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Abstract: Uncertainties in complex dynamical systems play an important role in the pre-
diction of dynamic response in the mid and high frequency ranges. For distributed parameter
systems, parametric uncertainties can be represented by random fields leading to stochastic
partial differential equations. Over the past two decades spectral stochastic finite element
method has been developed to discretise the random fields and solve such problems. On the
other hand, for deterministic distributed parameter linear dynamical systems, spectral finite
element method has been developed to efficiently solve the problem in the frequency domain.
In spite of the fact that both approaches use spectral decomposition (one for the random fields
and while the other for the dynamic displacement fields), there has been very little overlap be-
tween them in literature. In this paper these two spectral techniques have been unified with the
aim that the unified approach would outperform any of the spectral methods considered on its
own. Considering exponential and triangular autocorrelation functions for the random fields,
frequency depended element stiffness, mass and damping matrices are derived for axial and
bending vibration of rods. Closed-form exact expressions are derived using Karhunen-Loève
expansion. Numerical examples are given to illustrate the unified spectral approach.

Key words: random field, spectral method, stochastic finite element, frequency response,
Karhunen-Loève expansion

NOMENCLATURE

D dynamic stiffness matrix
f forcing function of the discretized system
Γ(ω) a constant matrix for the shape functions
N(r, ω) shape function vector
r spatial coordinate vector
s(r, ω) a vector of elementary functions for the shape functions
u response vector of the discretized system
D space of the random field H
λ j jth eigenvalue corresponding to the auto-covariance ker-

nel
Ω sample space
ρ(r, θ) random mass density
θ elements of the sample space Ω

ϕ j(r) jth eigenfunction corresponding to the auto-covariance
kernel

ûe(ω) nodal displacement vector for an element
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ξ j(θ) uncorrelated Gaussian random variables
c(r, θ) random distributed damping parameter
CH(r1, r2) covariance function of the random field H
H(r, θ) a random field in r
ks(r, θ) random distributed stiffness parameter
L1(•) damping operator
L2(•) stiffness operator
m order of the governing differential equation
n dimension of the element matrices
U(r, t) spatial displacement variable
ue(r, ω) displacement variable within an element
(•)0 deterministic part corresponding to (•)
(•)T matrix transposition
C space of complex numbers
Cn×m space n × m complex matrices

1. INTRODUCTION

Spectral methods are widely used in various branches of
science and engineering. Due to their general nature, the
meaning of spectral methods can be very different depend-
ing on the applications and the disciplines. These differences
mainly arise due to the lack of communication between dif-
ferent disciplines. In spite of these differences, the unifying
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factor between the spectral methods in different disciplines
is that generally they are very powerful tools for the ana-
lytical and experimental treatments of wide ranging physical
problems. In the context of stochastic finite element method
[1–14], spectral methods have been used extensively to an-
alytically represent the random fields describing parametric
uncertainties of physical systems. In the context of struc-
tural dynamics, spectral methods have been used in random
vibration problems [15–18] and for the discretisation of dis-
placement fields in the frequency domain [19–24]. Several
application of such method has been discussed in details in
ref. [25]. In spite of the fact that both approaches use spec-
tral decomposition (one for the random fields and while the
other for the dynamic displacement fields), there has been
very little overlap between them in literature. In this paper
these two spectral techniques have been unified with the aim
that the unified approach would perform better than any of
the spectral methods considered on its own.

Numerical computer codes implementing physics based
models are the backbone of today’s dynamic analysis of com-
plex systems. Laboratory based controlled tests are often per-
formed to gain insight into some specific physics of a prob-
lem. Such tests can indeed lead to new physical laws im-
proving a part of the overall science model. Test data can
also be used to calibrate a known model. However, neither of
these activities are enough to produce a credible numerical
tool because of the several types of uncertainties which exist
in the whole process of physics based computational predic-
tions. Such uncertainties include, but not limited to (a) para-
metric uncertainty (e.g, uncertainty in geometric parameters,
friction coefficient, strength of the materials involved); (b)
model inadequacy (arising from the lack of scientific knowl-
edge about the model which is a-priori unknown); (c) ex-
perimental error (uncertain and unknown error percolate into
the model when they are calibrated against experimental re-
sults); (d) computational uncertainty (e.g, machine preces-
sion, error tolerance and the so called ‘h’ and ‘p’ refine-
ments in finite element analysis) and (e) model uncertainty
(genuine randomness in the model such as uncertainty in the
position and velocity in quantum mechanics, deterministic
chaos). These uncertainties must be assessed and managed
for credible computational predictions.

