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Abstract
We investigate the vibrational properties of zigzag and armchair single-layer graphene sheets
(SLGSs) using the molecular mechanics (MM) approach. The natural frequencies of vibration
and their associated intrinsic vibration modes are obtained. Vibrational analysis is performed
with different chirality and boundary conditions. The simulations are carried out for three types
of zigzag and armchair SLGS. The universal force field potential is used for the MM approach.
The first four natural frequencies are obtained for increasing lengths. The results indicate that
the natural frequencies decrease as the length increases. The results follow similar trends with
results of previous studies for SLGS using a continuum structural mechanics approach. These
results have shown the applicability of SLGSs as electromechanical resonators.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 2003, Gan et al [1] described the in situ exfoliation of a single
layer with an intersecting grain boundary in graphite using an
STM operated in air. The exfoliation technique has led to the
successful production of graphene, opening a new era in the
field of nanoelectronics [2–4]. The very high in-plane stiffness
of graphene sheets [5] has suggested some possible use of
graphite nanosheets for nanosensors and NEMS applications
[6, 7], due to their extremely high surface-to-volume ratio, as
well as large deflection capability under point loading [8–13].
In this paper the out-of-plane or transverse vibration of single-
layer graphene sheets (SLGSs) is considered. The vibration
studies could be useful for graphene-based mass and/or gas
sensors [6, 14, 15–18].

The vibration of single and multiple layer graphene sheets
has been investigated by several authors, using continuum
mechanics approaches [19], equivalent lattice structures made
by atomistic-continuum models representing the C–C bonds
[20], and molecular dynamics approaches combined with
continuum mechanics for thickness identification [21]. The
out-of-plane deformation of SLGS has been considered using
the continuum mechanics models [13, 22], together with

continuum and truss-like structural assemblies [23–30]. In a
recent paper a nonlinear mechanical model has been used [31]
to take account for large deformations in SLGS. They observed
higher resonance frequencies from the nonlinear model
compared with the equivalent linear model. A molecular
mechanics (MM) approach based on the computation of the
Hessian matrix and its eigenvalues has been proposed by
some authors to describe the structural dynamics of single-
wall carbon nanotubes (SWCNTs) [32], and used to validate
a lattice structural mechanics (SM) approach in nanoribbons
[33]. In this work, we describe the behaviour of the natural
frequencies and modeshapes of SLGSs with various boundary
conditions using the MM method, and compare the findings
with continuum mechanics based on isotropic properties.
Kirschoff-based plate formulations consider the graphene
sheets as an isotropic continuum, while edge effects and the
finite size of the sheets have been demonstrated to provide
in-plane special orthotropic properties [5, 29, 34, 35].

The main novelty of our paper is the MM [36, 37], which
is a higher fidelity model compared with the previously used
models [20, 38] where the SM approach is used. In the
MM approach, the molecule first finds the lowest energy
configuration from its pre-optimized state and then the
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Figure 1. A rectangular SLGS and its mathematical idealization using a thin continuum plate. The SLGS is assumed to be of
dimension a × b.

subsequent calculations are performed. Finding the minimum
potential energy surface is a key distinguishing feature in the
MM approach. It can be noted that during the optimization the
structures may change their configurations. Planar structure
such as SLGS may deform to attain the lowest energy
configuration. This is ignored in the SM approach [20, 38],
which only considers the initial geometry of the molecule.
In the SM approach the Euler–Bernoulli beam model is
used to represent the C–C bonds and subsequently the finite
element method [39] is used to discretize the equation of
motion and obtain the natural frequencies. In the formulation
presented in [20, 38], the length and the diameter of the ‘beams’
representing the C–C bonds are almost similar (length =
0.142 nm and diameter = 0.146 nm). It is well known
[40] that for such ‘short beams’ the Euler–Bernoulli beam
model used in [20, 38] produces inaccurate results as the shear
deformation is ignored. This can introduce error particularly
for the calculation of higher frequencies. The results obtained
using the MM approach do not have these drawbacks as
neither the Euler–Bernoulli beam model nor the finite element
approach is used. In contrast to SM approaches, the MM
method also allows the natural frequencies of the system in
equilibrium to be computed without any requirement to use an
equivalent thickness value for the nanostructure. In general,
the introduction of the thickness concept in nanomaterials is
highly contentious, leading to the well-known ‘Yakobson’s
paradox’ [41, 42], responsible for the high scattering of
Young’s moduli and Poisson’s ratio results in the open
literature.

