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An experimental investigation of uncertainty in natural frequencies of linear struc-
tures estimated from measured frequency response function (FRF) under dynamic load-
ing is presented. Experiments were conducted on one hundred nominally identical real-
izations of a fixed-fixed beam; each realisation was obtained by placing twelve identical
masses at random spatial locations (generated by a computer) along the length of the
beam. The total random mass is about 2% of the total mass of the beam. These exper-
iments represent parametric uncertainty in the mass matrix, and hence may be useful
for the validation of many random eigenvalue analysis and prediction methods currently
available to structural dynamicist. Predictions from Monte Carlo simulation of deter-
ministic finite elements model are compared with experiments. It is concluded that the
method of estimation of natural frequencies from FRFs and the spatial location of the
measurements has significant influence upon the first two moments (mean and standard
deviation) of the natural frequency ensemble. Furthermore, whilst the Monte Carlo sim-
ulation estimates of the mean and standard deviation are in reasonable agreement with
experiments at higher frequencies, the probability density function differ appreciably,
within the limits of the sample size investigated in this study.

∗Professor of Aerospace Engineering, School of Engineering, Swansea University, Singleton Park, Swansea SA2
8PP, UK, Email: S.Adhikari@swansea.ac.uk; AIAA Senior Member.

†Assistant Professor, Department of Mechanical Engineering, The University of British Columbia, 2054-6250
Applied Science Lane, Vancouver, BC, Canada, V6T 1Z4

‡Department of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI, 48859, USA
Copyright c© 2009 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has

a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other
rights are reserved by the copyright owner.

1 of 14

American Institute of Aeronautics and Astronautics Paper 2009-2529

http://engweb.swan.ac.uk/~adhikaris�
http://www.swan.ac.uk�
http://www2.eng.cam.ac.uk/~skpa2�
http://www.ubc.ca�
http://www2.eng.cam.ac.uk/~skpa2�
http://www.cam.ac.uk�
http://www.swan.ac.uk/engineering/�
http://www.swan.ac.uk�
mailto:S.Adhikari@swansea.ac.uk?subject=Enquiry regarding your paper�
http://www.ubc.ca�
http://www.ubc.ca�


I. Introduction

CHAracterization of natural frequencies and mode-shapes requires the solution of a linear
eigenvalue problem in the analysis and design of engineering systems subjected to dynamic

loads. This problem could either be a differential eigenvalue problem or a matrix eigenvalue prob-
lem, depending on whether a continuous model or a discrete model is envisaged. The description of
real-life engineering structural systems is inevitably associated with some amount of uncertainty.
Parametric uncertainty pertains to material and geometric properties, boundary conditions and ap-
plied loads. When we take account of these parametric uncertainties, it is imperative to solve ran-
dom eigenvalue problems to obtain the dynamic response statistics, such as the mean and standard
deviation of displacement and stress amplitudes. Random eigenvalue problems also arise in the
stability analysis, or critical buckling loads calculation, of linear structural systems with random
imperfections. Random eigenvalue problem arising due to parametric uncertainty can be efficiently
formed using the stochastic finite element method, see for example.1–8 The study of probabilistic
characterization of the eigensolutions of random matrix and differential operators is now an impor-
tant research topic in the field of stochastic structural mechanics. The paper by Boyce,9 the book
by Scheidt and Purkert10 and the review papers by Ibrahim,11 Benaroya,12 Manohar and Ibrahim,13

and Manohar and Gupta14 are useful sources of information on early work in this area of research
which also provide a systematic account of different approaches to random eigenvalue problems.

The majority of the studies reported on random eigenvalue problems are based on analytical
or simulation methods. Often simulation based methods are used to validate approximate but
relatively fast prediction tools (such as perturbation based methods). Experimental results are rare
because of difficulties such as (a) cost involved in generating nominally identical samples of a
structural system, (b) the resources and effort involved in testing a large number of samples, (c) the
repetitive nature of the experimental procedure and (d) ensuring that different samples are tested
in exactly the same way so that no uncertainty arises due to the measurement process. In spite of
these difficulties some authors have conducted experimental investigations on random dynamical
systems. Kompella and Bernhard15 measured 57 structure-borne frequency response functions at
driver microphones for different pickup trucks. Fahy16 (page 275) reported measurements of FRFs
on 41 nominally identical beer cans. Both of these experiments show variability in nominally
identical engineered systems. Friswell et al.17 reported two experiments where random systems
were ‘created’ in the laboratory for the purpose of model validation. The first experiment used a
randomly moving mass on a free-free beam and the second experiment comprised a copper pipe
with uncertain internal pressure. Fifty nominally identical random samples were created and tested
for both experiments.

