu-
ally large and g(x) is a highly nonlinear function
of x which may not be available explicitly. Over
the past three decades there has been extensive re-
search (see for example, the books by Madsen et al.,
1986, Melchers, 1999) to develop approximate nu-
merical methods for the efficient calculation of the re-
liability integral. The approximate reliability methods
can be broadly grouped into (a) first-order reliabil-
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ity method (FORM), and (b) second-order reliability
method (SORM). In FORM and SORM it is assumed
that all the basic random variables are transformed
and scaled so that they are uncorrelated Gaussian ran-
dom variables, each with zero mean and unit standard
deviation.
The difficulty in computing the failure probability

using the classical First and Second-Order Reliabil-
ity Methods (FORM and SORM) increases rapidly
with the number of variables or ‘dimension’. There
are mainly two reasons behind this. The first is the
increase in computational time with the increase in
the number of random variables. In principle this
problem can be handled with superior computational
tools and powerful computing machines. The second,
which is perhaps more fundamental, is that there are
some conceptual difficulties associated typically with
high dimensions. In the context of FORM, using the
Tchebysheff bound, Veneziano (1979) has shown that
the probability of failure depends on the dimension n
although the reliability index does not explicitly de-
pend on n. In the context of SORM, using the χ2-
distribution Fiessler et al. (1979) have shown that
there can be significant difference of probability of
failure in higher dimension for a fixed value of the re-
liability index. This means that even one manages to
carry out the necessary computations, the application
of existing FORM and SORM may still lead to incor-
rect results in high dimensions. This paper is aimed at
investigating this fundamental issue.
A new approach based on the asymptotic distrib-

ution of quadratic form of random variables is pro-
posed in this paper. Two closed form asymptotically-
equivalent approximate expressions of the integral in
(1) are derived for the case when the number of ran-
dom variables n → ∞. It is assumed that the basic
random variables are Gaussian or can be transformed
to Gaussian, for example using Rosenblatt transfor-
mation (Rosenblatt, 1952). The first approximation
is called strict asymptotic formulation as it requires
some asymptotic conditions to be satisfied strictly.
The second approximation, called weak asymptotic
formulation, relaxes some of the strict asymptotic re-
quirements of the first approach. The proposed as-
ymptotic approximations are compared with existing
approximations and Monte-Carlo simulations using
numerical examples.

2 BRIEF REVIEW OF CLASSICAL FORM AND
SORM

After suitable transformations and keeping only
second-order terms, Madsen et al. (1986) have ap-
proximated the failure surface by a parabolic surface
as

g ≈ −yn + β + yTAy, (2)

where y ∼ Nn−1(0n−1, In−1) and yn ∼ N1(0, 1). The
parabolic function in (2) is normally used in the clas-
sical SORM approximations. With this approximation
the failure probability is given by

Pf ≈ Prob [g ≤ 0] ≈ Prob

yn ≥ β + yTAy



= Prob [yn ≥ β + U ] (3)
where

U : Rn−1 → R = yTAy, (4)
is a central quadratic form in standard Gaussian ran-
dom variables.
Using quadratic approximation of the failure sur-

face together with asymptotic analysis Breitung
(1984) proved that when β →∞

Pf → Φ(−β) In−1 + 2βA−1/2 . (5)
Here Φ(•) is the standard Gaussian cumulative distri-
bution function. The eigenvalues of A, say aj , can be
related to the principal curvatures of the surface κj as
aj = κj/2. This result is important because it gives
the asymptotic behavior Pf under general conditions.
It should be noted that equation (5) is the exact as-
ymptotic expression and it cannot be improved as
long as the asymptotic behavior of Pf in β is consid-
ered. Later, Hohenbichler and Rackwitz (1988) pro-
posed the following formula

Pf ≈ Φ(−β)
In−1 + 2

ϕ(β)

