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ABSTRACT basis for why a general system should behave like this. If
the damping is not proportional then linear systems possess

Linear dynamic systems must generally be expected to exc0mMplex modemstead of real normal modes. Apart from the
hibit non-proportional damping. Non-proportionally damped _mathematlcal consistency, praf:tlcal experience in modal test-
linear systems do not possess classical normal modes bld @IS0 shows that most real life structures possess complex
possesscomplex modes In this paper we analyze the modes. As Sestieri and Ibrahim (1994) have put it Lo itis
complex modes arising in multiple degree-of-freedom nondronic that the real mode; are in fact not real at all, in that
proportionally damped discrete linear stochastic systemd Practice they do not exist, while complex modes are those
Second-order statistics of the complex eigenvalues and eigeRtactically identifiable from experimental tests. This implies
vectors are presented by assuming the randomness of the Sg,lgat real modes are pure abstraction, in contrast with complex
tem is small so that the first-order perturbation approach ignodes that are, therefore, the only reality!” However, consid-
valid. The proposed method is illustrated by considering nu€ration of complex modes in stochastic structural dynamics

merical example based on a linear array of damped sprind?@s not been considered till now.
mass oscillators. It is shown that the approach can predict the _ _ .
statistics of eigenvalues and eigenvectors with good accuradyentral theme to this paper is the analysis of the complex

when compared with independent Monte Carlo simulations. modes in the dynamics of non-proportionally damped dis-
crete linear stochastic systems. Due to the non-proportional

1 INTRODUCTION nat_ure of the dampmg, eigenvalues become complex random
variables and eigenvectors become complex random pro-
. . . - cesses. This fact makes the analysis quite different from the
Dynamics of linear systems with statistical parameter uncerg aitional random eigenvalue problems arising in the analy-
tainties is currently an active area of research. The primaryis of stochastic undamped systems where the random eigen-
concern here lies in the probabilistic modeling of the uncergutions remain real. The complex eigen-analysis, how-
tainties in specifying elastic, mass and damping propertieg,e; may be performed by extending the currently available
qf the structure. Pr_oblems of undamped_lmear dete”_n'n'sfechniques of random eigenvalue problems in conjunction
tic structural dynamics have been extensively treated in @i the first-order formulation of the equations of motion.
e?<|st|ng literature using classical modal analy3|s. Now, C|a$The first-order or state-space formalism, although straight-
sical modal analysis has also been generalized to deal witf,\arq, requires significant numerical effort to obtain statis-
undamped stochastic systems. Over the years many efficiepts of the eigensolutions as the size of the problem dou-
methods have emerged to solve the so caiigtlom eigen- pies Moreover, this approach also lacks some of the intuitive

value problemsrise in the dynamics of undamped StOChaStiCsimplicity of the traditional N-space’ based modal analysis
systems. Several review papers have appeared in this fie|lathod of random structural systems.

which discusses the current as well as the earlier works, see
Ibrahim (1987)| Benaroya (1992) and Manohar and Ibrahi

(1999) "For these reasons, in this paper an approach is proposed to

obtain the statistics of complex eigenvalues and eigenvectors
) ) o ) in N-space. It is assumed that the randomness is small so
It is well known that if the damping is ‘proportional’ then .+ the first-order perturbation method can be applied. At-
classical modal analysis also holds for damped systems. CoRspion js restricted to the second-order statistics of the com-
ditions for existence of classical normal modes were de“Ve(ﬂ)lex eigensolutions. In Sectih 2, we briefly discuss the reg-
by/Caughey and O’Kelly (1965). It must be noted that propor-isite mathematical background on linear multiple-degree-
tional damping or ‘classical damping' is purely a mathemati-o¢ freedom discrete systems needed for further derivations.
cal abstraction. There is no physical reason or mathematicaivatives of complex eigenvalues and eigenvectors are de-



rived in Sectiorf B. These expressions are employed in Secwumerical effort to obtain the eigensolutions as the size of the
tion[4 to obtain the mean, autocorrelation and crosscorrelgsroblem doubles. Moreover, this approach also lacks some
tion of complex eigenvalues and eigenvectors. The results am@f the intuitive simplicity of the analysis based aN-space’.
expressed in terms of the covariance matrices of the systefor these reasons the determination of eigenvalues and eigen-
properties. In Section] 5 the proposed method is applied to @ectors inV-space is very much desirable. Recently Adhikari
non-proportionally damped random eight-degree-of-freedor{{19994) proposed a Neumann series based method in which
system and the results are verified by an independent Montiae complex eigenvectors of non-conservative systems are ex-