In contrast with analytical studies, in the present experimental study, the eigenvalues are de-
duced from the measured frequency response functions using system identification techniques.
Thus additional uncertainties may likely to be introduced by the method of system identification
employed even if other uncertainties, within the control of the experimenter, were minimized.
Two system identification techniques are contrasted in this regard: Rational Fractional Polynomial
(RFP) method,18 and the Nonlinear Least-Squares (NLS) technique.18 Each system identification
technique is applied to the experimental test case, described later. The difference between this
data and previous experimental data is that the tests are closely controlled and the uncertainty can
be considered to be ‘known’ for all practical purposes. This allows one to model uncertainty,
propagate it through dynamical models and compare the results with experiments.
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We begin with a brief introduction to random eigenvalue problems in Section II. The exper-
iment, described in Section III is on a fixed-fixed beam with twelve masses placed at random
locations. The total amount of ‘random masses’ is about 2% of the total mass of the beam. This
experiment is aimed at simulating ‘random errors’ in the mass matrix. One hundred nominally
identical dynamical systems are created and tested separately. The probabilistic characteristics of
the frequency response function are discussed in the low, medium and high frequency ranges. The
data presented here are available on the world wide web for research purposes. The web address is
http://engweb.swan.ac.uk/∼adhikaris/uq/. This data may be useful to validate different uncertainty
quantification and propagation methods in structural dynamics.

II. Random Eigenvalue Problems

The random eigenvalue problem of undamped or proportionally damped discrete, or discretised
continuous, systems can be expressed by

Kφj = λjMφj (1)

where λj and φj are the eigenvalues (natural frequency squared) and the eigenvectors (mode
shapes) of the dynamical system. It is assumed that M and K are symmetric and positive defi-
nite random matrices so that all the eigenvalues are real and positive. We consider randomness of
the system matrices of the following form

M = M + δM and K = K + δK. (2)

Here, (•) and δ(•) denotes the nominal (deterministic) and random parts of (•) respectively. With-
out any loss of generality it may be assumed that δM and δK are zero-mean random matrices. We
further assume that the random parts of the system matrices are small and also they preserve the
symmetry, and positive definiteness of the mass matrix, of the perturbed random system. Note that
no assumptions on the type of randomness, (for example Gaussian) is assumed at this stage.

The central aim of studying random eigenvalue problems is to obtain the joint probability
density function (jpdf) of the eigenvalues and the eigenvectors. The current literature on random
eigenvalue problems in engineering systems is dominated by the mean-centered perturbation meth-
ods.19–28 These methods work well when the uncertainties are small and the parameter distribution
is Gaussian. Some researchers have proposed methods which are not based on mean-centered per-
turbation method. Grigoriu29 examined the roots of characteristic polynomials of real symmetric
random matrices using the distribution of zeros of random polynomials. Recall that eigenvalues
are the roots of the characteristic polynomial. Lee and Singh30 proposed a direct matrix product
(Kronecker product) method to obtain the first two moments of the eigenvalues of discrete lin-
ear systems. Nair and Keane31 proposed a stochastic reduced basis approximation which can be
applied to discrete or discretized continuous dynamic systems.

Hála32 and Mehlhose et al.33 used a Ritz method to obtain closed-form expressions for mo-
ments and probability density functions of the eigenvalues (in terms of Chebyshev-Hermite poly-
nomials). Szekely and Schueller,34 Pradlwarter et al.35 and Du et al.36 considered simulation based
methods to obtain eigensolution statistics of large systems. Ghosh et al.37 used a polynomial chaos
expansion for random eigenvalue problems. Adhikari38 considered complex random eigenvalue
problems associated with non-proportionally damped systems. Verhoosel et al.39 proposed an iter-
ative method that can be applied to non-symmetric random matrices also. Rahman40 developed a
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dimensional decomposition method which does not require the calculation of eigensolution deriva-
tives. Recently Adhikari41, 42 and Adhikari and Friswell43 have proposed an asymptotic approach
to obtain joint and higher-order statistics of the eigenvalues of randomly parametered dynamical
systems.