We will show that the MM approach is able to capture
the equivalent anisotropic properties and their influence in
the structural dynamics of the graphene sheets, and therefore
provide a valid prediction tool to simulate the resonance
behaviour of graphene-based NEMS devices. The paper is
organized in the following way. The continuum mechanics
approach for the frequency analysis of graphene sheets is
presented in section 2. Section 3 will be centred on the analysis
and calculation of the frequencies using a MM model. The
numerical results and discussion will be presented in section 4.
Finally, the major conclusions of this paper will be drawn in
section 5 based on the results and analyses in section 4.

2. Vibration of single-layer graphene

A SLGS (shown in figure 1) may be approximated by a thin
elastic plate [11]. The equation of motion of the transverse free
vibration of a thin elastic plate [40, 43] can be expressed as

D

(
∂4w

∂x4
+ 2

∂2w

∂x2

∂2w

∂y2
+

∂4w

∂y4

)
+ ρ

∂2w

∂t2
= 0. (1)

Here w ≡ w(x, y, t) is the transverse deflection, x, y are
coordinates, t is the time, ρ is the mass density per area and
the bending rigidity is defined by

D = Eh3

12(1 − ν2)
. (2)

E is Young’s modulus, h is the thickness and ν is
Poisson’s ratio. We consider rectangular graphene sheets with
cantilevered (clamped at one edge) and bridged (clamped at
two opposite edges) boundary conditions. Following Blevins
[44], the natural frequency (in rad s−1) of a rectangular plate
of dimension a × b can be expressed as

ωij =
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)2 [
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(3)

where i, j = 1, 2, 3, . . . are mode indices. The values of
the coefficients Gx, Hx, Jx and Gy, Hy, Jy depend on the
boundary conditions and the mode indices i, j . The first set of
coefficients depends on the boundary conditions of the edges
of width (side b) while the second set of coefficients depends
on the boundary conditions of the edges of length (side a). The
boundary conditions on the two edges of length (side a) are
free. In this paper we consider the lower modes of vibration.
For the first three modes the coefficients Gy, Hy and Jy are
given in table 1. The coefficients Gx, Hx and Jx for both
boundary conditions on the edges of width (side b) are given
in table 2. General expressions of the coefficients for the higher
values of i and j are given in [44]. The values given in tables 1
and 2 will be used to obtain the natural frequencies and compare
with the MM simulation described in the next section.
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Table 1. Coefficients for the free-free boundary conditions of the
edges of length (side a).

Mode index (j) Gy Hy Jy

1 0 0 0
2 0 0 1.216
3 1.506 1.248 5.017

Table 2. Coefficients for the two boundary conditions on the edges
of width (side b).

Clamped–clamped Clamped–free
Mode
index (i) Gx Hx Jx Gx Hx Jx

1 1.506 1.248 1.248 0.597 −0.0870 0.471
2 2.5 4.658 4.658 1.494 1.347 3.284
3 3.5 10.02 10.02 2.5 4.658 7.842

3. Molecular simulation approach

Since atomic configurations can have significant impact on the
mechanical properties of SLGSs, zigzag and armchair models
are adopted in this study. The zigzag and armchair models of
graphene sheets under consideration are the following

• Zigzag sheet clamped at one edge (cantilevered condition)
• Zigzag sheet clamped at two opposite edges (bridged

condition)
• Armchair sheet clamped at one edge (cantilevered

condition)
• Armchair sheet clamped at two opposite edges (bridged

condition).

Different atomic configurations and boundary conditions can
be considered in an unified manner within the scope of
MM. The general expression of total energy is a sum of
energies due to valence or bonded interactions and non-bonded
interactions [45]

E =
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. (4)

NB, NA, NT, NI and Nnb are the numbers of the bond-, angle-,
torsion-, inversion- and the non-bonded terms, respectively.
kIJ and kIJK are the force constants of the bond- and angle
terms, respectively. r and rIJ are the bond distance and natural
bond distance of the two atoms I and J , respectively. θ and
θ0 are the angle and natural angle for three atoms I–J–K ,
respectively. φ and φ0 are the torsion angle and torsion natural
angle for three atoms I–J–K–L, respectively. Vφ , n, Vω, ω

are the height of the torsion barrier, periodicity of the torsion

potential, height of the inversion barrier and inversion- or out-
of-plane-angle at atom I , respectively. CI