Carlo simulation. pressed as a series in the corresponding undamped eigenvec-
tors. Adhikari's method can be used to obtain the complex
2 BACKGROUND eigensolutions up to any desired level of accuracy without us-

ing the state-space formalism. This motivates us towards de-

The equations of motion deseribing the free vibration of avelopmg procedures to obtain the eigensolutions of stochas-

. . . tic linear systems inV-space. Our method is based on the
linear, damped discrete system with degrees-of-freedom L . .
are derivatives of complex eigensolutions.

Mii(t) + Cit(t) + Ku(t) = 0 1)
3 DERIVATIVES OF COMPLEX EIGENSOLU-
whereM, C andK € RV*" are the mass, damping and stif-  Tj0NS

ness matrices respectively(t) € R" is the vector of gen-
; . 4 . :
eralized coordinates ande R™ denotes time. It is assumed In a recent papef, AdRiKar (1999b) has derived first-order

that all the system matrices are symmetric. We consider ran; . . :
. . derivatives of complex natural frequencies and mode shapes.
domness of the system matrices of the following form

In the context of structural dynamics, the natural frequencies

M=M+dM, C=C+4C, and K=K +K. (2) A; are defied ag; = i A\;. Here we slightly modify the
approach outlined in Adhikari (1999b) to obtain first-order

Here, (o) andd(e) denotes the nominal (deterministic) and derivatives of the complex eigensolutions.

random parts ofe) respectively. Without any loss of gener-

ality it may be assumed thaM, 6C anddK are zero-mean Suppose the system matrices are functions of some variable

random matrices. We further assume that the random parts efso thatM, C,K = M, C, K(«). For notational convenience

the system matrices are small and also they are such that rewrite equation (3) as

1. symmetry of the system matrices is preserved,
2.the mass matri¥ is positive definite, and Fju; =0 (5)
3.C andK are non-negative definite. , i
. where theregular matrix pencil
Note that no assumptions on the type of randomness, (for ex-
ample (_Bau53|an) is ass_umed at this stage. For the sake of g — F(sj,a) = [SiM +5;C+ K] eC¥*N. ()
generality we also consider that the elements of all the ran-
dom matricessM, 6C and dK are correlated to each other. Differentiating equatior{ {5) with respect toone obtains
The eigenvalue problem associated with equafi¢n (1) can be
OF; ou,
represented by Py, +F, M g )
e Oa
s3Mu;j + s;Cu; + Ku; =0 (3) o
. . . where = may be obtained by differentiating equation (6
wheres; € C is the j-th eigenvalue andi; € CV is the as Oa Y Y ged ©
j-th eigenvector. There afEV eigenvalues and eigenvectors OF.  OF. s
appearing in complex conjugate pairs. For convenience we 87] = a—j a—]
arrange the eigenvalues as @ @ @

G,. 8)

OF; :
1,82, SN, ST, 85, e, S (4) Herethe termsajj andG; are defined by
The aim of _th|s paper is to (_)btam second-order statistics of 8!5]- LY aC oK
the first NV eigenvalues and eigenvectors. e sj% + Sj% + 0 )

. e GJZQS]M+C
If the system matrices were deterministic, several methods

exist to obtain the eigensolutions. These methods mainlly fo'PremuItipIying equationB?) byj;p one obtains the scalar
low two routes, the state-space methods and methods in COByuation

figuration space orlV-space’. The state-space methods (see ., OF; I

Newland, 198P) although exact in nature, requires significant u; aiojuj +U; Fjaioj =0. (10)