Φ(−β)A

−1/2

(6)

where ϕ(•) is the standard Gaussian probability den-
sity function. This expression is more accurate than
(5) for lower values of β (although both are as-
ymptotically equivalent) and it was also rederived
by Köylüoǧlu and Nielsen (1994) and Polidori et al.
(1999) using different approaches. In FORM, the fail-
ure surface is approximated by a hyperplane at the
design point. This implies that the Hessian matrix at
the design point is assumed to be a null matrix, that
is A = O and consequently U = 0 in equation (3).
Thus, from equation (3), one obtains the probability
of failure

Pf ≈ Φ(−β). (7)
This is the simplest approximation to the integral (1).
Breitung’s formula (5) and the formula by Hohen-
bichler and Rackwitz (6) can be viewed as corrections
to the FORM formula (7) to take account of the cur-
vature of the failure surface at the design point.
If n is very large, the computation of Pf using any

available methods will be difficult. Nevertheless, it is
useful to ask the following questions of fundamental
interest:
• Suppose we have followed the ‘usual route’ and
did all the calculations (i.e., obtained x∗, β and
A). Can we still expect the same level of accu-
racy from the classical FORM/SORM formula in
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high dimensions as we do in low dimensions? If
not, what are the exact reasons behind it?
• From the point of view of classical
FORM/SORM, what do we mean by ‘high
dimension’? Is it a problem dependent quantity,
or is it simply our perception based on available
computational tools so that what we regard as
a high dimension today may not be considered
as a high dimension in the future when more
powerful computational tools will be available?

We tried to answer these questions using the asymp-
totic distribution of the quadratic form (4) as n→∞.
It will be shown that minor modifications to the clas-
sical FORM and SORM formula can improve their
accuracy in high dimensions. Based on an error analy-
sis, we also attempt to provide a value of n above
which the number of random variables can be con-
sidered as high from the point of view of classical
FORM/SORM.

3 ASYMPTOTIC DISTRIBUTION OF
QUADRATIC FORMS

Discussions on asymptotic distribution of quadratic
forms may be found in Mathai and Provost (1992,
Section 4.6b). Here, one of the simplest forms of as-
ymptotic distribution of U will be used. We start with
the moment generating function of U

MU(s) = E

esU


= E


esyTAy



= In−1 − 2sA−1/2 =
n−1

k=1

(1− 2sak)
−1/2.

(8)
Now construct a sequence of new random variables
q = U/

√
n. The moment generating function of q:

Mq(s) = MU(s/
√
n) =

n−1

k=1


1− 2sak/

√
n
−1/2

.

(9)
From this

ln (Mq(s)) =
1

2

n−1

k=1

2sak/
√
n+s2


2ak/

√
n
2

/2

+ s3

2ak/

√
n
3

/3 + · · · (10)
provided

|2sak| < 1, for k = 1, 2, · · · , n− 1. (11)
Consider a case when ak and n are such that the
higher-order terms of s vanish as n → ∞, i.e., we
assume n is large such that the following conditions
hold

n−1

k=1

(2ak/
√
n)2/2 <∞ or

2

n
Trace


A2


<∞ (12)

and ∀ r ≥ 3

n−1

k=1

(2ak/
√
n)r/r → 0 or

2r

nr/2 r
Trace (Ar) → 0.

(13)
Under these assumptions, the series in equation (10)
can be truncated after the quadratic term

ln (Mq(s)) ≈ 1

2

n−1

k=1

s

2ak/

√
n

+
s2

2


2ak/

√
n
2

= Trace (A) s/
√
n +


2 Trace


A2


s2/2n.

(14)
Therefore, the moment generating function of U =
q
√
n can be approximated by

MU(s) ≈ e
Trace(A)s+ 2 Trace A2

s2/2
. (15)

From the uniqueness of the Laplace Transform pair
it follows that when the conditions (11)–(13) are
satisfied, U asymptotically approaches a Gaussian
random variable with mean Trace (A) and variance
2Trace


A2


, that is

U → N1


Trace (A) , 2 Trace


A2


when n→∞.

