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step-by-step simulation method for implementing the new computational approach in conjunction with
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1. Introduction

The analysis of uncertainty of very large dynamical systems
over a wide range of frequency is a significant challenge [1,2]. In
this paper a new reduced-order computational approach for
damped stochastic linear dynamical systems is proposed using
Wishart random matrix distribution. The use of random matrices
to model uncertainty was proposed by Soize [3-5] and subse-
quently researched by others [6-10]. Although the validity of the
Wishart random matrix is proven in various structural dynamical
problems over the past decade, the computational methods till
date relies on the direct Monte Carlo Simulation. It is therefore cru-
cial to develop efficient simulation method to consider real-life
problems with very large matrix sizes. The equation of motion of
a damped n-degree-of-freedom linear dynamic system can be
expressed as

Mq(t) + Cq(t) + Kq(t) = f(t) (1)

where f(t) € R" is the forcing vector, q(t) € R" is the response vector
and M € R™", Ce R™ and K € R”" are the mass, damping and
stiffness matrices, respectively. In order to completely quantify
the uncertainties associated with system (1) we need to obtain
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the probability density functions of the random matrices M, C and
K. Using the parametric approach, such as the stochastic finite ele-
ment method [11], one usually obtains a problem specific covari-
ance structure for the elements of system matrices. The
nonparametric approach [3-5] on the other hand results in a central
Wishart distribution (or more generally, the matrix variate Gamma
distribution [12]) for the system matrices. Wishart matrix with
properly selected parameters can be used for systems with both
parametric uncertainty and nonparametric uncertainty [see for
example [13-16]].

The aim of this paper is to investigate an efficient simulation
method to obtain frequency response function (FRF) statistics with
Wishart matrices. The approach is based on transformation and
reduction of the stochastic system in the modal domain. Recently
in the context of parametric uncertainty, Pichler et al. [17] pro-
posed a meta-model approach in the modal domain for the calcu-
lation of frequency response statistics. Here, a Wishart random
matrix distribution is considered for the eigensolution of the re-
duced-order system. The identification of the parameters of the
Wishart random model has been discussed. The newly proposed
approach is compared with the existing random matrix models
using numerical case studies. Results from the new approach have
been validated using an experiment on a vibrating plate with ran-
domly attached spring-mass oscillators. One hundred nominally
identical samples have been physically created and individually
tested within a laboratory framework. A simple step-by-step
simulation method for implementing the new computational
approach in conjunction with general purpose finite element
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software has been outlined. The method is applied to an aircraft
wing problem with uncertainty to illustrate the generality, porta-
bility and the non-intrusive nature of the proposed approach.

2. The generalized Wishart random matrix model

The generalized Wishart random matrix model was recently
introduced by Adhikari [18]. Here we briefly review the necessary
details. Suppose the mass and stiffness matrices corresponding to
the baseline model are known. In addition to this, it is assumed
that the dispersion parameters associated with these matrices
are known. The dispersion parameter, proposed by Soize [3,4], is
a measure of uncertainty in the system and it is similar to the nor-
malized standard deviation of a matrix. For example, the disper-
sion parameter associated with the stiffness matrix is defined as

L K=K}
O =——— 5 )
Kol

where ||-||r denotes the Frobenius norm of a matrix, and the symbol
E{...} denotes the operation of averaging with respect to the corre-
sponding probability distribution. The dispersion parameter &y,
associated with the mass matrix can be defined in a similar way.
The dispersion parameters dy; and dx can be obtained using the sto-
chastic finite element method or experimental measurements [6].
Given the dispersion parameters dy and Jx and the baseline mass
and stiffness matrices Mg and Ko, the parameters for the random
matrices M and K can be obtained in closed-form. Various parame-
ter selection options have been investigated [9] and the optimal
parameters can be obtained via closed-form expressions using opti-
misation approaches.

