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ABSTRACT

Linear dynamic systems must generally be expected to ex-
hibit non-proportional damping. Non-proportionally damped
linear systems do not possess classical normal modes but
possesscomplex modes. In this paper we analyze the
complex modes arising in multiple degree-of-freedom non-
proportionally damped discrete linear stochastic systems.
Second-order statistics of the complex eigenvalues and eigen-
vectors are presented by assuming the randomness of the sys-
tem is small so that the first-order perturbation approach is
valid. The proposed method is illustrated by considering nu-
merical example based on a linear array of damped spring-
mass oscillators. It is shown that the approach can predict the
statistics of eigenvalues and eigenvectors with good accuracy
when compared with independent Monte Carlo simulations.

1 INTRODUCTION

Dynamics of linear systems with statistical parameter uncer-
tainties is currently an active area of research. The primary
concern here lies in the probabilistic modeling of the uncer-
tainties in specifying elastic, mass and damping properties
of the structure. Problems of undamped linear determinis-
tic structural dynamics have been extensively treated in the
existing literature using classical modal analysis. Now, clas-
sical modal analysis has also been generalized to deal with
undamped stochastic systems. Over the years many efficient
methods have emerged to solve the so calledrandom eigen-
value problemsarise in the dynamics of undamped stochastic
systems. Several review papers have appeared in this field
which discusses the current as well as the earlier works, see
Ibrahim (1987), Benaroya (1992) and Manohar and Ibrahim
(1999).

It is well known that if the damping is ‘proportional’ then
classical modal analysis also holds for damped systems. Con-
ditions for existence of classical normal modes were derived
by Caughey and O’Kelly (1965). It must be noted that propor-
tional damping or ‘classical damping’ is purely a mathemati-
cal abstraction. There is no physical reason or mathematical

basis for why a general system should behave like this. If
the damping is not proportional then linear systems possess
complex modesinstead of real normal modes. Apart from the
mathematical consistency, practical experience in modal test-
ing also shows that most real life structures possess complex
modes. As Sestieri and Ibrahim (1994) have put it ‘... it is
ironic that the real modes are in fact not real at all, in that
in practice they do not exist, while complex modes are those
practically identifiable from experimental tests. This implies
that real modes are pure abstraction, in contrast with complex
modes that are, therefore, the only reality!’ However, consid-
eration of complex modes in stochastic structural dynamics
has not been considered till now.

Central theme to this paper is the analysis of the complex
modes in the dynamics of non-proportionally damped dis-
crete linear stochastic systems. Due to the non-proportional
nature of the damping, eigenvalues become complex random
variables and eigenvectors become complex random pro-
cesses. This fact makes the analysis quite different from the
traditional random eigenvalue problems arising in the analy-
sis of stochastic undamped systems where the random eigen-
solutions remain real. The complex eigen-analysis, how-
ever, may be performed by extending the currently available
techniques of random eigenvalue problems in conjunction
with the first-order formulation of the equations of motion.
The first-order or state-space formalism, although straight-
forward, requires significant numerical effort to obtain statis-
tics of the eigensolutions as the size of the problem dou-
bles. Moreover, this approach also lacks some of the intuitive
simplicity of the traditional ‘N -space’ based modal analysis
method of random structural systems.

For these reasons, in this paper an approach is proposed to
obtain the statistics of complex eigenvalues and eigenvectors
in N -space. It is assumed that the randomness is small so
that the first-order perturbation method can be applied. At-
tention is restricted to the second-order statistics of the com-
plex eigensolutions. In Section 2, we briefly discuss the req-
uisite mathematical background on linear multiple-degree-
of-freedom discrete systems needed for further derivations.
Derivatives of complex eigenvalues and eigenvectors are de-



rived in Section 3. These expressions are employed in Sec-
tion 4 to obtain the mean, autocorrelation and crosscorrela-
tion of complex eigenvalues and eigenvectors. The results are
expressed in terms of the covariance matrices of the system
properties. In Section 5 the proposed method is applied to a
non-proportionally damped random eight-degree-of-freedom
system and the results are verified by an independent Monte
Carlo simulation.