(16)
For practical problems, the minimum number of ran-
dom variables required for the accuracy of this as-
ymptotic distribution will be helpful. The error in ne-
glecting higher order terms in series (10) is of the
form

n−1

k=1

(2sak/
√
n)r/r

=
1

r


2s√
n

r

Trace (Ar) , for r ≥ 3. (17)

Values of s define the domain over which the mo-
ment generating function is used. For large β, it turns
out that appropriate choice of s is s = −β (see the
Appendix). Using this, here we aim to derive a sim-
ple expression for the minimum value of n which is
sufficient for the application of the asymptotic distri-
bution method. From the expression of error (17), as-
sume there exist a small real number  (allowable er-
ror) such that

1

r

(−2β)r

nr/2
Trace (Ar)

 <  (18)

or nr/2 >
(2β)r

r
Trace (Ar) (19)

or n >
4β2

r
√
r22


r


Trace (Ar)
2

. (20)
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Since A is a positive definite matrix, the critical value
of n is obtained for r = 3:

nmin =
4β2

3
√
92


3


Trace


A3

2

. (21)

From equation (21), the following points may be ob-
served: (a) the minimum number of random variables
required would be more if  (error) is considered to be
small (as expected) and nmin ∝ 1

2/3 , (b) if β is large,
more random variables are needed to achieve a de-
sired accuracy and nmin ∝ β2, and (c) if A has some
large eigenvalues (principal curvatures), they would
control the term in the bracket and consequently nmin.
In the next two sections the asymptotic distribution
(16) is used to obtain the probability of failure.

4 FAILURE PROBABILITY USING STRICT AS-
YMPTOTIC FORMULATION

In the strict asymptotic formulation we start with
equation (3). The probability of failure can be rewrit-
ten as

Pf ≈ Prob [yn ≥ β + U ] = Prob [yn − U ≥ β] .

(22)
Since from (16) the asymptotic pdf of U is Gaussian,
the variable z = yn − U is also a Gaussian random
variable with mean (−Trace (A)) and variance (1 +
2 Trace


A2


). Thus, when n → ∞, the probability

of failure can be obtained from equation (22) as

PfStrict
→ Φ (−β1) , β1 =

β + Trace (A)
1 + 2 Trace


A2

 .

(23)
This is the exact asymptotic expression of Pf after
making the parabolic failure surface assumption and
it cannot be improved or changed asymptotically. If
the failure surface is close to linear and the number of
random variables is not very large then it is expected
that Trace (A) = Trace


A2

 → 0, and it is easy to
see that equation (23) reduces to the classical FORM
formula (7). Therefore, the expressions derived here
can be viewed as the ‘correction’ which need to be
applied to the classical FORM formula when a large
number of random variables are considered. A simple
geometric interpretation of this asymptotic expression
can be given.
From equation (22) the failure domain is given by

yn − U ≥ β. (24)
We have already shown that when n→∞

U  N1


m,σ2


,

withm = Trace (A) andσ =

2Trace


A2


.

(25)
Using the standardizing transformation Y = (U −





O
Y

yn























θ

(β +m)/σ

B

A(β +m)

y∗
β1

Failure
domain

β

original SORM
approximation
yn = β + yTAy

original
design point x∗

•


modified
design point

•

Figure 1: Geometric interpretation of the strict asymptotic
formulation

m)/σ, equation (24) can be rewritten as
yn

β +m
+

Y

−β+m
σ

≥ 1. (26)

This implies that the original (n − 1)-dimensional
parabolic hypersurface asymptotically becomes a
straight line in the two-dimensional (yn, Y )-space as
shown in figure 1. Considering the triangle AOB,
tan θ = OA

OB
= (β+m)