Under special circumstances when the matrix H = M−1K ∈ RN×N is Gaussian unitary en-
semble (GUE) or Gaussian orthogonal ensemble (GOE) an exact closed-form expression can be
obtained for the joint pdf of the eigenvalues using random matrix theory (RMT). See the book by
Mehta44 and references therein for discussions on random matrix theory. RMT has been extended
to other type of random matrices. If H has Wishart distribution then the exact joint pdf of the
eigenvalues can be obtained from Muirhead45 (Theorem 3.2.18). Edelman46 obtained the pdf of
the minimum eigenvalue (first natural frequency squared) of a Wishart matrix. A more general
case when the matrix H has β-distribution has been obtained by Muirhead45 (Theorem 3.3.4) and
more recently by Dumitriu and Edelman.47 Unfortunately the system matrices of real structures
may not always follow such distributions and consequently some kind of approximate analysis is
required.

In this paper two experiments are used to study the random eigenvalue analysis methods avail-
able in literature. Uncertainties introduced in these experiments are not suitable for applying the
stochastic finite element method.2 As a result we have used Monte Carlo simulation approach to
generate the ensembles of δM and δK and consequently the eigenvalues.

III. Random Eigenvalues of a Fixed-Fixed Beam

A. System Model and Experimental Setup

A steel beam with uniform rectangular cross-section is used for the experiment. The details of
this experiment has been described by Adhikari et al.48 Here we give a very brief overview. The
physical and geometrical properties of the steel beam are shown in table 1. A steel ruler of length

Beam Properties Numerical values
Length (L) 1200 mm
Width (b) 40.06 mm
Thickness (th) 2.05 mm
Mass density (ρ) 7800 Kg/m3

Young’s modulus (E) 2.0× 105 MPa
Total weight 0.7687 Kg

Table 1. Material and geometric properties of the beam considered for the experiment

1.5m is used for the ease of placing masses at predetermined locations. These locations were
generated by a random number generator. The ruler is clamped between 0.05m and 1.25m so
that the effective length of the vibrating beam is 1.2m. The overall experiential setup is shown in
Figure 1. The end clamps are screwed into two heavy steel blocks which in turn are fixed to a table
with bolts.

Twelve equal attachable magnetic masses are used to simulate a randomly varying mass distri-
bution. The magnets are cylindrical in shape and 12.0 mm in length and 6.0 mm in diameter. Some

4 of 14

American Institute of Aeronautics and Astronautics Paper 2009-2529



Figure 1. The test rig for the fixed-fixed beam.

of the attached masses for a sample realization are shown in Figure 2. Each of them weights 2g

Figure 2. Attached masses (magnets) at random locations. In total 12 masses, each weighting 2g, are used.

so that the total amount of variable mass is 1.6% of the mass of the beam. The location of the 12
masses are assumed to be between 0.2m and 1.0m of the beam. A uniform distribution with 100
samples is used to generate the mass locations. The equation of motion of the ‘mass loaded beam’
can be expressed as

EI
∂4w(x, t)

∂x4
+ m ẅ(x, t) +

12∑
j=1

mr ẅ(xrj
, t) +

3∑
j=1

ma ẅ(xaj
, t) + mb ẅ(xb, t) = f(x, t). (3)

where EI is the bending stiffness of the beam, x is the spatial coordinate along the length of the
beam, t is the time, w(x, t) is the time dependent transverse deflection of the beam, f(x, t) is the
applied time depended load on the beam, m is the mass per unit length of the beam and L is the
length of the beam. For the random system, an in-house finite element code was developed to
implement the discretized version of equation (3).
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B. Experimental Methodology