It is well known that the dynamic response of a proportionally
damped stochastic system is characterized by the eigensolutions of
the dynamic matrix

H=M"2kKM'/? 3)

In general, when K and M are Wishart matrices, the matrix H is
not a Wishart matrix (see e.g. [12] for its distribution). However,
Adhikari [18] investigated the possibility of H itself being a Wishart
matrix. Since H is a positive definite matrix, a Wishart matrix can
be fitted using the maximum entropy principle [3,4] just like the
mass and stiffness matrices, provided the dispersion parameter
and the baseline values are known. It was observed [18] that such
a single Wishart matrix also provides a reasonable model. Thus
generalized Wishart random matrix model does not strictly follow
from the original Wishart matrix model of the system matrices and
should be considered as one used for mathematical simplicity and
computational efficiency, providing the qualitative (and in some
cases quantitative) description of stochastic dynamics. The de-
tailed derivation of such generalized Wishart matrix and its
numerical and experimental validation can be found in [18]. It
was shown that

H~ Wq(p,X) (4)

where W, (e) denotes a n dimensional Wishart matrix. The parame-
ters p and X can be obtained from the available data regarding the
system, namely My, Ko, dy;, and x. Dynamical responses obtained
using this generalized Wishart matrix have been validated [18]
against the stochastic finite element method, full Wishart matrices
and experiential results. Here we take this model to obtain the re-
duced random matrix. The main focus of the present paper is to de-
velop an efficient reduced computational approach for large
dynamical systems. The proposed approach is integrated with a
commercial finite element software by exploiting its non-intrusive
nature.

3. The reduced Wishart matrix approach

Assuming all the initial conditions are zero and taking the
Laplace transform of the equation of motion (1) we have

[s°M + sC +K]q(s) = f(s) (5)

where (o) denotes the Laplace transform of the respective quanti-
ties. The aim here is to obtain the statistical properties of
q(s) € C" when the system matrices are random matrices. The un-
damped eigenvalue problem is given by

Ko, = 0?M¢;, j=1.2,....n (6)

where a)]z and ¢; are respectively the eigenvalues and mass-normal-
ized eigenvectors of the system.

A high resolution model of a dynamical system can easily have
several million degrees-of-freedom (that is n). On the other hand, it
may be only few hundreds or thousands modes are necessary for
the calculation of the dynamic response within the frequency
range considered. Suppose the number of modes to be retained is
m. In general m < n. The selection of reduced modes depends on
the frequency of excitation. If the maximum frequency of excita-
tion is wmax, then m should be such that at least w,, > wmax. Several
excellent references exist [19] on the selection of modal order for
dynamic problems.

We form the truncated undamped modal matrices

Q= diag[wthv"'awm} ER™™ and @ = [¢17¢27 s ~7¢m] € R™™

(7
so that

O'K® =Q* and ®'Md =1, (8)
where I, is a m-dimensional identity matrix. Using these, Eq. (5)
can be transformed into the modal coordinates as

[l +sC + Q%)q =f 9)

where and (e) denotes the quantities in the reduced modal
coordinates:
C=0'CocR™™ q=&q andf =o'f (10)

For simplicity let us assume that the system is proportionally
damped with deterministic modal damping factors ¢y, {3, ..., {m.
Therefore, when we consider random systems, the matrix of eigen-
values Q2 in Eq. (9) will be a random matrix of dimension m. Sup-
pose this random matrix is denoted by E € R™:

Qs (11)

From the definition of H in Eq. (3) it is clear that E is a Wishart
matrix and the dispersion parameter of E and H are the same.
Since E is a symmetric and positive definite matrix, it can be diag-
onalized by an orthogonal matrix ¥, such that

yizy, = 02 (12)

Here the subscript r denotes the random nature of the eigen-
values and eigenvectors of the random matrix E. Recalling that
¥Iy, =1, from Eq. (9) we obtain

q = [l +5C + Q7 'F (13)
= W, [sL, + 250, + Q2] W (14)

where

C = diag[ihéb'"agm] € Rmxm (15)
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The response in the original coordinate can be obtained as

q(s) = G/ (s) = OV, [s2l, + 250, + Q7] (@%,)'f(s)

m x{jf (s)

R Y —n L (16)
— §* + 25y + of

Here

Q, = diagjw,,, oy, ..., 0y, (17)

and X, = oY, = [xmxrz,...,xr,,,] (18)

are respectively the matrices containing random eigenvalues and
eigenvectors of the system. The Frequency Response Function
(FRF) of the system can be obtained by substituting s =iw in Eq.
(16). The computational methodology relies on the undamped ran-
dom eigenvalue problems. Therefore, if a perturbation type of ap-
proach is adopted (for example [20]), then the method can be
extended to general nonproportional or nonviscously [21] damped
systems with light damping. In the next section we summarize
the Monte Carlo Simulation (MCS) based computational approach
arising from this analysis.