0 , CI
1 and CI

2 are the
Fourier coefficients of the inversions terms. x and xIJ are the
distance and natural distance of two non-bonded atoms I and
J . RIJ is the depth of the Lennard-Jones potential. qI and ε

are the partial charge of atoms I and dielectric constant. For
the general nonlinear case, the bend function should have a
minimum θ = θ0, with the second derivative at θ0 equal to the
force constant (kIJK ). The Fourier coefficients of the general
angle terms C0, C1 and C2 are evaluated as a function of the
natural angle θ0:

C2 = 1

4sin2θ0

C1 = −4C2 cos θ0

C0 = C2
(
2cos2θ0 + 1

)
.

(5)

The bond stretching force constants (kIJ ) are atom based
and are obtained from generalization of Badger’s rules. The
assumption is that the bonding is dominated by attractive
ionic terms plus short-range Pauli repulsions [45]. The force
constant (in units of (kcal mol−1) Å−2) then becomes

kIJ = 644.12
Z∗

I Z
∗
J

r3
IJ

. (6)

The Z∗
I is the effective atomic charges, in electron units.

Similarly, the angle bend force constants (kIJK ) are generated
using the angular generalization of Badger’s rule. The force
constant (in units of kcal mol−1 rad−2) then becomes [46]

kIJK = 644.12
Z∗

I Z
∗
J

r5
IJ

[
3rIJ rJK

(
1 − cos2θ0

) − r2
IK cos θ0

]
.

(7)

The torsional constant (kcal mol−1) is defined as

Vφ = 5
√

UIUJ [1 + 4.18 ln(BOJK)] (8)

where BOJK is the bond order for atom-J and atom-K . UI and
UJ are the atomic constants defined with UFF sp2. Regarding
the inversion term, the coefficients are CI

0 = 1, CI
1 = −1 and

CI
2 = 0 for sp2 atom type. In this study, we used the UFF model

[45], wherein the force field parameters are estimated using
general rules based only on the element, its hybridization and
its connectivity. Hybridization determines the type of bonding
of the carbon atoms with its neighbours. The sp3 hybridization
corresponds to the well-known tetrahedral configuration in
which carbon binds to four neighbours giving rise to three-
dimensional inter-connectivity of carbon atoms that is found in
diamond. The sp2 bonding in which carbon atoms bind to three
neighbours also known as trigonal hybridization gives planar
structures found in graphite and graphene. The sp2-hybridized
carbon atoms, which are at their energy minimum in planar
graphite (or graphene), must be bent to form the closed sphere
(fullerenes) or tube (CNT), which produces angle strain. The
characteristic reaction of fullerenes is electrophilic addition
at 6,6-double bonds, which reduces angle strain by changing
sp2-hybridized carbons into sp3-hybridized ones. The change
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in hybridized orbitals causes the bond angles to decrease from
about 120◦ in the sp2 orbitals to about 109.5◦ in the sp3 orbitals.
This decrease in bond angles allows for the bonds to bend
less when closing the sphere or tube, and thus, the molecule
becomes more stable. The force field functional forms and
parameters used in this study are in accordance with [45].
The calculation of frequency and their validation for CNTs
were detailed in [32]. In the following section we provide the
methodology of the frequency calculation.

3.1. Calculation of the natural frequencies

We start with the Hessian matrix fCAR, which holds the
second partial derivatives of the potential E with respect
to the displacement of the atoms in Cartesian coordinates
(CAR) [46, 47]:

fCARij
=

(
∂2E

∂ξi∂ξj

)
Opt

. (9)