2 BACKGROUND

The equations of motion describing the free vibration of a
linear, damped discrete system withN degrees-of-freedom
are

Mü(t) + Cu̇(t) + Ku(t) = 0 (1)

whereM , C andK ∈ RN×N are the mass, damping and stiff-
ness matrices respectively.u(t) ∈ RN is the vector of gen-
eralized coordinates andt ∈ R+ denotes time. It is assumed
that all the system matrices are symmetric. We consider ran-
domness of the system matrices of the following form

M = M + δM , C = C + δC, and K = K + δK . (2)

Here, (•) andδ(•) denotes the nominal (deterministic) and
random parts of(•) respectively. Without any loss of gener-
ality it may be assumed thatδM , δC andδK are zero-mean
random matrices. We further assume that the random parts of
the system matrices are small and also they are such that

1. symmetry of the system matrices is preserved,
2. the mass matrixM is positive definite, and
3. C andK are non-negative definite.

Note that no assumptions on the type of randomness, (for ex-
ample Gaussian) is assumed at this stage. For the sake of
generality we also consider that the elements of all the ran-
dom matricesδM , δC and δK are correlated to each other.
The eigenvalue problem associated with equation (1) can be
represented by

s2
jMu j + sjCuj + Ku j = 0 (3)

wheresj ∈ C is the j-th eigenvalue anduj ∈ CN is the
j-th eigenvector. There are2N eigenvalues and eigenvectors
appearing in complex conjugate pairs. For convenience we
arrange the eigenvalues as

s1, s2, · · · , sN , s∗1, s
∗
2, · · · , s∗N . (4)

The aim of this paper is to obtain second-order statistics of
the firstN eigenvalues and eigenvectors.

If the system matrices were deterministic, several methods
exist to obtain the eigensolutions. These methods mainly fol-
low two routes, the state-space methods and methods in con-
figuration space or ‘N -space’. The state-space methods (see
Newland, 1989) although exact in nature, requires significant

numerical effort to obtain the eigensolutions as the size of the
problem doubles. Moreover, this approach also lacks some
of the intuitive simplicity of the analysis based on ‘N -space’.
For these reasons the determination of eigenvalues and eigen-
vectors inN -space is very much desirable. Recently Adhikari
(1999a) proposed a Neumann series based method in which
the complex eigenvectors of non-conservative systems are ex-
pressed as a series in the corresponding undamped eigenvec-
tors. Adhikari’s method can be used to obtain the complex
eigensolutions up to any desired level of accuracy without us-
ing the state-space formalism. This motivates us towards de-
veloping procedures to obtain the eigensolutions of stochas-
tic linear systems inN -space. Our method is based on the
derivatives of complex eigensolutions.

3 DERIVATIVES OF COMPLEX EIGENSOLU-
TIONS

In a recent paper, Adhikari (1999b) has derived first-order
derivatives of complex natural frequencies and mode shapes.
In the context of structural dynamics, the natural frequencies
λj are defied assj = i λj . Here we slightly modify the
approach outlined in Adhikari (1999b) to obtain first-order
derivatives of the complex eigensolutions.

Suppose the system matrices are functions of some variable
α so thatM , C, K ≡ M , C, K(α). For notational convenience
rewrite equation (3) as

Fjuj = 0 (5)

where theregular matrix pencil

Fj ≡ F(sj , α) =
[
s2

jM + sjC + K
]

∈ CN×N . (6)

Differentiating equation (5) with respect toα one obtains

∂Fj

∂α
uj + Fj

∂uj

∂α
= 0 (7)

where
∂Fj

∂α
may be obtained by differentiating equation (6)

as
∂Fj

∂α
=

∂F̃j

∂α
+

∂sj

∂α
Gj . (8)

Here the terms
∂F̃j

∂α
andGj are defined by

∂F̃j

∂α
= s2

j

∂M
∂α

+ sj
∂C
∂α

+
∂K
∂α

Gj = 2sjM + C.

(9)

Premultiplying equation (7) byuT
j one obtains the scalar

equation

uT
j

∂Fj

∂α
uj + uT

j Fj
∂uj

∂α
= 0. (10)



Taking the transpose of equation (5) and postmultiplying by
∂uj

∂α
it may be shown that the second term of the above equa-

tion vanishes. Now, substituting
∂Fj

∂α
from equation (8) into

(10) we obtain

∂sj

∂α
= −

uT
j

∂F̃j

∂α
uj

uT
j Gjuj

. (11)

Sestieri and Ibrahim (1994) have shown that the expression
of the denominator for the above equation, that is

uT
j [2sjM + C] uj =

1
γj

(say) (12)

is the normalization constant for thej-th complex mode.
There are several ways in which the normalization constants
can be selected. The one that is most consistent with tradi-
tional modal analysis practice is to chooseγj = 1/2sj . Ob-
serve that this degenerates to the familiar mass normalization
relationshipuT

j Mu j = 1 when the damping is zero. It should
be noted thatγj will be assumed constant and should not vary
with the parameters. Now, combining equations (9), (11) and
(12), the expression for the derivative of thej-th complex
eigenvalue can be expressed as