4. Summary of the computational approach

A step-by-step method for implementing the new computa-
tional approach in conjunction with any general purpose finite ele-
ment software is given below:

1. Form the deterministic mass and stiffness matrices My and K
using the standard finite element method and the modal damp-
ing factors {;. Select the number of modes m < n. The number of
modes to be retained, m should be selected based on the fre-
quency of excitation.

2. Solve the deterministic undamped eigenvalue problem

I(0¢0] :(}\)EJMO(ﬁOj7 j:1,27...7m (19)
and create the matrix
@ = (o, ; Do, - - -, Do, ] € R™™ (20)

Calculate the ratio

m 2 m
. (z w) 3o 1)
=1 =

3. Obtain the dispersion parameters dy and Jx corresponding to
the mass and stiffness matrices. This can be obtained from
physical or computer experiments.

4. Obtain the dispersion parameter of the generalized Wishart
matrix H in Eq. (3) as [18]

(PZM +(Px—2-2n)py + (—n—D)pe+n*+1+ zn)ﬁH

S —
H Pk (=py +n)(=py + 1+ 3)
+p2M + (px —2n)py + (1 —n)pe — 1+ n?
pi(=py +1n)(=py +n+3)
(22)
where
Py = lz {1 + {Trace(Mo)}z/Tface(Mg)} (23)
M
and py = 512 {1 + {Trace(Ko)}> /Trace (l(é)} (24)

K

5. Calculate the parameters

o= 1P iy

52 andp=[m+1+4] (25)
H

where p is approximated to the nearest integer of m+ 1 + 0.
6. Create an m x p matrix Y such that

Yi=woYy/V0; i=1,2....mj=12.p (26)

where }A’ij are independent and identically distributed (i.i.d.)
Gaussian random numbers with zero mean and unit standard
deviation.

7. Simulate the m x m Wishart random matrix

-1,2,....m;j=1,2,....m (27)

Since E is symmetric, only the upper or lower triangular part
need to be simulated.
8. Solve the symmetric eigenvalue problem (€,,¥, € R™™) for
every sample
¥, = Q2 (28)
and obtain the random eigenvector matrix
X, =¥, = X, Xr,, ..., Xp,| € R (29)

9. Finally calculate the dynamic response in the frequency domain
as

m xfjf (s)

q.-(iw) = - X;,
q:(iw) ;7w2+21w§jwrj+w% 7

(30)

The samples of the response in the time domain can also be ob-
tained from the random eigensolutions as

q.(t) = _a(t)x,, where a(t)
=1

t
_ 1 / X f(t)e 1”1V sin(w, (t — 1))dt (31)
wrj 0 ! !

The above procedure can be implemented very easily. When
one implements this approach in conjunction with a general pur-
pose commercial finite element software, the commercial software
needs to be accessed only once to obtain the mean matrices Mg and
K, and solve the corresponding deterministic eigenvalue problem.
This computational procedure proposed here is therefore ‘non-
intrusive’.

The main computationally intensive part of a random matrix
based approach is the generation of the random matrices (by ma-
trix multiplication in Eq. (27)) and solution of the eigenvalue prob-
lem. Both the matrix multiplication and the matrix eigenvalue
problem scales approximately cubically with the dimension [22].
Therefore, the computational cost of the approach grows ~0(m>)
compared to ~0(n?®) for the full Wishart matrix based approach.
Since m < n, the reduced approach is expected to be computation-
ally efficient.