Taking the transpose of equatidr) (5) and postmultiplying by(1968). Derivatives with respect to elements of the system
ou, it may be shown that the second term of the above equé{patrlces can be obtained from these equations by substituting

foJe} 9F a = K,s, a = C,s anda = M,.,. Using these substitutions,
tion vanishes. Now, substitutin%—’ from equation) into  from equation[(I3) we have
«
(10) we obtain 0s;
~ aKj = —7; (Ur;Us;) (16)
OF; "
T2 3. 0s; s,
0s.; u; uj i 9% 17
o _7U.Tgo.éu, : (12) 0Cps 0Ky G
V) . .
Js Js
. and et (18)
Sestieri and Ibrahim (1994) have shown that the expression OM,. 0K,
of the denominator for the above equation, that is Consider the derivative of theth element of the-th eigen-
1 vector, denoted by/;;. In equation|[(I}), utilizing the above
ul [2s;M + Clu; = — (say) (12)  substitutions and usinfy (IL5) one obtains
J v,
J
2N
is the normalization constant for thgth complex mode. Ui, =, Z (UrkUsj)Ulk (19)
There are several ways in which the normalization constants 0K s — 5; — Sk
can be selected. The one that is most consistent with tradi- kI
tional modal analysis practice is to chooge= 1/2s;. Ob- oy =0 (UrjUsj) Uiy + s U (20)
serve that this degenerates to the familiar mass normalization ICrs 2 0K,
relationshipu?” Mu; = 1 when the damping is zero. It should Uy, 2 OUy;
J and = —;8,; (UriUs;) Uy, : . 21
be noted that; will be assumed constant and should not vary OM, 7585 (UrjUsi) Ui + 55 OK (1)

with the parameters. Now, combining equatidrs (9)} (11) an
(12), the expression for the derivative of thieh complex
eigenvalue can be expressed as

7| 2OM 0C 0K 4 STATISTICS OF COMPLEX EIGENSOLUTIONS
-8 —— Sjia— —_— Uj. (13)
717 da da  Oa

cNext, these relationships are utilized to obtain the statistics of
the eigensolutions.

9sj _
9o~ VY
Collins and Thomson (1969) were possibly the first to de-
rive the expressions for statistics of undamped eigenvalues
To obtain the derivative of the eigenvectors it is required toanq eigenvectors of multiple-degrees-of-freedom systems us-
convert the equations of motion into the state-space form anghg the first-order perturbation method. Later, several authors,
then relate the results to the eigenvectors of the second-ordgjy examplel Bucher and Brenner (1992), Ramu and Gane-

system. Following Adhikari (1999b) we have san (1998, 1994) have used similar approaches. Applicability
oN of the method relies on the fact that the randomness of the
ou; — Z a(a)uk (14) system matrices is small. In this section we generalize these
Ja Pt gk results to the case of complex eigensolutions arising in non-
classically damped systems.
where
(@) v o[ L OM aCc oK Consider(s;, u;) is thej.—th eigensolutij)n pai[ for the nomi-
i = —muk i 00 % a9 + 0 uj nal system corresponding {d (1), thatdg,andu; satisfy the
J deterministic eigenvalue problem
q (@) Vi 1 |:2 M ac] E?M L_Jj + §jCl_J]‘ + KL_Jj =0. (22)
and a;; =—-u; |2s;,— + —| uj.
7 277 "7 0a " da) The method proposed by Adhikari (1999a) may be used to

gobtains; andu; in V-space. If the random perturbations of
the system matrices are smaij, can be approximated by a
first-order Taylor expansion as

Note that because the eigensolutions appear in complex co
jugate pairs, in the above equatiosns = 5>(kk—N)’ u, =
Ul—ny andy, = 5, yyfork > N.