In this paper we focus our attention to dynamical systems
with parametric uncertainties. In the parametric approach,
the uncertainties associated with the system parameters, such
as Young’s modulus, mass density, Poisson’s ratio, damp-
ing coefficient and geometric parameters are quantified using
statistical methods and propagated, for example, using the
stochastic finite element method. The effect of uncertainty is
significant in the higher frequency ranges. In the higher fre-
quency ranges, as the wavelengths become smaller, very fine
(static) mesh size is required to capture the dynamical be-
haviour. As a result, the deterministic analysis itself can pose
significant computational challenges. One way to address
this problem is to use a spectral approach in the frequency
domain [25]. The main idea here is that the displacements
within an element is expressed in terms of frequency depen-

dent shape functions. The shape functions adapt themselves
with increasing frequency and consequently displacements
can be obtained accurately without fine remeshing. The spec-
tral approach have the potential to be an efficient method for
mid and high frequency vibration problems provided the ran-
dom fields describing parametric uncertainties can be taken
into account efficiently. Here the spectral decomposition of
the random files are used in conjunction with the spectral de-
composition of the displacements field. It is expected that si-
multaneous use of these two types of spectral decompositions
will result into an efficient approach for distributed dynami-
cal systems with parametric uncertainties. Spectral finite el-
ement method in the frequency domain is briefly discussed
in section 2. The essential background of spectral represen-
tation of stochastic fields is given in section 3. The general
derivation of the element mass, stiffness and damping ma-
trices using the doubly spectral stochastic finite element is
given in section 4. In section 5 this general theory is applied
to axially vibrating rods with uncertain properties.

2. SPECTRAL FINITE ELEMENT IN THE FRE-
QUENCY DOMAIN

Spectral method for deterministic dynamical systems have
been in use for more than three decades (see for exam-
ple the book by Paz [26]). This approach, or approaches
very similar to this, is known by various names such as
the dynamic stiffness method [27–39], spectral finite ele-
ment method [19, 20, 25] and dynamic finite element method
[40, 41]. Some of the notable features of the method, which
can be discerned from the available literature are

1. the mass distribution of the element is treated in an exact
manner in deriving the element dynamic stiffness ma-
trix;

2. the dynamic stiffness matrix of one dimensional struc-
tural elements taking into account the effects of flex-
ure, torsion, axial motion, shear deformation effects and
damping are exactly determinable, which, in turn, en-
ables the exact vibration analysis of skeletal structures
by an inversion of the global dynamic stiffness matrix;

3. the method does not employ eigenfunction expansions
and, consequently, a major step of the traditional finite
element analysis, namely, the determination of natural
frequencies and mode shapes, is eliminated which auto-
matically avoids the errors due to series truncation; this
makes the method attractive for situations in which a
large number of modes participate in vibration;

4. since the modal expansion is not employed, ad hoc
assumptions concerning damping matrix being propor-
tional to mass and/or stiffness is not necessary;

5. the method is essentially a frequency domain approach
suitable for steady state harmonic or stationary ran-
dom excitation problems; generalization to other type of
problems through the use of Laplace transforms is also
available;
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6. the static stiffness matrix and the consistent mass matrix
appear as the first two terms in the Taylor expansion of
the dynamic stiffness matrix in the frequency parameter.

3. SPECTRAL STOCHASTIC FINITE ELEMENT
METHOD

Problems of structural dynamics in which the uncertainty
in specifying mass and stiffness of the structure is modeled
within the framework of random fields can be treated us-
ing the stochastic finite element method [1–14]. Application
of the stochastic finite element method to linear structural
dynamics problems typically consists of the following key
steps:

1. Selection of appropriate probabilistic models for param-
eter uncertainties and boundary conditions

2. Replacement of the element property random fields by
an equivalent set of a finite number of random variables.
This step, known as the ‘discretisation of random fields’
is a major step in the analysis.