(β+m)/σ
= σ. Therefore, sin θ =

tan θ√
1+tan2 θ

= σ√
1+σ2 . Now, considering the triangle

OBy∗ and noticing that Oy∗⊥AB, sin θ = Oy∗
OB

=
β1

(β+m)/σ
. From this, the modified reliability index

β1 =
β +m

σ
sin θ =

β +m

σ

σ√
1 + σ2

=
β +m√
1 + σ2

=
β + Trace (A)
1 + 2 Trace


A2

 .
(27)

Therefore, from figure 1 the failure probability
PfStrict

= Φ(−β1), which has been derived in equa-
tion (23). If n is small, m and σ are also expected to
be small. This would shift the point B towards−∞ in
the Y-axis and point A towards the β level in the posi-
tive yn-axis. That is, when m and σ approch to 0, line
AB will rotate clockwise and eventually it will be par-
allel to the Y-axis with a shift of +β. In this situation
y∗ will approach to the original design point in the yn-
axis and β1 → β as expected. This geometric analysis
explains why classical SORM approximations based
on the original design point x∗ do not work well when
a large number of random variables are considered.

The value of n given by equation (21) can be
viewed as the borderline between the low and high
dimension. Beyond this value of n, significant ‘trace
effect’ can be observed and consequently the modi-
fied reliability index β1 instead of β should be used.
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5 FAILURE PROBABILITY USING WEAK AS-
YMPTOTIC FORMULATION

The expression of Pf given by (23) cannot be im-
proved asymptotically. However, there are scope of
‘improvements’ if one does not strictly apply the as-
ymptotic condition n → ∞. The advantage of such
non-asymptotic approximations is that the approxi-
mations may work well even when the asymptotic
condition is not met. The disadvantage is that a non-
asymptotic approximation will have unquantified er-
rors and one cannot in general prove that such errors
will vanish when the asymptotic condition is fulfilled.
Nevertheless, it is worth perusing a non-asymptotic
approximation since real-life structural systems have
finite number of random variables.
Rewriting equation (3), the failure probability can

be expressed as
Pf ≈ Prob [yn ≥ β + U ]

=



R

 ∞

β+u

ϕ(yn)dyn


pU(u)du

= E [Φ(−β − U)] .

(28)

where pU(u) is the probability density function of U
and E [•] is the expectation operator. Extensive dis-
cussions on quadratic forms in Gaussian random vari-
ables can be found in the books by Johnson and Kotz
(1970, Chapter 29) and Mathai and Provost (1992). In
general a simple closed-form expression of pU(u) is
not available. For this reason it is difficult to calculate
the expectation E [Φ(−β − U)] analytically. Several
authors have used approximations of E [Φ(−β − U)]
to obtain closed-form expressions of Pf . A selected
collection of such expressions can be found in Zhao
and Ono (1999). Here asymptotic distribution of U in
(16) is used to obtain Pf from equation (28).
From the definition of U in (4) note that u ∈ R+

since A is a positive definite matrix. We rewrite (28)
as

Pf ≈


R+
Φ(−β − u) pU(u) du

=



R+
eln[Φ(−β−u)]+ln[pU (u)] du.

(29)

The aim here is to expand the integrand in a first-
order Taylor series about the most probable point or
optimal point, say u = u∗. The optimal point is the
point where the integrand in (29) reaches its maxima
in u ∈ R+. The asymptotic approximation of pU(u)
in (16) will only be used to find the maxima of the
integrand and will not be used subsequently to cal-
culate the expectation. The expectation operation will
be carried out exactly by utilizing the expression of
the moment generating function in equation (8). For
this reason this approach is called weak asymptotic
formulation.
For the maxima of the integrand in (29) we must

have
∂

∂u
{ln [Φ(−β − u)] + ln [pU(u)]} = 0. (30)

Recalling that

pU(u) = (2π)
−1/2σ−1e−(u−m)

2/(2σ2) (31)
wherem and σ are given in (25), equation (30) results

ϕ(β + u)

Φ(−(β + u))
=

m− u

σ2
. (32)