This is a 3N × 3N matrix (N is the number of atoms),
where ξ1, ξ2, ξ3, . . . , ξ3N denote the displacements in Cartesian
coordinates, 
x1, 
y1, 
z1, . . ., 
zN . The ()Opt refers to the
fact that the derivatives are taken at the equilibrium positions
of the atoms. These force constants are then converted to mass
weighted Cartesian coordinates (MWC) [47]

fMWCij
= fCARij√

mimj

=
(

∂2E

∂ci∂cj

)
Opt

(10)

where c1 = √
m1ξ1 = √

m1
x1, c2 = √
m1ξ2 = √

m1
y1

and so on. fMWC is diagonalized, yielding a set of 3N

eigenvectors and 3N eigenvalues.
The next step is to translate the centre of mass to the

origin, and determine the moments and products of inertia, with
the goal of finding the matrix that diagonalizes the moment
of inertia tensor. Using this matrix we can find the vectors
corresponding to the rotations and translations. Once these
vectors are known, we know that the rest of the normal modes
are vibrations. The centre of mass RCOM is found in the
usual way:

RCOM =
∑

α mαrα∑
α mα

(11)

where the sums are over the atoms, α. The origin is then shifted
to the centre of mass rCOMα

= rα − RCOM. Next we have to
calculate the moments of inertia (the diagonal elements) and
the products of inertia (off diagonal elements) of the moment
of inertia tensor (I).

I =

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The sums appearing in the above expression is over the
index α. This symmetric matrix is diagonalized, yielding the

principal moments (the eigenvalues I ′) and a 3 × 3 matrix
(X), which is made up of the normalized eigenvectors of
(I). The eigenvectors of the moment of inertia tensor are
used to generate the vectors corresponding to translation and
infinitesimal rotation of the molecular system. A Schmidt
orthogonalization is used to generate Nvib = 3N − 6
remaining vectors, which are orthogonal to the six rotational
and translational vectors. The result is a transformation
matrix D which transforms from mass weighted Cartesian
coordinates q to internal coordinates S = Dq, where rotation
and translation have been separated out. Now that we have
coordinates in the rotating and translating frame, we need to
transform the Hessian, fMWC, to these new internal coordinates
(INT) [46, 47]. Only the Nvib coordinates corresponding to
internal coordinates will be diagonalized, although the full
3N coordinates are used to transform the Hessian. The
transformation is straightforward as follows:

fINT = DTfMWCD. (13)

The Nvib × Nvib submatrix of fINT, which represents the force
constants internal coordinates, is diagonalized yielding Nvib

eigenvalues λ = 4π2ω2, and Nvib eigenvectors. If we call the
transformation matrix composed of the eigenvectors L, then
we have

LTfINTL = Λ (14)

where Λ is the diagonal matrix with eigenvalues λi . At this
point, the eigenvalues need to be converted to frequencies
(in Hz) as

ωi =
√

λi

4π2
. (15)

4. Results and discussions

The resonant frequencies of single-layer graphene (SLG)-
based resonators depend on the geometric configurations.
The atomic structures of SLGS could also exert significant
influence on their vibration behaviours. Thus, in this work,
we analyse two groups of SLG resonators, i.e. three zigzag
SLGS (10,0), (14,0), (18,0) and three armchair SLGS (11,11),
(15,15), (19,19), with increasing length. In this study, we
computed our results using bridged (atoms at the two sides
along width are restrained) and cantilevered (atoms at one
side along width are restrained) boundary conditions. The
computational results of the first four vibrational frequencies of
these zigzag SLGS are calculated and presented in figure 2 and
figure 3, respectively, for bridged and cantilevered boundary
condition. Similarly, figure 4 and figure 5, respectively,
presents the first four vibrational frequencies of these armchair
SLGS, for bridged and cantilevered boundary condition. The
widths of the SLGS are given in the figure captions.

4.1. Dependence of the length

As shown in figures 2 and 3, for SLGS with the length rising
from around 20 Å to 120 Å, the fundamental frequencies are
in the ranges 100–3000 GHz (refer table 3) and 4–1300 GHz
(refer table 4) for the zigzag SLGS with bridged and
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Figure 2. Bridged boundary condition—first four vibrational frequencies of zigzag SLGS as a function of the length of SLGS. The widths
are (10,0): 9.317 Å; (14,0): 13.554 Å; (18,0): 17.803 Å.
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Figure 3. Cantilevered boundary condition—first four vibrational frequencies of zigzag SLGS as a function of the length of SLGS. The
widths are (10,0): 9.317 Å; (14,0): 13.554 Å; (18,0): 17.803 Å.
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Figure 4. Bridged boundary condition—first four vibrational frequencies of armchair SLGS as a function of the length of SLGS. The widths
are (11,11): 12.31 Å; (15,15): 17.23 Å; (19,19): 122.15 Å.
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Figure 5. Cantilevered boundary condition—first four vibrational frequencies of armchair SLGS as a function of the length of SLGS. The
widths are (11,11): 12.31 Å; (15,15): 17.23 Å; (19,19): 122.15 Å.
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Table 3. Vibrational frequencies of zigzag SLGS in GHz—bridged boundary condition.