3. Formulation of the system equations of motion of the
form D(ω)u = f where D(ω) is the random dynamic
stiffness matrix u is the vector of random nodal displace-
ment and f is the applied forces. In general D(ω) is a
random symmetric complex matrix.

4. Solution of the set of complex random algebraic equa-
tion to obtain the statistics of the response vectors

Suppose H(r, θ) is a random field with a covariance function
CH(r1, r2) defined in a space D. Here θ denotes an element
of the (random) sample space Ω so that θ ∈ Ω. Since the
covariance function is finite, symmetric and positive definite
it can be represented by a spectral decomposition. Using this
spectral decomposition, the random process H(r, θ) can be
expressed in a generalized fourier type of series as

H(r, θ) = H0(r) +

∞∑

j=1

√
λ jξ j(θ)ϕ j(r) (1)

where ξ j(θ) are uncorrelated random variables, λ j and ϕ j(r)
are eigenvalues and eigenfunctions satisfying the integral
equation

∫

D
CH(r1, r2)ϕ j(r1)dr1 = λ jϕ j(r2), ∀ i = 1, 2, · · · (2)

The spectral decomposition in equation (1) is known as the
Karhunen-Loève expansion. The series in (1) can be ordered
in a decreasing series so that it can be truncated after a fi-
nite number of terms with a desired accuracy. We refer the
books [2, 42] and references therein for further discussions
on Karhunen-Loève expansion.

In this paper one dimensional systems are considered.
Moreover, Gaussian random fields with exponentially decay-
ing autocorrelation function is considered. The autocorrela-
tion function can be expressed as

C(x1, x2) = e−|x1−x2 |/b (3)

Here the constant b is known as the correlation length and it
plays an important role in the description of a random field.
If the correlation length is very small, then the random pro-
cess becomes close to a delta-correlated process, often know
as the white noise. If the correlation length is very large com-
pared to domain under consideration, the the random process
effectively becomes a random variable. The underlying ran-
dom process H(x, θ) can be expanded using the Karhunen-
Loève expansion [2, 42] in the interval −a ≤ x ≤ a as

H(x, θ) =

∞∑

j=1

[
ξ j(θ)

√
λ jϕ j(x) + ξ∗j (θ)

√
λ∗jϕ

∗
j(x)

]
. (4)

Using the notation c = 1/b, the corresponding eigenvalues
and eigenfunctions, for odd j are given by

λ j =
2c

ω2
j + c2

; ϕ j(x) =
cos(ω jx)√

a +
sin(2ω ja)

2ω j

(5)

tan(ωa) =
c
ω

(6)

and for even j are given by

λ∗j =
2c

ω∗j
2 + c2

; ϕ∗j(x) =
sin(ω∗j x)

√
a −

sin(2ω∗ja)

2ω∗j

(7)

tan(ω∗a) =
ω∗

−c
(8)

These eigenvalues and eigenfunctions will now be used to
obtain the element mass, stiffness and damping matrices.

4. GENERAL DERIVATION OF DOUBLY SPECTRAL
ELEMENT MATRICES

A linear damped distributed parameter dynamical system
in which the displacement variable U(r, t), where r is the spa-
tial position vector and t is time, specified in some domainD,
is governed by a linear partial differential equation