Because this relationship holds at the optimal point u∗
we define a constant η as

η =
ϕ(β + u∗)

Φ(−(β + u∗))
=

m− u∗

σ2
. (33)

Taking a first-order Taylor series expansion of
ln [Φ(−β − u)] about u = u∗ we have

ln [Φ(−β − u)] ≈ ln [Φ(−β − u∗)]

− ϕ(β + u∗)
Φ(−(β + u∗))

(u− u∗) (34)

or

Φ(−β−u) ≈ eln[Φ(−(β+u
∗))]− ϕ(β+u∗)

Φ(−(β+u∗)) (u−u∗). (35)
Using equation (33) this reduces to

Φ(−β − u) ≈ Φ(−β2)eηu∗e−ηu (36)
where

β2 = β + u∗. (37)
Taking the expectation of (36) and utilizing the ex-
pression of the moment generating function in equa-
tion (8), the probability of failure can be expressed as

Pf ≈ Φ(−β2)eηu∗ In−1 + 2 η A−1/2 . (38)

The optimal point u∗ should be obtained by solv-
ing the nonlinear equation (33). An exact closed-form
solution of this equation does not exist. However, it
can be easily solved numerically (for example the
function ‘fzero’ in MATLAB can be used) to obtain
u∗. An approximate solution of (33) can be obtained
by considering the asymptotic expansion of the ratio
ϕ(β + u∗)/Φ(−(β + u∗)),

ϕ(β + u∗)
Φ(−(β + u∗))

≈ (β+u∗)+(β + u∗)−1−· · · . (39)

Keeping only the first term, the left-hand side of (33)
becomes (β + u∗) and consequently we obtain

η ≈ (β + u∗) ≈ m− u∗

σ2
or u∗ ≈ m− βσ2

1 + σ2
(40)

so that

β2 = β+u∗ ≈ β +m

1 + σ2
=

β + Trace (A)
1 + 2 Trace


A2

 . (41)

In view of (37) and (40) it is also clear that
η ≈ β2. (42)

Using this, from (40) u∗ can be expressed in terms of
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β2 as
u∗ ≈ − 

2β2Trace

A2

− Trace (A) . (43)
Now substituting η from (42) and u∗ from (43) in
equation (38), the failure probability using weak as-
ymptotic formulation can be finally obtained as

PfWeak
→ Φ (−β2) e

−(2β2
2Trace(A2

)−β2Trace(A))

In−1 + 2β2A

, n→∞

(44)
where β2 is defined in (41). If the number of ran-
dom variables is not very large then it is expected that
Trace (A) = Trace


A2

 → 0. In that case it is easy
to see that β2 → β and equation (44) reduces to the
classical Breitung’s SORM formula (5). Therefore,
(44) can be viewed as the ‘correction’ which needs
to be applied to the classical SORM formula when a
large number of random variables are considered. Un-
like the strict formulation, a simple geometric expla-
nation of this expression cannot be given. Also note
that the modified reliability indices β1 and β2 for the
two formulations are not identical.

6 NUMERICAL RESULTS AND DISCUSSIONS
We consider a problem for which the failure surface is
exactly parabolic in the normalized space, as given by
equation (2). The purpose of this numerical study is
to understand how the proposed approximation work
after making the parabolic failure surface assumption.
Therefore, the effect of errors due to parabolic failure
surface assumption itself cannot and will not be in-
vestigated here.
In numerical calculations we have fixed the number

of random variables n and the trace of the coefficient
matrix A. It is assumed that the eigenvalues of A are
uniform positive random numbers. Based on the val-
ues of n and Trace (A) two cases are considered:

Case 1: small number of random variables: n − 1 =
35, and Trace (A) = 1

Case 2: large number of random variables: n − 1 =
200, and Trace (A) = 1

When Trace (A) = 0 the failure surface is effectively
linear. Therefore, the more the value of Trace (A) the
more non-linear the failure surface becomes. Prob-
ability of failure obtained using the two asymptotic
expressions is compared with Breitung’s asymptotic
result, the formula (6) derived by Hohenbichler and
Rackwitz (1988) and Monte Carlo simulation. Monte
Carlo simulation is carried out by generating 10000
samples of the quadratic form (4) and numerically
calculating the expectation operation (28) for each
value of β.
Figure 2 shows probability of failure (normalized

by dividing with Φ(−β)) for values of β ranging from

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

β

P f /Φ
(−

β)

Asymptotic: β → ∞ (Breitung, 84)
Hohenbichler & Rackwitz, 88
Strict asymptotic, n → ∞
Weak asymptotic, n → ∞
Exact (MCS)

Figure 2: Normalized failure probability, Case 1: n− 1 =
35, Trace (A) = 1.

0 to 6 for case 1. For this problem, the minimum num-
ber of random variables required for the applicability
of the asymptotic distribution can be obtained from
(21). Considering  = 0.01, it can be shown from
equation (21) that nmin = 176. Although this con-
dition is not satisfied here, the results obtained from
the weak asymptotic formulation are accurate. The re-
sults obtained from the strict asymptotic formulation
are not accurate, especially when β is high. This is
however expected as the asymptotic condition has not
been met for this case.

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

β

P f /Φ
(−

β)

Asymptotic: β → ∞ (Breitung, 84)
Hohenbichler & Rackwitz, 88
Strict asymptotic, n → ∞
Weak asymptotic, n → ∞
Exact (MCS)

Figure 3: Normalized failure probability, Case 2: n− 1 =
200, Trace (A) = 1.

Results obtained from the asymptotic analysis im-
prove when the number of random variables becomes
large. Figure 3 shows the probability of failure for
case 2. As expected, with more random variables,
results obtained from both asymptotic formulations
match well with the Monte Carlo simulation result.
For this case the maximum value of the curvature (aj)
is 0.0097 - which implies that the failure surface is al-
most linear. Even in such case it is interesting to note
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(c) β = 5
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(d) β = 6

Figure 4: Normalized failure probability for different val-
ues of β when Trace (A) = 1.

the difference between the results obtained from ex-
isting approximations and the proposed methods.
From these selective numerical examples, the fol-

lowing points may be noted:
• For a fixed value of β and A, the weak asymp-
totic formulation is more accurate for smaller
values of n (say n1) compared to the strict as-
ymptotic formulation. The convergence of the
proposed formulations for increasing values of
n, when β is ranging from 3 to 6 is shown in
figure 4. The strict asymptotic formulation be-
comes accurate when n is more than that given
by equation (21) (say n2). Although it was not
possible to obtain an expression of n1, it can be
conceived conceptually (see figure 4). Overall,
the applicability of the approximate analytical
methods for structural reliability calculations as
a function of number of random variables can be
summarized in figure 5. When n < n2 the exist-
ing FORM/SORM are applicable, but they may
not be very accurate if n > n1. When n > n1, the
weak asymptotic formulation can provide accu-
rate result and when n > n2 both of the proposed
formulations yield similar results. We again re-
call that these conclusions are based on the valid-
ity of the parabolic failure surface approximation
(2).
• For a fixed value of A, from equation (21) it can
be seen that the results from both approaches will
be more accurate if β is small. This fact can also
be observed in the numerical results shown in
figures 2–4. However, proposed asymptotic ap-
proximation are based on the parabolic failure
surface approximation (2) which is expected to
be accurate when β is high. These two conflict-




M
e
t
h
o
d
s

n

Present FORM/SORM

n1



Weak asymptotic
formulation

n2



Strict asymptotic
formulation

Figure 5: Approximate analytical methods for struc-
tural reliability calculations as a function of number
of random variables n

ing demands can only be met when n is signifi-
cantly large.
•When n is large, computational cost to accu-
rately obtain β and A can be prohibitive. In re-
cent years there have been significant develop-
ments in numerical simulation methods specifi-
cally tailored to deal with reliability problems in
high dimensions (see Au and Beck, 2003, Kout-
sourelakis et al., 2004). Proposed formulae nev-
ertheless provides an alternative which can give
physical insight and can be used in the early
stages of reliability based optimal design. More-
over, the modified design point and the asymp-
totic density function can be used for impor-
tance sampling in high dimension. Further re-
search however needed in this area.