Index and width (Å) Length (Å) ω1 ω2 ω3 ω4 ω5

23.391 784.10 1178.43 1842.16 2511.38 2960.40
47.995 293.30 504.48 623.61 967.17 1006.04

(10,0) 72.603 180.15 321.84 370.86 474.31 580.16
9.317 97.213 130.12 236.47 264.56 285.31 406.86

121.822 101.88 186.91 194.26 205.92 313.98

23.391 763.00 1014.94 1799.25 1850.99 2220.43
47.995 281.72 420.08 600.04 861.22 983.66

(14,0) 72.603 172.47 265.86 355.04 536.70 558.29
13.554 97.213 124.42 194.62 252.85 361.47 387.81

121.822 97.34 153.53 196.67 244.08 299.77

23.391 752.30 929.62 1430.21 1777.36 2059.21
47.995 275.09 374.56 587.23 772.02 897.41

(18,0) 72.603 168.02 235.48 345.94 477.20 544.22
17.803 97.213 121.12 171.99 246.01 346.27 379.20

121.822 94.72 135.45 191.26 272.03 291.82

Table 4. Vibrational frequencies of zigzag SLGS in GHz—cantilevered boundary condition.

Index and width (Å) Length (Å) ω1 ω2 ω3 ω4 ω5

23.391 76.71 437.63 483.34 659.82 1323.45
47.995 19.18 115.03 166.98 206.05 321.91

(10,0) 72.603 8.58 50.46 73.69 134.18 140.80
9.317 97.213 5.20 28.57 41.25 78.61 99.77

121.822 3.75 18.70 26.34 50.53 79.32

23.391 75.35 339.71 471.07 854.05 1035.23
47.995 18.41 109.56 158.49 230.04 311.10

(14,0) 72.603 8.34 47.75 102.90 103.10 133.99
13.554 97.213 5.84 27.91 58.08 74.40 77.05

121.822 3.74 17.52 37.11 47.57 60.62

23.391 75.00 279.65 467.10 857.12 883.47
47.995 17.80 104.88 130.68 287.79 305.18

(18,0) 72.603 8.15 45.04 84.69 128.84 131.38
17.803 97.213 4.68 24.89 62.71 70.16 74.43

121.822 3.67 16.34 44.52 47.76 49.86

cantilevered boundary conditions, respectively. While for the
armchair SLGS, the variation of frequencies is between 40
and 1070 GHz (refer table 5) and 2 and 415 GHz (refer table 6)
for bridged and cantilevered boundary conditions, respectively,
with the length rising from around 40 Å to 210 Å. The trends of
the frequency changes with length are generally in accordance
with that given in the literature [20]. The discrepancy is
primarily a result of the different end constraints, geometric
configurations of SLGS and the differences in the simulation
approaches. Recall that here the MM approach is used as
opposed to the finite element method employed in [20, 38].

4.2. Dependence of the geometric configuration

For both zigzag and armchair SLGS, the frequencies of all five
modes generally decrease with increasing length. The curves
of frequency becomes steeper for the SLGS of smaller sheet
length (�50 Å). This shows that the dependence on the aspect
ratio is stronger for the frequencies of shorter SLGS. In the
meantime, it is also seen from figures 2 and 4 that, for a given
length the frequencies of SLGS always decline with rising
sheet width. This issue can be further clarified from tables 3
to 6. The frequencies of small-width SLGS are always higher