ρ(r, θ)
∂2U(r, t)
∂t2 + L1

∂U(r, t)
∂t

+ L2U(r, t) = p(r, t);

r ∈ D, t ∈ [0,T ] (9)

with linear boundary-initial conditions of the form

M1 j
∂U(r, t)
∂t

= 0; M2 jU(r, t) = 0;

r ∈ Γ, t = t0, j = 1, 2, · · · (10)

specified on some boundary surface Γ. In the above equa-
tion ρ(r, θ) is the random mass distribution of the system,
p(r, t) is the distributed time-varying forcing function, L1 is
the random spatial self-adjoint damping operator, L2 is the
random spatial self-adjoint stiffness operator and M1 j and
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M2 j are some linear operators defined on the boundary sur-
face Γ. When parametric uncertainties are considered, the
mass density ρ(r, θ) as well as the damping and stiffness op-
erators involve random processes. Here θ denotes the random
nature of the function. Frequency depended random element
stiffness matrices were derived by various authors using the
weighted integral approach [5, 6, 8, 43], the energy operator
approach [44] and a series expansion approach [45]. Sup-
pose the underlying homogeneous system corresponding to
system (9) without any forcing is given by

ρ0
∂2U(r, t)
∂t2 + L10

∂U(r, t)
∂t

+ L20U(r, t) = 0 (11)

together with suitable homogeneous boundary and initial
conditions. Taking the Fourier transform of equation (11)
and considering zero initial conditions one has

−ω2ρ0u(r) + iωL10 {u(r)} + L20 {u(r)} = 0 (12)

Like the classical finite element method, suppose that
frequency-dependent displacement within an element is in-
terpolated from the nodal displacements as

ue(r, ω) = NT (r, ω)̂ue(ω) (13)

Here ûe(ω) ∈ Cn is the nodal displacement vector and
N(r, ω) ∈ Cn, the vector of frequency-dependent shape func-
tions and n is the number of the nodal degrees-of-freedom.
Suppose the s j(r, ω) ∈ C, j = 1, 2, · · ·m are the basis func-
tions which exactly satisfy equation (12). Here m is the order
of the ordinary differential equation (12). It can be shown
that the shape function vector can be expresses as

N(r, ω) = Γ(ω)s(r, ω) (14)

where the vector s(r, ω) =
{
s j(r, ω)

}T
,∀ j ∈ Cm and the com-

plex matrix Γ(ω) ∈ Cnm depends on the boundary conditions.
The detailed derivation will be given in full paper.

Extending the weak-form of finite element approach to the
complex domain, the frequency depended n×n complex ran-
dom stiffness, mass and damping matrices can be obtained
as

Ke(ω, θ) =

∫

De

ks(r, θ)L2 {N(r, ω)} L2

{
NT (r, ω)

}
dr (15)

Me(ω, θ) =

∫

De

ρ(r, θ)N(r, ω)NT (r, ω)dr and (16)

Ce(ω, θ) =

∫

De

c(r, θ)L1 {N(r, ω)} L1

{
NT (r, ω)

}
dr (17)

Where, (•)T denotes matrix transpose, ks(r, θ) is the ran-
dom distributed stiffness parameter, L2{•} is the strain en-
ergy operator, c(r, θ) is the random distributed damping pa-
rameter and L1{•} is the energy dissipation operator. The
random fields ks(r, θ), ρ(r, θ) and c(r, θ) are expanded using
the Karhunen-Loève expansion (1). Using finite number of

terms, each of the complex element matrices can be expanded
in a spectral series as

Ke(ω, θ) = K0e(ω) +

NK∑

j=1

ξKj (θ)K je(ω) (18)

Me(ω, θ) = M0e(ω) +

NM∑

j=1

ξMj (θ)M je(ω) (19)

and Ce(ω, θ) = C0e(ω) +

NC∑

j=1

ξCj (θ)C je(ω) (20)

Here the complex deterministic symmetric matrices, for ex-
ample in the case of the stiffness matrix, can be obtained as

K0e(ω) =

∫

De

ks0 (r)L2 {N(r, ω)} L2

{
NT (r, ω)

}
dr and

(21)

K je(ω) =
√
λKj

∫

De

ϕKj (r)L2 {N(r, ω)} L2

{
NT (r, ω)

}
dr

(22)

∀ j = 1, 2, · · · ,NK

The equivalent terms corresponding to the mass and damping
matrices can be obtained in a similar manner. Substituting
the shape function from equation (14), into equations (21)
and (22) one obtains

K0e(ω) = Γ(ω)K̃0e(ω)ΓT (ω) and (23)