N N N N
Equations [(IB) —[{15) completely define the derivatives of s; =5, +» ;}? 0K+ Y. > aag] 6Chs
the complex eigenvalues and eigenvectors with respect to r=ls=1_ "% r=1s=1_ "%
an arbitrary parameteatt. Observe that in the limit when N N g
C = O these expressions reduce to the corresponding ex- + ZZ an OM,s. (23)
pressions for undamped systems derived by Fox and Kapoor r=1s=1 s



An important conclusion emerging from the above expres-Ds can be calculated by applying equatiops| (1)) (17) and
sion is that, when the system has sufficient degrees of fregd8) for the nominal system. Now, from equati¢n](26), the
dom so that there are enough terms in the above summatioopvariance matrix of the eigenvalu@3g is obtained as

the central limit theoremassures that both real and imagi- .

nary parts of the random componentsgfwould be Gaussian ~ Xg=< (s—5)(s—9)" >

even if0K,,, 0C,.s anddM,, are non-Gaussian Thus, ran- T

domness of the system property matrices may be modeled by oK o1C T T
Gaussian random variables provided that the conditions for Ds oC o€ Ds =DsXkemDs -
physically realistic systems outlined Sect[dn 2 are satisfied. oM oM

Assuming the randomness is Gaussian and taking the expec-
tation of equation(23) it is clear that

(28)

) Here,Siem € R33N’ the joint covariance matrix d¥l,
< 55 >= 5 (24)  C andK is defined as

because< 0K ,; > =< 6C,s >=< 0M,, >= 0. Equation
(1)) mdmsﬁets t?r;t]the rgean ogthg comﬁlex eggnvaltl;les is t? e cseskT > <scscT > < sCsmMT >
same as that of the undamped eigenvalues. Since the system < SMSKT > < sMsCT > < sMIMT >
matrices are real, from equatign [23), the covariance between (29)
two complex eigenvalues may be obtained as

m =

<IOKT > <okt > < sKomT >]

cov (55, 5%) =< (55 — §;) >< (sp — &) >= Statistics of the eigenvectors can be obtained following a sim-
NN NN ilar procedure as the eigenvalues. For small random pertur-
Z Z Z Z Jsj  Osy, cov (Kre, Kpg) bations of the system matricas; can be approximated by a
P o o OK,s 0K, re first-order Taylor expansion and consequently we have
0s; 0s} Js; 0s}
+ 2 k_cov (Chg, Chpy) + ——2— k_cov (M,s, M, oK
9Cys 0Cpq ( ba) OM,s OMpq ( 2 Uj —U; =Dy, § oC ». (30)
0s; 0sy 0s; 0s; oM
2 J k K ) J k M
+ 0K, acpqcov( sy Cpg)+ ac.. 5MquOV (Crs, Mpq) . . N .
9s. st In the above equatio@y;;, the matrix containing derivatives
+92 5 Pk oy (M,s,Kp,)|. (25)  ofu; with respect to elements of the system matrices, is given
OM,s 0Ky, by
At this stage it is useful to express the results in matrix form.
Construct the vectors ol 0Us OUnj
s={s1,80,---,sy} €CY and (SIszec((SK)ERN2 Dl = aal}% 35&5 .. OUxj c R3N* XN (31)
where the operatiorvec (o) denotes a new (large) vector oty oUy;  OUn;
by staking consecutive columns ¢). Similarly, §C and oM oM oM
éM can also be defined. Now, rewrite equatipn](23) for
j=1,2,--- ,Nas where 205 = oo (2Y5) ¢ RN for some fixed j
T o 0K, e
K o oUy; oUy; )
s—5=Ds{ 6C 5. (26) Similarly 9C and M can also be defined. Thus, the ma-
SM trix Dy, can be calculated by applying equations]| (19)] (20)

. ] o o and @) for the nominal system. Applying equatipn|(30) for
In the above equatiorDs, the matrix containing derivatives o j-th andk-th set, the covariance matrix gfth andk-th
of s; with respect to elements of the system matrices is giveréigenvectorsf_]u u. is obtained as
iUk

by

% % . 351\/ Eujuk =< (uj - Uj) (uk - Uk)*T >= DUj chmptlj,;-
K K K . (32)
pL=| L P2 BN oRINXN(97)
sc1 scz sfv 5 NUMERICAL EXAMPLE
oM M oM