5. Numerical and experimental validation

5.1. Plate with randomly inhomogeneous material properties:
numerical study

A rectangular cantilever steel plate is considered to illustrate
the application of the proposed generalized Wishart random
matrices in probabilistic structural dynamics. The deterministic
properties are assumed to be E =200 x 10° N/m2, =03, p =
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7860 kg/m3, t =3.0mm, L,=0.998 m, L,=0.59 m. These values
correspond to the experimental study discussed in the next sec-
tion. The following three methods are explicitly compared to gain
further understanding of the proposed reduced-order method:

e Method 1 - Mass and stiffness matrices are fully correlated Wishart
matrices: For this case M~ Wy(pm,Xum), K~ W, (pi, Xk) with
E[M] = My and E[K] = K,. This is similar to the approach pro-
posed by [3,4] (the original approach requires the simulation
of Gamma matrices [12] which is computationally more expen-
sive). This method requires the simulation of two n x n fully
correlated Wishart matrices and the solution of a n x n general-
ized eigenvalue problem with two fully populated matrices. The
computational cost of this approach is ~20(n3).

Method 2 - Generalized Wishart Matrix [18]: For this case

E~ W, (p,93/0) with EE'] = Qy® and 0z = dy. This requires

the simulation of one n x n uncorrelated Wishart matrix and

the solution of an n x n standard eigenvalue problem. The com-
putational cost of this approach is ~0(n3).

e Method 3 - Reduced diagonal Wishart Matrix: For this case
E ~ Wn (P, Q3/0) withE[E-'] = ©;? and 6~ = . We used tilde
to differentiate with the previous case. This requires the simu-
lation of one m x m uncorrelated Wishart matrix and the solu-
tion of a m x m standard eigenvalue problem. For large complex
systems m can be significantly smaller than n. The computa-
tional cost of this approach is ~0(m3).

The methods are listed in the decreasing order of computational
cost. Here we aim to verify their accuracy using numerical and
experimental examples. It is assumed that the Young’s modulus,
Poissons ratio, mass density and thickness are correlated homoge-
nous Gaussian random fields. For example the Young’s modulus
can be considered as E(x) = E(1 + €f;(x)) where fi(x) is the ran-
dom field and ¢ is the standard deviation. The standard deviation
of the four random fields are considered to be 10, 10, 8 and 12 per-
cent of the mean values respectively. An exponential correlation
function with correlation length 0.2 times the lengths in each
direction has been considered. Each of the random fields are simu-
lated by expanding them using the Karhunen-Loéve expansion
[11] involving uncorrelated standard normal variables as

M
fo) =€ &V, (32)
=1

-80 T T T T T T T T T

- - - Mand K are fully correlated Wishart
- = Generalized Wishart

Reduced diagonal Wishart

Direct simulation

-100
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—140 | i

~150 " " " " " " " " "
0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)
(a) The driving-point-FRF
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Here J; is the eigenvalue, ¢j(x) is the eigenfunction, ¢; are inde-
pendent and identically distribute Gaussian random variables and
M is the number of terms used in the expansion. For the exponen-
tial autocorrelation function, the expressions of 4; and ¢j(x) given
in Reference [11] have been used. System matrices are simulated
using the values of the system properties generated via the Karh-
unen-Loéve expansion. A 10,000-sample Monte Carlo Simulation
is performed to obtain the frequency response functions (FRFs) of
the system.

We want to verify how the results from the proposed reduced
Wishart matrix approach correspond with the direct stochastic fi-
nite element Monte Carlo Simulation results. We are also inter-
ested to understand whether significant accuracy is lost when
comparing the simplified method with the original approach
involving two fully correlated Wishart matrices [3-5]. The discret-
ized model has 4650 degrees-of-freedom so that n =4650. In the
reduced approach only 80 modes have been used, that is m = 80.
The baseline model has 77 modes up to 1 kHz frequency consid-
ered in the numerical results. The number of modes used here
are therefore sufficiently higher and expected to produce physi-
cally meaningful results. From the simulated random mass and
stiffness matrices we obtain dy;=0.1133 and 6k =0.2916. Since
2% constant modal damping factor is assumed for all the modes,
dc=0. The only uncertainty related information used in the ran-
dom matrix approach are the values of 6,; and k. The information
regarding which element property functions are random fields,
nature of these random fields (correlation structure, Gaussian or
non-Gaussian) and the amount of randomness are not used in
the proposed approach. The predicted mean of the amplitude using
the direct stochastic finite element simulation and three Wishart
matrix approaches are compared in Fig. 1 for the driving-point-
FRF and a cross FRF. The predicted standard deviation of the ampli-
tude using the direct stochastic finite element simulation and three
Wishart matrix approaches are compared in Fig. 2 for the driving-
point-FRF and the cross FRF. Among the three Wishart matrix ap-
proaches discussed here, the reduced diagonal Wishart matrix ap-
proach produces accurate results across the frequency range. A
random eigenvalue problem involving a single 80 x 80 is solved
for the reduced approach. For the generalized Wishart approach,
a random eigenvalue problem involving a single 4650 x 4650 is
solved for every sample. When the mass and stiffness matrices
are fully correlated Wishart matrices, a generalized eigenvalue
problem involving two 4650 x 4650 matrices are solved for every