K je(ω) =
√
λKjΓ(ω)K̃ je(ω)ΓT (ω); ∀ j = 1, 2, · · · ,NK

(24)

where

K̃0e(ω) =

∫

De

ks0 (r)L2 {s(r, ω)} L2

{
sT (r, ω)

}
dr ∈ Cmm and

(25)

K̃ je(ω) =

∫

De

ϕKj (r)L2 {s(r, ω)} L2

{
sT (r, ω)

}
dr ∈ Cmm

(26)

∀ j = 1, 2, · · · ,NK

The expressions of the eigenfunctions given in the previous
section are valid within the specific domains defined before.
One needs to change the coordinate in order to use them in
equation (26). Once the element stiffness, mass and damping
matrices are obtained in this manner, the global matrices can
be calculated by summing the element matrices with suitable
coordinate transformations as in the standard finite element
method.

5. DSSFEM FOR RODS IN AXIAL VIBRATION

We consider the following method of time-frequency
Fourier spectral approximation for the displacement field for
axial vibration in a rod.
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The equation of motion of the stochastically inhomoge-
neous rod under axial motion is given by

∂

∂x

[
AE(x, θ)

∂U
∂x

]
+ c0

∂U
∂t
− m(x, θ)

∂2U
∂t2 = 0 (27)

Here the axial rigidity AE(x) and the mass per unit length
m(x) is assumed to be random fields of the following form

AE(x, θ) = A0E0 [1 + εAE HAE(x, θ)] (28)
m(x) = m0(1 + εmHm(x, θ)) (29)

Here HAE(x, θ) and Hm(x, θ) are assumed to homogeneous
Gaussian random fields with zero mean and exponentially de-
caying autocorrelation function of the form given by equation
(3). The ’strength parameters’ εAE and εm effectively quantify
the amount of uncertainty in the axial rigidity and mass per
unit length of the rod. The constants A0E0 and m0 = A0ρ0
are respectively the mass per unit length and axial rigidity of
the underline baseline model. The equation of motion of the
baseline model is given by

A0ρ0
∂2U(x, t)
∂t2 + c0

∂U
∂t
− A0E0

∂2U
∂x2 = 0 , (30)

where ρ0, E0, A0 and c0 are the nominal value of the den-
sity, elastic stiffness, cross sectional area and damping fac-
tor within a domain x ∈ [0, L]. With spectral expansion of
the axial displacement U(x, t) in the frequency-wavenumber
space, one has

U(x, t) =
(
ũ1e−ik0 x/L + ũ2e−ik0(1−x/L)

)
eiωt = u(x)eiωt (31)

where i =
√−1, k0 is the non-dimensional wavenumber for

the reference model in Eq. (30), which is given by

k0 = ωL
√
ρ0

E0

√
1 − ic0

ωρ0
. (32)

By defining spectral element nodes at x = 0, L and the one
axial displacement degrees of freedom at each node as u1(x =

0) and u2(x = L), one obtains the generic displacement field
in terms of these two degrees of freedom as

u(x) =

[
e−ik0 x/L − e−ik0(2−x/L)

1 − e−i2k0

−e−ik0(1+x/L) + e−ik0(1−x/L)

1 − e−i2k0

] {
u1
u2

}

=N(x, ω)ûe(ω) (33)

which gives the frequency dependent shape function N(x, ω)
as discussed earlier but for the one-dimensional rod problem
as an example. After some elementary algebra, the shape
function vector in equation (33) can be expressed in the form
of equation (14) as

N(r, ω) = Γ(ω)s(r, ω), where s(r, ω) =

{
e−ik0 x/L

eik0 x/L

}

and Γ(ω) =
1

1 − e−i2k0

[
1 −e−2ik0

−e−ik0 e−ik0

] (34)

Now we need to substitute s(r, ω) in equation (25) and (26) to
obtain the deterministic and random part of the element ma-
trices. In this paper a deterministic constant modal damping
factor is assumed. Therefore, we will only derive the mass
and stiffness matrices of the system. For the axial vibration
the stiffness operator L2(•) =

∂(•)
∂x . Because constant nomi-

nal values are assumed, we have ks0 (r) = A0E0. Using these,
from equation (25) one obtains