7 CONCLUSIONS
The demands of modern engineering design have lead
structural engineers to model a structure using ran-
dom variables in order to handle uncertainties. Two
approximations to calculate the probability of fail-
ure of an engineering structure when the number of
random variables used for mathematical modeling
n → ∞ are provided. It is assumed that the basic
random variables are Gaussian and the failure surface
is approximated by a parabolic hypersurface in the
neighborhood of the design point. The new approx-
imations are based on the asymptotic distribution of a
central quadratic form in Gaussian random variables.
The main outcome of the asymptotic analysis is that
the conventional reliability index β needs to be mod-
ified when n → ∞. A simple geometric explanation
is given for this fact. Two formulations, namely, strict
asymptotic formulation and weak asymptotic formu-
lation are presented. Both approximations results in
simple closed-form expressions:

PfStrict
→ Φ (−β1) ,

PfWeak
→ Φ (−β2) e

−(2β2
2Trace(A2

)−β2Trace(A))

In−1 + 2β2A

,

where β1 and β2 are given by equations (27) and(41).
For small number of variables, the trace effects may
not be significant and in such cases it is easy to see
that these two formula reduce to the classical FORM
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and SORM formula respectively. A closed-form ex-
pression for the minimum number of random vari-
ables required to apply these asymptotic formulae is
derived. Beyond this value of n, the reliability prob-
lem can be considered as high-dimensional since the
trace effects become significant. The proposed ap-
proximations are compared with some existing ap-
proximations and Monte-Carlo simulations using nu-
merical examples. The results obtained from both as-
ymptotic formulations match well with the Monte
Carlo simulation results in high dimensions. Numeri-
cal studies show that the weak formulation is in gen-
eral applicable for low number of variables compared
to the the strict formulation. In many real-life prob-
lems the number of random variables is expected to
be large. In such situations the asymptotic results de-
rived here will be useful.
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APPENDIX: THE CHOICE OF s IN THE MO-
MENT GENERATING FUNCTION OF U

To select the value of s we begin with the approxima-
tion of Pf in equation (28) as

Pf ≈ E [Φ(−β − U)] . (A.1)

Because u ∈ R+ as A is positive definite, the max-
ima of ln [Φ(−β − u)] in R+ occurs at u = 0. There-
fore, the maximum contribution to the expectation
of ln [Φ(−β − U)] comes from the neighborhood of
u = 0. Expanding ln [Φ(−β − u)] in a first-order Tay-
lor series about u = 0 we obtain

Φ(−β−u) ≈ eln[Φ(−β)]−
ϕ(β)
Φ(−β)u = Φ(−β)e− ϕ(β)

Φ(−β)u.

(A.2)
The reason for keeping only one term in the Taylor se-
ries is to exploit the expression of the moment gener-
ating function in (8). Substituting Φ(−β−u) in equa-
tion (A.1) we have

Pf ≈ Φ(−β)E

e−

ϕ(β)
Φ(−β)u



= Φ(−β)MU


s = − ϕ(β)

Φ(−β)

. (A.3)

The preceding equation indicates that in order to cal-
culate Pf , the appropriate choice of s to be used in the
moment generating function of U is given by

s = − ϕ(β)

Φ(−β) . (A.4)

If β is large, then using the asymptotic series (39) we
have s = − ϕ(β)

Φ(−β) ≈ −β. This analysis explains the
rationale behind choosing s = −β is equation (17).
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