∂sj

∂α
= −γjuT

j

[
s2

j

∂M
∂α

+ sj
∂C
∂α

+
∂K
∂α

]
uj . (13)

To obtain the derivative of the eigenvectors it is required to
convert the equations of motion into the state-space form and
then relate the results to the eigenvectors of the second-order
system. Following Adhikari (1999b) we have

∂uj

∂α
=

2N∑
k=1

a
(α)
jk uk (14)

where

a
(α)
jk = − γj

sj − sk
uT

k

[
s2

j

∂M
∂α

+ sj
∂C
∂α

+
∂K
∂α

]
uj

∀k = 1, 2, · · · , 2N, 6= j

and a
(α)
jj = −γj

2
uT

j

[
2sj

∂M
∂α

+
∂C
∂α

]
uj .

(15)

Note that because the eigensolutions appear in complex con-
jugate pairs, in the above equationssk = s∗(k−N), uk =
u∗(k−N) andγk = γ∗(k−N)for k > N .

Equations (13) – (15) completely define the derivatives of
the complex eigenvalues and eigenvectors with respect to
an arbitrary parameterα. Observe that in the limit when
C = O these expressions reduce to the corresponding ex-
pressions for undamped systems derived by Fox and Kapoor

(1968). Derivatives with respect to elements of the system
matrices can be obtained from these equations by substituting
α = Krs, α = Crs andα = Mrs. Using these substitutions,
from equation (13) we have

∂sj

∂Krs
= −γj (UrjUsj) (16)

∂sj

∂Crs
= sj

∂sj

∂Krs
(17)

and
∂sj

∂Mrs
= s2

j

∂sj

∂Krs
. (18)

Consider the derivative of thel-th element of thej-th eigen-
vector, denoted byUlj . In equation (14), utilizing the above
substitutions and using (15) one obtains

∂Ulj

∂Krs
= −γj

2N∑
k=1
k 6=j

(UrkUsj)
sj − sk

Ulk (19)

∂Ulj

∂Crs
= −γj

2
(UrjUsj) Ulj + sj

∂Ulj

∂Krs
(20)

and
∂Ulj

∂Mrs
= −γjsj (UrjUsj) Ulj + s2

j

∂Ulj

∂Krs
. (21)

Next, these relationships are utilized to obtain the statistics of
the eigensolutions.

4 STATISTICS OF COMPLEX EIGENSOLUTIONS

Collins and Thomson (1969) were possibly the first to de-
rive the expressions for statistics of undamped eigenvalues
and eigenvectors of multiple-degrees-of-freedom systems us-
ing the first-order perturbation method. Later, several authors,
for example Bucher and Brenner (1992), Ramu and Gane-
san (1993, 1994) have used similar approaches. Applicability
of the method relies on the fact that the randomness of the
system matrices is small. In this section we generalize these
results to the case of complex eigensolutions arising in non-
classically damped systems.

Consider(s̄j , ūj) is thej-th eigensolution pair for the nomi-
nal system corresponding to (1), that is,s̄j andūj satisfy the
deterministic eigenvalue problem

s̄2
jMūj + s̄jCūj + Kūj = 0. (22)

The method proposed by Adhikari (1999a) may be used to
obtains̄j andūj in N -space. If the random perturbations of
the system matrices are small,sj can be approximated by a
first-order Taylor expansion as

sj = s̄j +
N∑

r=1

N∑
s=1

∂sj

∂Krs
δKrs +

N∑
r=1

N∑
s=1

∂sj

∂Crs
δCrs

+
N∑

r=1

N∑
s=1

∂sj

∂Mrs
δMrs. (23)



An important conclusion emerging from the above expres-
sion is that, when the system has sufficient degrees of free-
dom so that there are enough terms in the above summation,
the central limit theoremassures that both real and imagi-
nary parts of the random component ofsj would be Gaussian
even if δKrs, δCrs andδMrs are non-Gaussian Thus, ran-
domness of the system property matrices may be modeled by
Gaussian random variables provided that the conditions for
physically realistic systems outlined Section 2 are satisfied.
Assuming the randomness is Gaussian and taking the expec-
tation of equation (23) it is clear that