A 32 channel LMSTM system is used to conduct the experiment. Three main components of the
implemented experiment are (a) excitation of the structure, (b) sensing of the response, and (c)
data acquisition and processing. In this experiment we used a shaker to act as an impulse hammer.
The problem with using the usual manual hammer is that it is in general difficult to hit the beam
exactly at the same point with the same amount of force for every sample run. The shaker generates
impulses at a pulse rate of 20s and a pulse width of 0.01s. Using the shaker in this way we have
tried to eliminate any uncertainties arising from the input forces. This innovative experimental
technique is designed to ensure that the resulting uncertainty in the response arises purely due to
the random locations of the attached masses. Figure 3 shows the arrangement of the shaker. We

Figure 3. The shaker used as an impulse hammer using SimulinkTM. A hard steel tip used.

have used a small circular brass plate weighting 2g to take the impact from the shaker. This is
done in order to obtain the driving point frequency response function. In this experiment three
accelerometers are used as the response sensors. The location of the sensors are 23 cm (Point1),
50 cm (Point2, also the actuation point) and 102 cm (Point3) from the left end of the beam. These
locations are selected such that two of them are near the two ends of the beam and one is near
the middle of the beam. The exact locations are calculated such that the nodal lines of the first
few bending modes can be avoided. The steel tip used in the experiment gives clean data up to
approximately 4500 Hz. Here we consider modes upto 1kHz only.

Figure 4 shows the amplitude of the frequency response function (FRF) at points 1, 2 and
3 of the beam without any masses (the baseline model). In the same figure 100 samples of the
amplitude of the FRF are shown together with the ensemble mean, 5% and 95% probability lines.
The ensemble mean follows the result of the baseline system closely only in the low frequency
range. The relative variance of the amplitude of the FRF remains more or less constant.

C. Eigenvalue Statistics

There are numerous techniques available for extracting modal parameters from FRF data. In gen-
eral, these methods may be classified as single degree of freedom (SDOF) methods or multiple
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(a) Point 1 (23 cm from the left end)
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(b) point 2 (the driving point FRF, 50 cm from the left end)
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(c) point 3 (102 cm from the left end)

Figure 4. Measured amplitudes of the FRF of the beam with 12 randomly placed masses. 100 FRFs, together
with the ensemble mean, 5% and 95% probability points are shown.

degree of freedom (MDOF) methods, depending upon whether one chooses to fit a curve to a
single mode or to multiple modes. Because of the large number of modes observed in the fre-
quency range of interest, selection of a MDOF technique is preferred. In the present work the
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Rational Fraction Polynomial (RFP) method and a Nonlinear Least-Squares technique18 are used.
The detailed statistical analysis of the natural frequencies and comparison with analytical method
is shown in Figure 5 to Figure 8. The numerical values behind these plots are given in the appendix
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(a) Rational fraction polynomial method
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Figure 5. Comparison of the mean of the natural frequencies of the fixed-fixed beam obtained using the direct
Monte Carlo Simulation and experimental results extracted using two different methods.

(table 2) for the purpose of possible comparisons using other analytical methods not considered
in our paper. In these figures the indicated system identification method was used to extract the
natural frequencies within 2 kHz from the frequency responses measured at three different spatial
points on the beam. The ensemble statistics for each spatial location and for each identification
method can be compared via Figure 5 and Figure 6. In Figure 5 the ensemble mean calculated from
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Figure 6. Comparison of the standard deviation of the natural frequencies of the fixed-fixed beam obtained
using the direct Monte Carlo Simulation and experimental results extracted using two different methods.

the identified natural frequencies from measured frequency response functions, are compared with
the Monte Carlo simulations. It is instructive to compare the degree of agreement obtained by the
two methods and the variation in mean with spatial location of the sensor or response measure-
ment point. Significant differences in the mean for the three response points can be observed in the
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high frequency regime. It can also be seen that the global nonlinear least squares method exhibits
significant variability. This is also reflected in Figure 6.

The normalized probability density function (pdf) plots shown in Figure 7 and Figure 8 com-
pare the Monte Carlo simulation results with experimental data. Suppose ωj is the random variable
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Figure 7. Comparison of the probability density functions of four selected natural frequencies of the fixed-fixed
beam obtained using the direct Monte Carlo Simulation and experimental results extracted using the rational
fraction polynomial method.

describing the jth natural frequency with mean ωj and standard deviation σωj
. In these plots we

have normalized the natural frequencies as

ω̃j =
ωj − ωj

σωj

(4)

The increasing variability as one proceeds higher in the mode sequence is obvious. The agreement
at the level of pdfs is far from satisfactory. This suggests that even though the first two moments
can be predicted with reasonable accuracy using Monte Carlo simulations the higher moments may
not agree. While experimentally measured normalized pdfs are closer to Gaussian ensemble, albeit
with non-zero mean, the Monte Carlo simulations are not.