than the corresponding frequencies of large-width SLGS. This
is especially so when the length is relatively small. However,
the effect of width on the frequencies diminishes for SLGS
with larger widths. As an example, for zigzag SLGS (refer
table 3) with width 9.317 Å the frequency decreases from
784.10 to 101.88 GHz when the length increases from 23.391
to 121.822 Å, while for certain length of 23.391 Å it only varies
from 784.10 to 752.30 GHz, when width increases from 9.317
to 17.803 Å. Similar behaviour is also observed for armchair
SLGS in table 3. Thus we see that when the aspect ratio of the
SLGS grows, the difference in frequency due to the variation
of length decreases significantly whereas the ratio between
the frequencies remains almost unchanged. This observation
suggests that the influence of width on the vibration frequency
of SLGS does not significantly change with increasing length.
Here the decreasing frequencies with increasing length and
width observed in figure 2, and figure 4 can be attributed to
the fact that SLGS of larger length and width possess lower
dynamic structural stiffness in both longitudinal and transverse
directions. In particular, for SLGS of small width their
transverse stiffness is high. The frequency of such SLGS thus
becomes more sensitive to their longitudinal rigidity, which
finally leads to stronger effect of the length for SLGS with
smaller width.
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Table 5. Vibrational frequencies of armchair SLGS in GHz—bridged boundary condition.

Index and width (Å) Length (Å) ω1 ω2 ω3 ω4 ω5

41.21 282.84 411.22 628.37 858.54 1072.30
83.83 117.86 185.65 243.91 375.70 385.14

(11,11) 126.46 74.47 120.09 151.31 197.16 232.77
12.31 169.08 63.05 96.48 135.33 170.34 176.12

211.71 42.94 70.46 80.55 86.31 130.72

41.21 287.54 359.84 636.08 765.41 953.01
83.83 120.58 158.87 248.98 323.45 392.11

(15,15) 126.46 76.32 102.08 154.90 205.84 237.93
17.23 169.08 55.85 75.30 112.58 151.24 151.67

211.71 43.43 59.43 87.37 101.74 119.02

41.21 290.01 335.32 640.24 681.45 720.46
83.83 122.14 145.19 251.80 297.89 395.86

(19,19) 126.46 77.40 93.09 156.92 188.19 240.78
22.15 169.08 55.91 68.18 112.83 136.68 171.43

211.71 44.70 54.26 89.80 108.84 123.21

Table 6. Vibrational frequencies of armchair SLGS in GHz—cantilevered boundary condition.

Index and width (Å) Length (Å) ω1 ω2 ω3 ω4 ω5

41.21 24.18 149.23 156.26 267.23 416.07
83.83 6.72 37.14 67.35 74.23 102.89

(11,11) 126.46 3.63 17.02 29.88 46.14 48.69
12.31 169.08 2.50 10.08 16.82 26.42 36.25

211.71 2.04 7.06 10.81 17.54 28.85

41.21 24.06 118.14 149.10 353.65 387.94
83.83 6.82 37.24 55.23 92.43 102.87

(15,15) 126.46 3.62 16.98 36.00 41.29 46.08
17.23 169.08 2.50 10.02 23.26 26.35 26.76

211.71 1.29 6.03 14.86 16.47 21.08

41.21 23.96 96.16 148.95 330.70 413.55
83.83 6.73 37.20 43.58 102.76 116.43

(19,19) 126.46 3.59 16.90 28.47 45.93 52.51
22.15 169.08 1.91 9.04 21.27 25.46 29.60

211.71 1.69 6.82 16.53 17.27 19.03

Based on the MM method, mode shapes of the SLGS are
obtained. The first six mode shapes of zigzag and armchair
sheets are given in the supplementary document (see supple-
mentary materials stacks.iop.org/JPhysD/44/165408/mmedia).
The first mode shape plays a significant role in the design of
the nanomechanical resonators. It is perceived that the SLGS
with different boundary conditions has a sinusoidal and/or hy-
perbolic sine and cosine configuration. These configurations
guarantee the ease of detection of any small deflection in the
SLGS. In addition, mode shapes of the SLGS, in contrast to
the CNTs, are not changed by the length or aspect ratio.

4.3. Dependence of the atomic structure

Next we examine the effect of atomic structures on the
frequency of SLGS. To this end we consider the calculated
frequencies in table 5 and table 3 respectively, for armchair
and zigzag SLGS with the bridged boundary condition.
Similarly, we consider the calculated frequencies in table 6,
and table 4 respectively, for armchair and zigzag SLGS with
the cantilevered boundary condition. The results in figure 6
show that the chirality does not have a significant influence
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Figure 6. Dependence of the molecular structure on the fundamental
frequency of SLGS. It is found that natural frequencies of zigzag
SLGS (18,0) are higher compared with armchair SLGS (15,15) for
bridged case, whereas for cantilevered case, it is almost comparable.
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Figure 7. Bridged boundary condition—vibrational frequencies of the zigzag SLGS (10,0) for the second and third bending mode. MM
results and continuum mechanics results are compared for different values of the length.