< sj >= s̄j (24)

because< δKrs > = < δCrs >=< δMrs >= 0. Equation
(24) indicates that the mean of the complex eigenvalues is the
same as that of the undamped eigenvalues. Since the system
matrices are real, from equation (23), the covariance between
two complex eigenvalues may be obtained as

cov (sj , sk) =< (sj − s̄j) >< (sk − s̄k)∗ >=
N∑

r=1

N∑
s=1

N∑
p=1

N∑
q=1

[
∂sj

∂Krs

∂s∗k
∂Kpq

cov (Krs,Kpq)

+
∂sj

∂Crs

∂s∗k
∂Cpq

cov (Crs, Cpq)+
∂sj

∂Mrs

∂s∗k
∂Mpq

cov (Mrs,Mpq)

+2
∂sj

∂Krs

∂s∗k
∂Cpq

cov (Krs, Cpq)+2
∂sj

∂Crs

∂s∗k
∂Mpq

cov (Crs,Mpq)

+ 2
∂sj

∂Mrs

∂s∗k
∂Kpq

cov (Mrs,Kpq)
]

. (25)

At this stage it is useful to express the results in matrix form.
Construct the vectors

s = {s1, s2, · · · , sN}T ∈ CN and δK = vec (δK) ∈ RN2

where the operationvec (•) denotes a new (large) vector
by staking consecutive columns of(•). Similarly, δC and
δM can also be defined. Now, rewrite equation (23) for
j = 1, 2, · · · , N as

s− s̄ = Ds

 δK
δC

δM

 . (26)

In the above equation,Ds, the matrix containing derivatives
of sj with respect to elements of the system matrices is given
by

DT
s =


∂s1

∂K
∂s2

∂K · · · ∂sN

∂K
∂s1

∂C
∂s2

∂C · · · ∂sN

∂C
∂s1

∂M
∂s2

∂M · · · ∂sN

∂M

 ∈ R3N2×N (27)

where
∂sj

∂K ≡ vec
(

∂sj

∂Krs

)
∈ RN2

for some fixedj. Sim-

ilarly
∂sj

∂C and
∂sj

∂M can also be defined. Thus, the matrix

Ds can be calculated by applying equations (16), (17) and
(18) for the nominal system. Now, from equation (26), the
covariance matrix of the eigenvalues,Σs is obtained as

Σs =< (s− s̄) (s− s̄)∗
T

>

= Ds

〈 δK
δC

δM


 δK

δC
δM


T 〉

D∗T

s = DsΣkcmD∗T

s .

(28)

Here,Σkcm ∈ R3N2×3N2
, the joint covariance matrix ofM ,

C andK is defined as

Σkcm =

 < δKδKT > < δKδCT > < δKδMT >

< δCδKT > < δCδCT > < δCδMT >

< δMδKT > < δMδCT > < δMδMT >

 .

(29)

Statistics of the eigenvectors can be obtained following a sim-
ilar procedure as the eigenvalues. For small random pertur-
bations of the system matrices,uj can be approximated by a
first-order Taylor expansion and consequently we have

uj − ūj = Duj

 δK
δC

δM

 . (30)

In the above equation,Duj
, the matrix containing derivatives

of uj with respect to elements of the system matrices, is given
by

DT
uj

=


∂U1j

∂K
∂U2j

∂K · · · ∂UNj

∂K
∂U1j

∂C
∂U2j

∂C · · · ∂UNj

∂C
∂U1j

∂M
∂U2j

∂M · · · ∂UNj

∂M

 ∈ R3N2×N (31)

where
∂Ulj

∂K ≡ vec
(

∂Ulj

∂Krs

)
∈ RN2

for some fixedl, j.

Similarly
∂Ulj

∂C and
∂Ulj

∂M can also be defined. Thus, the ma-

trix Duj can be calculated by applying equations (19), (20)
and (21) for the nominal system. Applying equation (30) for
the j-th andk-th set, the covariance matrix ofj-th andk-th
eigenvectors,Σujuk

is obtained as

Σujuk
=< (uj − ūj) (uk − ūk)∗

T

>= Duj
ΣkcmD∗T

uk
.