9 of 14

American Institute of Aeronautics and Astronautics Paper 2009-2529



−5 0 5
0

0.5

1

1.5

Eigenvalue number: 5

N
or

m
al

iz
ed

 p
df

MCS
Response point 1
Response point 2
Response point 3

−5 0 5
0

0.5

1

1.5

Eigenvalue number: 10

N
or

m
al

iz
ed

 p
df

−5 0 5
0

0.5

1

1.5

Eigenvalue number: 20

N
or

m
al

iz
ed

 p
df

−5 0 5
0

0.5

1

1.5

Eigenvalue number: 30

N
or

m
al

iz
ed

 p
df

Figure 8. Comparison of the probability density functions of four selected natural frequencies of the fixed-fixed
beam obtained using the direct Monte Carlo Simulation and experimental results extracted using the nonlinear
least-square method.

IV. Conclusions

The statistics of the eigenvalues of discrete linear dynamic systems with uncertainties have been
considered using experimental methods. One hundred nominally identical beams are created and
individually tested using experimental modal analysis. Special measures have been taken so that
the uncertainty in the natural frequencies only arises from the randomness in the mass and oscillator
locations and the experiments are repeatable with minimum changes. Such novel measures include:
(a) the use of a shaker as an impact hammer to ensure a consistent force and location for all of the
tests, (b) the use of a ruler to minimize the error in measuring the mass locations in the beam
experiment, (d) the use of magnets as attached masses for the ease of placement in the beam
experiment.

Two methods, namely the rational fraction polynomial method and a nonlinear least-squares
technique are used to extract the eigenvalues. These methods are applied to three FRFs for the
beam experiment. This implies that each of the two methods was applied to 300 FRFs for the
beam experiment. The following conclusions emerge from this study:

• The ensemble statistics such as mean and standard deviation for natural frequencies vary
with the spatial location of the measured FRFs and the type of the system identification
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technique chosen to estimate the natural frequencies.

• Whilst a reasonable predictions for the mean and the standard deviations may be obtained
using the Monte Carlo Simulation, higher moments, and hence the pdfs can be significantly
different.

• In some cases, the differences in pdfs arising from different points and different identification
methods can be more than those obtained from the Monte Carlo Simulation.

It should be recalled that the above conclusions are based on a sample size of 100. Nevertheless,
these results perhaps highlight the need for new outlook when one considerers experimental works
on random eigenvalue problems.
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A. Mean and Standard Deviation of Experimentally Identified Natural
Frequencies

Here we give the mean and standard deviation of all the experimentally identified natural fre-
quencies for all the measured FRFs using the two methods. In table 2 the results for the beam
experiment were shown.
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Mode Rational Fraction Polynomial Nonlinear Least Squares
FRF 1 FRF 2 FRF 3 FRF 1 FRF 2 FRF 3

1 9.08± 0.33 9.24± 0.17 8.39± 1.03 10.07± 7.25 9.26± 0.18 6.73± 5.79
2 21.03± 0.64 20.89± 0.56 21.01± 0.65 21.04± 0.63 20.92± 0.65 21.08± 1.16
3 38.94± 0.66 38.92± 0.66 38.93± 0.66 38.94± 0.66 38.92± 0.66 38.93± 0.66
4 62.83± 0.70 62.81± 0.71 62.80± 0.71 62.80± 0.71 62.79± 0.71 62.79± 0.71
5 93.79± 0.84 93.47± 0.85 93.65± 0.83 93.68± 0.83 93.58± 0.84 93.64± 0.83
6 128.37± 9.71 129.56± 0.87 129.50± 0.87 125.96± 9.89 129.80± 0.89 129.65± 1.49
7 173.12± 1.03 173.50± 1.01 173.09± 1.03 173.07± 1.04 173.10± 1.04 173.06± 1.04
8 219.27± 0.89 219.08± 0.90 254.58± 6.15 219.15± 0.87 219.13± 0.87 258.00± 4.14
9 273.25± 1.25 273.27± 1.26 273.34± 1.32 273.21± 1.23 273.21± 1.23 273.20± 1.23