K̃0e(ω) = A0E0

∫ L

0

{
∂s(x, ω)
∂x

}{
∂s(x, ω)
∂x

}T

dx (35)

=
A0E0k0

L


−1/2 i

(
−1 + e−2 ik0

)
k0

k0 1/2 i
(
e2 ik0 − 1

)


(36)

The deterministic part of the stiffness matrix can be obtained
from equation (15) using the Γ(ω) matrix defined in equation
(34). The term M̃0e(ω) can be obtained in a similar way as

M̃0e(ω) = m0

∫ L

0
s(x, ω)sT (x, ω)dx (37)

= m0L



1/2 i(−1+e−2 ik0 )
k0

1

1 −1/2 i(e2 ik0−1)
k0

 (38)

The deterministic mass matrix can be obtained from the
above equation as M0e(ω) = Γ(ω)M̃0e(ω)ΓT (ω).

To obtain the matrices associated with the random compo-
nents, note that for each j there will be two different matrices
corresponding to the two eigenfunctions defined in equations
(5) and (7). Following equation (18), we can express the ele-
ment stiffness matrix as

Ke(ω, θ) = K0e(ω) + ∆Ke(ω) (39)

where ∆Ke(ω) is the random part of the matrix. Following
equation (24), this matrix can be conveniently expressed as

∆Ke(ω) = Γ(ω)∆̃Ke(ω)ΓT (ω) (40)

The matrix ∆̃Ke(ω) can be expanded utilizing the Karhunen-
Loève expansion as

∆̃Ke(ω) =

NK∑

j=1

[
ξKj (θ)

√
λKj K̃ je(ω) + ξ∗Kj

(θ)
√
λ∗Kj

K̃∗ je(ω)
]

(41)
where

√
λKj ,

√
λ∗Kj

are the eigenvalues corresponding to the

random field HAE(x, θ). The matrices K̃ je(ω) and K̃∗ je(ω)
can be obtained using the integrals of the form equation (26).
Using the expression of the eigenfunction for the odd values
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of j as in equation (5) one has

K̃ je(ω) =

∫ L

0

εAE A0E0 cos(ω jx)√
a +

sin(2ω ja)
2ω j

{
∂s(x, ω)
∂x

}{
∂s(x, ω)
∂x

}T

dx

(42)

= − εAE A0E0k2
0

L2

√
a +

sin(2ω ja)
2ω j

∫ L

0
cos(ω jx)


e
−2 ik0 x

L 1

1 e
2 ik0 x

L

 dx

(43)

In the above expression a = L/2 and the eigenvalues ω j

should be obtained by solving the transcendental equation
(6). In a similar manner, using the expression of the eigen-
function for the even values of j as in equation (7) one has

K̃∗ je(ω) =

− εAE A0E0k2
0

L2

√
a − sin(2ω ja)

2ω j

∫ L

0
sin(ω jx)


e
−2 ik0 x

L 1

1 e
2 ik0 x

L

 dx

(44)

The mass matrix can also be represented as equations
(39)–(41). The eigenvalues and eigenfunctions correspond-
ing to the random field Hm(x, θ) needs to be used to obtain
the elements of M̃ je(ω) and M̃∗

je(ω).
Using the expression of the eigenfunction for the odd val-

ues of j as in equation (5) one has

M̃ je(ω) =

∫ L

0

εmm0 cos(ω jx)√
a +

sin(2ω ja)
2ω j

s(x, ω)sT (x, ω)dx (45)

=
εmm0√

a +
sin(2ω ja)

2ω j

∫ L

0
cos(ω jx)


e
−2 ik0 x

L 1

1 e
2 ik0 x

L

 dx

(46)

In the above expression the eigenvalues ω j should be ob-
tained by solving the transcendental equation (6). In a simi-
lar manner, using the expression of the eigenfunction for the
even values of j as in equation (7) one has

M̃∗
je(ω) =

εmm0√
a − sin(2ω ja)

2ω j

∫ L

0
sin(ω jx)


e
−2 ik0 x

L 1

1 e
2 ik0 x

L

 dx (47)

Equations (42)–(47) completely define the random parts of
the element stiffness and mass matrices. The definite in-
tegrals appearing in these expressions can be evaluated in
closed-form. This further reduces the computational cost in

deriving the element matrices. The exact closed-form expres-
sion of the elements of the above four matrices are given in
the appendix.