Os.; O N2 _ o An eight DOF system consisting of a linear array of spring-
wherea—’é = vec (8KJ > € R™ for some fixed;j. Sim-  mass oscillators and dampers is considered to illustrate a
" possible use of the expressions developed so far. Fjdure 1

. 0s; 0s; , .
ilarly aicj and 8.Ait can also be defined. Thus, the matrix shows the model system. Eight masses, each of nominal




L . T T T hooom K tem. Figureg[ B shows the mean value of the real parts of
eight complex modes. Analytical results and those obtained
. from MCS are compared in this figure. Complex modes are
“ ! §=th calculated using Adhikari’s (1999a) method and normalized
according to equatioZ) with; = 1/2s;. The stan-
dard deviation of the modes, obtained using equafiof (32)
with j = k, and those calculated from MSC are shown in

From these two figures, observe that the mean

Figure 1: Linear array of 8 spring-mass oscillators; nominal
system: m, = 1 Kg, k, =10 N/m and ¢, = 0.1 Nm/s

massm, — 1 kg, are connected by springs of nominal stiff- Figure[4-
nessk, = 10 N/m. The masses corresponding to the sec-

ond to sixth units have viscous dampers with nominal value o o2

¢y, = 0.1 Nm/s connected to the ground. It is assumed that /Mc\ ~ b
the mass, stiffness and damping associated with all the units f
are random. Randomness associated with each unit has the
form m,, = m, (1 + emjgj), ku, = ky (1 + ekjgj) and y B} _
cu, = cu(1+e€c,g;). Hereg; Vj are assumed to be un- & 2 = ¢ s & 7 -
correlated, identically distributed, zero-mean, unit-standard- !
deviation Gaussian random variabléé((, 1)). For this as-
sumption, the joint covariance mati¥;..,,, defined in equa- 0 0
tion (29), becomes a diagonal matrix. Numerical values of
the ‘strength parameters’,, , €;, ande., are assumed to be " N
0.1, that is, we consider0% randomness for all the parame- Mok s Vo6
ter values. * ®

IS
ES
~

Figure[2(a) shows the absolute values of the mean of the ° 0
eigenvalues corresponding to the eight modes of the system.
Because the random variables describing the system proper- % 3
ties are assumed to be Gaussian, the mean values are the same Mode 7 . Mot 8
as the nominal values (see equation (24)). In the same figure,

~
s
-~
s
=S
-~

@ (b)

Figure 3: Real part of mean of the complex modes,
‘X-axis’ DOF; ‘—’ Analytical; ‘-.- - MCS

and standard deviation of the complex modes obtained from
the analytical method proposed in this paper match excel-
lently with the corresponding results obtained from MCS.

It is useful to understand the results in the light of amount

Standard deviation

Figure 2: (a) Absolute value of mean of complex natural of the damping present in the system. The Q-factors, de-

frequencies (b) Standard deviation of complex natural fined asQ; = $(s;)/2R(s;), for the eight modes corre-
frequencies; ‘X-axis’ Mode number; ‘—’ Analytical; ‘-.-.-' sponding to the nominal system are obtained as 12.8162,
MCS 35.9982, 63.2519, 74.8700, 89.2225, 109.5776, 98.9754, and

the mean values obtained from the proposed theory are conf2.7037 respectively. These low values of Q-factor indi-

pared with the results obtained from an independent Monté&ate that damping of the system is high. Thus, the method

Carlo simulation (MCS) using 500 samples. Observe thafleveloped here can be applied to systems with high non-

both the curves follow each other very closely. Figure 2(b)Proportional damping.

compares the standard deviation of the complex natural fre-

quencies obtained from equatipn28) with that obtained frorin the simulation study, it was observed that for some cases

the MCS. Again, observe that the results obtained from théhe system matrices becomegativedefinite, which is in a

formulation developed in this paper match with the numeri-way non-physical. This fact arises due to the non-bounded

cal simulations with excellent accuracy. nature of the Gaussian random variables. For the simulation
results shown in Figurdd 2 [d 4, we have removed the sam-

Now we turn our attention to the complex modes of the sysPles corresponding to such non-physical cases. Although the
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