10 333.73± 1.35 333.93± 1.33 333.59± 1.28 333.70± 1.28 333.66± 1.28 333.68± 1.28
11 463.00± 9.33 400.79± 3.01 437.50± 19.02 433.38± 61.23 399.88± 6.15 453.62± 31.80
12 547.08± 6.82 547.82± 2.17 536.75± 10.36 547.19± 7.91 548.06± 1.96 546.44± 10.87
13 586.51± 16.17 556.38± 11.69 558.63± 7.99 582.26± 42.03 568.49±197.38 549.63± 9.04
14 633.64± 3.73 653.19± 11.19 632.86± 2.61 633.24± 2.01 642.32± 27.31 633.09± 2.02
15 723.71± 2.75 736.54± 10.88 793.22± 9.38 725.60± 2.32 723.90± 2.06 816.57± 19.01
16 818.82± 16.02 819.59± 2.08 858.80± 20.83 683.02± 23.78 820.44± 2.06 890.44± 49.07
17 1027.30± 3.11 1026.88± 3.02 1024.12± 3.38 1026.92± 3.09 1026.66± 3.04 1026.59± 3.05
18 1067.56± 25.85 1030.01± 5.37 1053.84± 14.38 1086.05± 58.56 1026.59± 3.02 1037.18± 30.62
19 1147.37± 10.53 1227.66± 18.04 1153.54± 7.22 1142.98± 19.27 1249.20± 10.22 1140.21± 4.01
20 1226.03± 11.72 1247.07± 7.73 1262.04± 6.23 1211.84± 24.22 1251.38± 5.97 1259.83± 6.10
21 1359.68± 31.90 1511.76± 43.04 1645.14± 8.01 1232.35± 13.91 1036.05±579.58 1648.12± 6.48
22 1688.71± 21.69 1676.45± 10.16 1713.01± 14.35 1695.06± 65.95 1673.54± 10.14 1689.50± 27.14
23 1805.43± 26.70 1799.71± 45.71 1818.78± 19.62 1826.81±134.14 1800.18±120.84 1807.81± 15.71
24 1858.83± 38.02 1948.64± 8.67 1884.30± 19.30 1820.68± 73.88 1952.01± 8.05 1886.24± 70.76
25 1933.49± 13.20 1949.28± 8.10 1967.87± 10.65 1932.16± 38.74 1951.21± 7.78 1957.80± 9.30
26 2220.78± 43.82 2315.33±100.49 2136.00± 14.54 2015.97±998.14 1854.72±1114.61 2122.31± 11.61
27 2597.18± 37.01 2585.93± 19.24 2623.51± 14.99 2745.13± 41.36 2592.98± 19.24 2647.11± 11.64
28 2787.48± 72.53 2703.42± 38.82 2774.62± 18.57 2926.50±125.09 2695.32± 83.54 2790.94± 26.63
29 2744.54± 65.69 2758.39± 30.22 2841.25± 23.53 2765.70±106.87 2776.99± 56.24 2828.18± 28.11
30 2759.01± 31.72 2819.70± 22.43 2883.49± 27.00 2719.83± 57.31 2806.86± 19.61 2852.38± 42.42
31 3227.53± 54.19 3373.65±104.31 3099.94± 43.95 2849.03±175.06 3263.22±1163.50 3028.99± 25.66
32 3643.10± 33.30 3623.34± 25.36 3554.33± 33.42 3697.44± 49.57 3633.21± 25.76 3598.47± 38.64
33 3689.33± 56.99 3669.52± 43.03 3611.74± 25.31 3722.14±116.06 3626.82± 26.75 3634.27± 31.89
34 3672.02± 55.41 3698.77± 47.02 3698.47± 43.93 3651.91± 62.85 3655.25± 73.61 3652.49± 25.76

Table 2. Mean and standard deviation of identified natural frequencies of the fixed-fixed beam (in Hz) from the
measured FRFs at three spatial locations using two identification methods.
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