-80 T T T T T T T T T

—90 H === Mand K are fully correlated Wishart 4
== Generalized Wishart

Reduced diagonal Wishart
~100 Direct simulation 4

-110

-120

Mean of amplitude (dB)

-130

-140

~150 " " " " " " " " "
0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)
(b) A cross FRF

Fig. 1. Comparison of the mean of the amplitude obtained using the direct stochastic finite element simulation and three Wishart matrix approaches for the plate with

randomly inhomogeneous material properties.
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Fig. 2. Comparison of the standard deviation of the amplitude obtained using the direct stochastic finite element simulation and three Wishart matrix approaches for the

plate with randomly inhomogeneous material properties.

sample. This example numerically validated the reduced random
matrix approach proposed in the paper.

5.2. Plate with randomly attached spring-mass oscillators:
experimental study

We consider the dynamics of a steel cantilever plate with
homogeneous geometric (i.e. uniform thickness) and constitutive
properties (i.e. uniform Young’s modulus and Poisson’s ratio) de-
scribed in the previous section. This uniform plate defines (as con-
sidered in the numerical studies in the previous section) the
baseline system. The baseline model is perturbed by a set of
spring-mass oscillators with different natural frequencies and at-
tached randomly along the plate. The details of this experiment
have been described in [23]. Here we give a very brief overview.
The overall arrangement of the test rig is shown in Fig. 3.

{a) Arrangement of the test-rig showing the shaker and (b) Attached oscillators at random locations. The spring
stiffness varies so that the oscillator frequencies are be-

the accelerometers.

The plate is clamped along one edge using a clamping device. In
total ten oscillators are used to simulate uncertainty in the system
(see Fig. 3(b)). The spring is glue-welded with a magnet at the top
and a mass at the bottom. The magnet at the top of the assembly
helps to attach the oscillators at the bottom of the plate repeatedly
without much difficulty. The stiffness of the ten springs used in the
experiment are 16.800, 09.100, 17.030, 24.000, 15.670, 22.880,
17.030, 22.880, 21.360 and 19.800 kN/m. The oscillating mass of
each of the 10 oscillators is 121.4 g. Therefore the total oscillating
mass is 1.214 kg, which is 9.8% of the mass of the plate. The natural
frequencies of the ten oscillators are obtained as 59.2060 43.5744,
59.6099, 70.7647, 57.1801, 69.0938, 59.6099, 69.0938, 66.7592
and 64.2752 Hz. The springs are attached to the plate at the pre-
generated nodal locations using the small magnets located at the
top the assembly. One hundred realizations of the oscillators are
created (by hanging the oscillators at random locations) and tested
individually in this experiment. We used a shaker to act as an im-

4 .

tween 43 and 70 Hz.

Fig. 3. The test rig and one of the 100 realization of randomly attached oscillators. The cantilever plate is driven by an impulse. The position of the shaker (used as an impact
hammer) and the accelerometers are shown in the figures.
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Fig. 4. Comparison of the mean of the amplitude obtained using the experiment and the proposed reduced diagonal Wishart matrix approach for the plate with randomly

attached oscillators.

pulse hammer. It generated impulses at a pulse rate of 20 s and a
pulse width of 0.01 s. As seen in Fig. 3(a), six accelerometers are
used as the response sensors.