6. CONCLUSIONS

The basic principles for Doubly Spectral Stochastic Finite
Element Method (DSSFEM) for damped linear dynamical
systems with distributed parametric uncertainty has been de-
rived. This new approach simultaneously utilizes the spectral
representations in the frequency and random domains. The
spatial displacement fields are discretized using frequency-
adaptive complex shape functions while the spatial random
fields are discretized using the Karhunen-Loève expansion.
In spite of the fact that these two spectral approaches ex-
isted for well over three decades, there has been very little
overlap between them in literature. In this paper these two
spectral techniques have been unified with the aim that the
unified approach would outperform any of the spectral meth-
ods considered on its own. The resulting frequency depended
random element matrices in general turn out to be complex
symmetric matrices. The main computational advantage of
the proposed approach is that the fine spatial discretisation
will not be necessary for high and mid-frequency vibration
analysis. The detailed derivations for rods in axial vibration
is given. Closed-form expressions of the element mass and
stiffness matrices have been derived for the stochastic para-
metric fields with exponential autocorrelation function. Nu-
merical examples have been given to illustrate the applicabil-
ity of the proposed method.
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APPENDIX A: DERIVATION OF THE RANDOM ELE-
MENT STIFFNESS AND MASS MATRICES

In this section we derive the exact closed-form expressions
of the different terms of the element stiffness and mass ma-
trices corresponding to the random part of the respective ma-
trices. The definite integral which define these matrices are
given in equations (42)–(47). Since all of these matrices are
symmetric, only the expressions of the elements in the upper
triangular part are given here.

We express the matrix K̃ je(ω) in equation (42) as

K̃ je(ω) =
εAE A0E0k2

0

L

√
a +

sin(2ω ja)
2ω j

K̂ je(ω) (48)

The elements of the upper triangular part of the matrix

K̂ je(ω) = − 1
L

∫ L

0
cos(ω jx)


e
−2 ik0 x

L 1

1 e
2 ik0 x

L

 dx (49)
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are given by

K̂ je11
(ω) = −

2 ik0 − 2 ie−2 ik0 k0 cos
(
ω jL

)
+ e−2 ik0ω jL sin

(
ω jL

)

−4 k0
2 + ω j

2L2

K̂ je12
(ω) =

sin
(
ω jL

)

ω jL

K̂ je22
(ω) = −

−2 ik0 + 2 ie2 ik0 k0 cos
(
ω jL

)
+ e2 ik0 Lω j sin

(
ω jL

)

−4 k0
2 + ω j

2L2

(50)

Similarly the matrix K̃∗ je(ω) in equation (42) can be ex-
pressed as

K̃∗ je(ω) =
εAE A0E0k2

0

L

√
a − sin(2ω ja)

2ω j

K̂∗ je(ω) (51)

The elements of the upper triangular part of the matrix

K̂∗ je(ω) = − 1
L

∫ L

0
sin(ω jx)


e
−2 ik0 x

L 1

1 e
2 ik0 x

L

 dx (52)

are given by

K̂∗ je11
(ω) =

−ω jL + e−2 ik0ω jL cos
(
ω jL

)
+ 2 ie−2 ik0 k0 sin

(
ω jL

)

−4 k0
2 + ω j

2L2

K̂∗ je12
(ω) = −

−1 + cos
(
ω jL

)

ω jL

K̂∗ je22
(ω) =

−ω jL + e2 ik0ω jL cos
(
ω jL

)
− 2 ie2 ik0 k0 sin

(
ω jL

)

−4 k0
2 + ω j

2L2

(53)

The matrices associated with the random parts of the mass
matrix given by equations (46) and (47) can be obtained in
closed-form by using the integrals given by equations (49)
and (52) respectively.
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