(32)

5 NUMERICAL EXAMPLE

An eight DOF system consisting of a linear array of spring-
mass oscillators and dampers is considered to illustrate a
possible use of the expressions developed so far. Figure 1
shows the model system. Eight masses, each of nominal
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Figure 1: Linear array of 8 spring-mass oscillators; nominal

system: mu = 1 Kg, ku = 10 N/m and cu = 0.1 Nm/s

massmu = 1 kg, are connected by springs of nominal stiff-
nessku = 10 N/m. The masses corresponding to the sec-
ond to sixth units have viscous dampers with nominal value
cu = 0.1 Nm/s connected to the ground. It is assumed that
the mass, stiffness and damping associated with all the units
are random. Randomness associated with each unit has the
form muj = mu

(
1 + εmj gj

)
, kuj = ku

(
1 + εkj gj

)
and

cuj
= cu

(
1 + εcj

gj

)
. Heregj ,∀j are assumed to be un-

correlated, identically distributed, zero-mean, unit-standard-
deviation Gaussian random variables (N(0, 1)). For this as-
sumption, the joint covariance matrixΣkcm, defined in equa-
tion (29), becomes a diagonal matrix. Numerical values of
the ‘strength parameters’,εmj

, εkj
andεcj

are assumed to be
0.1, that is, we consider10% randomness for all the parame-
ter values.

Figure 2(a) shows the absolute values of the mean of the
eigenvalues corresponding to the eight modes of the system.
Because the random variables describing the system proper-
ties are assumed to be Gaussian, the mean values are the same
as the nominal values (see equation (24)). In the same figure,
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Figure 2: (a) Absolute value of mean of complex natural

frequencies (b) Standard deviation of complex natural

frequencies; ‘X-axis’ Mode number; ‘—’ Analytical; ‘-.-.-’

MCS

the mean values obtained from the proposed theory are com-
pared with the results obtained from an independent Monte
Carlo simulation (MCS) using 500 samples. Observe that
both the curves follow each other very closely. Figure 2(b)
compares the standard deviation of the complex natural fre-
quencies obtained from equation (28) with that obtained from
the MCS. Again, observe that the results obtained from the
formulation developed in this paper match with the numeri-
cal simulations with excellent accuracy.

Now we turn our attention to the complex modes of the sys-

tem. Figure 3 shows the mean value of the real parts of
eight complex modes. Analytical results and those obtained
from MCS are compared in this figure. Complex modes are
calculated using Adhikari’s (1999a) method and normalized
according to equation (12) withγj = 1/2sj . The stan-
dard deviation of the modes, obtained using equation (32)
with j = k, and those calculated from MSC are shown in
Figure 4. From these two figures, observe that the mean
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Figure 3: Real part of mean of the complex modes,

‘X-axis’ DOF; ‘—’ Analytical; ‘-.- -’ MCS

and standard deviation of the complex modes obtained from
the analytical method proposed in this paper match excel-
lently with the corresponding results obtained from MCS.
It is useful to understand the results in the light of amount
of the damping present in the system. The Q-factors, de-
fined asQj = =(sj)/2<(sj), for the eight modes corre-
sponding to the nominal system are obtained as 12.8162,
35.9982, 63.2519, 74.8700, 89.2225, 109.5776, 98.9754, and
72.7037 respectively. These low values of Q-factor indi-
cate that damping of the system is high. Thus, the method
developed here can be applied to systems with high non-
proportional damping.

In the simulation study, it was observed that for some cases
the system matrices becomenegativedefinite, which is in a
way non-physical. This fact arises due to the non-bounded
nature of the Gaussian random variables. For the simulation
results shown in Figures 2 to 4, we have removed the sam-
ples corresponding to such non-physical cases. Although the
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Figure 4: Standard deviation of the complex modes,

‘X-axis’ DOF; ‘—’ Analytical; ‘-.-.-’ MCS

probability of such occurring is low because the randomness
is assumed to be small, nevertheless, it indicates that, in gen-
eral, Gaussian random variables are not physically realistic
model for modeling randomness of the system properties. To
avoid this problem, a (bounded) non-Gaussian model should
be used.

6 CONCLUSIONS

An approach has been proposed to obtain statistics of
complex eigenvalues and eigenvectors of non-proportionally
damped linear stochastic systems. The proposed method does
not require conversion of the equations of motion into the
first-order form. It is assumed that the randomness is small
so that the first-order perturbation method can be applied. At-
tention is restricted to the second-order statistics of the com-
plex eigensolutions. The mean of the complex eigensolutions
turned out to be the same as the corresponding determinis-
tic values. The covariance matrices of the complex eigen-
solutions are expressed in terms of the covariance matrices
of the system properties and derivatives of the eigensolutions
with respect to the system parameters. The proposed method
was applied to a non-proportionally damped random eight
degree-of-freedom system and the results were verified by an
independent Monte Carlo simulation. It was shown that the
method works well even when damping is quite high.
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