The mean of the amplitude from experiment and the proposed
reduced diagonal Wishart matrix approach are compared in Fig. 4
for the driving-point-FRF and a cross FRF. The corresponding rela-
tive standard deviations are shown in Fig. 5. We obtained the rel-
ative standard deviation by dividing the standard deviation with
the respective mean values. We have used 2000 samples in the
Monte Carlo Simulations. The first 600 modes are used in calculat-
ing the frequency response functions. This requires the simulation
of a 600 x 600 Wishart random matrix only. Note that the dimen-
sion of full random matrix with reliable first 600 modes would be
very large. A modal damping factor of 0.7% is assumed for all of the
modes. A constant damping factor for all the modes is an assump-
tion. Ideally one should identify damping using advanced methods.
It is however a widely established practice to treat damping in a
simple manner such as a constant modal damping factor as consid-
ered here.

10 T T T T T T T

Reduced diagonal Wishart
- - - Experiment

(=
s
-

=
.-
L

Relative standard deviation

1 07' 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)
(a)The driving-point-FRF

Recall that there are four key parameters needed to implement
the random matrix approach. They are respectively the mean and
dispersion parameter of the mass and stiffness matrices. The mean
system is considered to be the cantilever plate shown in Fig. 3. The
mean mass and stiffness matrices are obtained using the standard
finite element approach. The mean damping matrix for the exper-
imental system is not obtained explicitly as constant modal damp-
ing factors are used. All 100 realizations of the plate and oscillators
were individually simulated. The dispersion parameters of the
mass and stiffness matrices are obtained as &2, = 0.0286 and
0% = 0.0017. The only uncertainty related information used in the
random matrix approach are the values of §y; and k. The explicit
information regarding the spatial locations of the attached oscilla-
tors including their stiffness and mass properties are not used in
fitting the Wishart matrices. This is aimed to depict a realistic sit-
uation when the detailed information regarding uncertainties in a
complex engineering system is not available to the analyst.

In Figs. 4 and 5 observe that both means and standard devia-
tions obtained from the proposed reduced diagonal Wishart matrix

10 T T T T T T T

Reduced diagonal Wishart
- - - Experiment

Relative standard deviation

10 L L L L L L L

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

(b)A crossFRF

Fig. 5. Comparison of relative standard deviation of the amplitude obtained using the experiment and the proposed reduced diagonal Wishart matrix approach for the plate

with randomly attached oscillators.
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approach agree qualitatively with the experimental results. For the
two FRFs shown here, the agreement is particularly good above
1 kHz frequency range. The discrepancies, especially in the low fre-
quency regions, are perhaps due to incorrect values of the damping
factors. The agreement with this limited experimental results
shows that the proposed reduced computational approach might
be applicable for uncertainty quantification of real-life dynamical
systems. Next we integrate this approach with a general purpose
finite element software.

output

Fig. 6. The finite element (FE) model of an aircraft wing (5907 degrees-of-freedom).
The width is 1.5 m, length is 20.0 m and the height of the aerofoil section is 0.3 m.
The material properties are: Young’s modulus 262 Mpa, Poisson’s ratio 0.3 and mass
density 888.10 kg/m>. Input node number: 407 and the output node number 96. A
2% modal damping factor is assumed for all modes.

(c) Mode 10, frequency 168.249Hz

6. Application and integration with general purpose finite
element software

To illustrate the application of the method developed in the pa-
per, we consider a simplified model of an aircraft wing. The model
is shown in Fig. 6. The modeling is done using the ANSYS™[24] fi-
nite element software. The wing is of uniform configuration along
its length and its cross-sectional area is defined by a straight-line
and a spline. It is firmly attached to the body of the aircraft at
one end and hangs freely at the other. The width and length of
the wing are 1.5 m and 20.0 m, respectively. The height of the aero-
foil section is 0.3 m. The wing is made of low density polyethylene
with a Young’s modulus of 262 MPa, Poisson’s ratio of 0.3 and a
density of 888.10 kg/m>. In this analysis, 8-noded brick element
(SOLID45) is used with global element size as 0.10 m. The total de-
grees-of-freedom of the system turned out to be 5907. It is as-
sumed that the wing is excited by an unit harmonic excitation at
the point shown in Fig. 6 (aimed to simulate excitation coming
from the engine) and we are interested in the dynamic response
of the tip of the leading edge of the wing. For the finite element
model we obtain the input node number 407 and the output node
number 96 corresponding to these two points. A constant 2% mod-
al damping factor for all the modes for the calculation of dynamic
response of the wing.