on the natural frequencies of vibration. It is shown that for
almost the same width and length the fundamental frequencies
of zigzag SLGS are only higher than those of armchair SLGS
for the bridged case, whereas for the cantilevered case, it is
almost comparable. In the context of SWCNTs, the difference
between the frequencies of the two types (e.g. zigzag and
armchair) is also not very large [32]. This may be expected
as SWCNTs are effectively rolled up SLGS. The frequency of
SLGS is primarily determined by their geometry, i.e. length
and the aspect ratio, and cannot be substantially changed by
varying their atomic structure. This finding demonstrates that
the continuum models can produce a good approximation for
the vibration of SLGS with different atomic structures.

4.4. Comparison with the continuum theory

In this section we investigate whether the vibrational
frequencies obtained from the simple continuum plate model
are comparable to the vibrational frequencies computed using
the MM approach. The density per unit area on the SLGS is
computed from the total mass divided by the total area on the
SLGS. We use the first natural frequency to obtain the bending
rigidity D using the natural frequency equation (3) with the
values of the coefficients corresponding to i = 1 and j = 1
in tables 1 and 2. We then use this value of D to compute
the higher natural frequencies to understand if the simple plate
model is applicable. The first natural frequency is not shown
in the figures because the constant D is calculated using the
first natural frequency.

In figure 7, the second and third bending mode frequencies
are compared for the bridged boundary condition. We used
(10,0) zigzag SLGS as an example. The results for the other
types of SLGS used in this study show similar behaviour.
The analytical results shown in figure 7 are obtained from
equation (3) with the values of the coefficients corresponding
to i = 2, 3 for the clamped–clamped case in table 2 and
j = 1 in table 1. The trend in the variation of the frequencies

with respect to the length is similar for both the methods.
The difference between the two theories is more prominent
for SLGS with smaller dimension. This is expected as the
continuum theory may not be very suitable for SLGS in this
case. The continuum model tends to overestimate the MM
predictions (17% and 37% for the second and third mode,
respectively). The continuum mechanics formulation assumes
an isotropic equivalent material for the graphene. However,
edge effects have been demonstrated to play a significant
role in the static [29, 34, 35, 48] and dynamic [33] mechanical
properties of SLGS, leading to an equivalent orthotropic, rather
than isotropic material model for the graphene. Although the
dimensions of the SLGS considered in this work are dissimilar,
we note a general agreement in terms of magnitude between the
eigenvalues calculated with our MM approach, and the results
using the MM3 potential in [21].

Figure 8 shows equivalent plots for the SLGS with
cantilevered boundary condition. The analytical results shown
in figure 8 are obtained from equation (3) with the values of
the coefficients corresponding to i = 2, 3 for the clamped–
free case in table 2 and j = 1 in table 1. The results predicted
by the two approaches agree more closely for this boundary
condition. The results obtained here shows that the boundary
condition has an effect on the accuracy of the predictions from
the continuum theory.

5. Conclusions

The vibrational properties of zigzag and armchair single-wall
graphene sheets (SLGS) are studied. A molecular mechanics
based approach is used to estimate the frequencies. We
used the UFF model, wherein the force field parameters are
estimated using general rules based only on the element, its
hybridization, and its connectivity. Two types of boundary
conditions are considered, namely, cantilevered and bridged.
First five natural frequencies are calculated for three zigzag,
namely (10,0), (14,0) and (18,0) and three armchair, namely
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Figure 8. Cantilevered boundary condition—vibrational frequencies of the zigzag SLGS (10,0) for the second and third bending mode.
MM results and continuum mechanics results are compared for different values of the length.

(11,11), (15,15) and (19,19) SLGS. The natural frequencies of
SLGS decrease with length but they are generally insensitive
to the atomic structure. Results obtained from the molecular
mechanics approach are compared with the same obtained
using the continuum plate theory. The continuum mechanics
results in general tend to overestimate the natural frequencies.
The two approach agree more for the cantilevered boundary
condition compared with the bridged boundary condition. The
results obtained in the paper may be useful for the design and
analysis of vibrating SLGS based NEMS and sensor devices.
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