We are interested in frequency response of this system up to
1.0 kHz. The system has about 47 modes within this frequency
range. Consequently we have used m = 50 in our calculations. Four
selected modes are shown in Fig. 7 for illustration. For the system
uncertainty, four values of the dispersion parameters, namely Jy,
dx=0.1, 0.2, 0.3 and 0.4, are considered for the mass and the stiff-
ness matrices. The method outlined in the previous section is used
with 10,000 samples in the Monte Carlo Simulation.

(d) Mode 20, frequency 403.711Hz

Fig. 7. Four selected mode shapes of the baseline model of the wing.
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Fig. 9. Standard deviation of the amplitude of the driving-point and a cross FRF obtained using the proposed reduced approach for the four sets of dispersion parameters.

The baseline and mean of the amplitude of the driving-point-
FRF obtained using the proposed reduced approach for the four
sets of dispersion parameters are shown in Fig. 8(a). Except in
the lower frequency range, the ensemble means of the response
amplitude obtained for the four sets of dispersion parameters do
not follows the deterministic result closely. However, the ensem-
ble means for different sets of dispersion parameters are very close
to each other. Unlike the driving-point-FRF, the ensemble mean of
the response amplitude of the cross FRF shown in Fig. 8(b) follows
the deterministic result relatively closely and also the means ob-
tained for different sets of dispersion parameters are very close
to each other.

The standard deviations of the amplitude of the FRFs obtained
using the proposed reduced approach for the four sets of dispersion
parameters are shown in Fig. 9. As expected, the lower values of 5
and Jy, correspond to lower values of standard deviations and vice
versa. The fluctuations in the standard deviations are larger in the
high frequency rage compared to low frequency range. This study
shows that, due to the non-intrusive nature, the proposed reduced
method can be easily integrated with a commercially available

general purpose finite element software for

quantification.

uncertainty

7. Summary and conclusions

The discretized equation of motion of linear stochastic dynam-
ical systems is characterized by random mass, stiffness and damp-
ing matrices. The possibility of using a single reduced Wishart
random matrix model for the system is investigated in the paper.
Closed-form analytical expressions of the parameters of the re-
duced Wishart random matrix have been given. The new approach
requires the baseline mass and stiffness matrices and dispersion
parameters associated with these matrices. The main novelty of
the proposed approach compared to existing random matrix ap-
proaches are (a) it only requires the simulation of one random ma-
trix, and (b) the size of the random matrix to be simulated can be
significantly smaller compared to the original system matrices. The
proposed approach is however limited to systems with propor-
tional damping only. The core computational cost of the proposed
Monte Carlo simulation based method consists of (a) the genera-
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tion of a single Wishart random matrix of dimension equaling to
the number of modes retained in the study, and (b) the solution
of a standard random eigenvalue problem of reduced dimension.
This computational efficiency is arising from the fact that the num-
ber of vibration modes is generally much smaller than the dimen-
sion of the system random matrices.

The proposed simulation approach is applied to the forced
vibration problem of a plate with stochastically inhomogeneous
properties. Numerical results shown that it is possible to predict
the variation of the dynamic response using the new approach
with an acceptable accuracy. The feasibility of adopting a single re-
duced Wishart random matrix model to quantify uncertainty in
structural dynamical systems has also been investigated using
experimental data. In particular, uncertainty in a vibrating plate
due to disorderly attached spring-mass oscillators with random
natural frequencies is considered. One hundred nominally identical
dynamical systems were physically generated and individually
tested in a laboratory setup. The uncertainty in the response of
the main structure primarily emerges from the random attachment
configurations of the subsystems having random natural frequen-
cies. Two of the measured frequency response functions were used
to validate the applicability of the proposed approach. To demon-
strate the generality of the method, it has been integrated with
the ANSYS finite element software. As an illustration, a model of
the wing of an aircraft with uncertainty is considered. The new re-
duced approach opens up the possibility of performing uncertainty
quantification on real-life large structural dynamic systems in a
computationally efficient manner.
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