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SUMMARY

In general, the damping matrix of a dynamic system or structure is such that it can not be simultaneously
diagonalized with the mass and sti�ness matrices by any linear transformation. For this reason the
eigenvalues and eigenvectors and consequently their derivatives become complex. Expressions for the
�rst- and second-order derivatives of the eigenvalues and eigenvectors of these linear, non-conservative
systems are given. Traditional restrictions of symmetry and positive de�niteness have not been imposed
on the mass, damping and sti�ness matrices. The results are derived in terms of the eigenvalues and
left and right eigenvectors of the second-order system so that the undesirable use of the �rst-order
representation of the equations of motion can be avoided. The usefulness of the derived expressions
is demonstrated by considering a non-proportionally damped two degree-of-freedom symmetric system,
and a damped rigid rotor on 
exible supports. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The characterization of eigenvalues and eigenvectors constitutes a central role in the design,
analysis and identi�cation of linear dynamic systems. As a result, the study of the variation of
the eigenvalues and eigenvectors due to variations in the system parameters, or more precisely
the sensitivity of eigensolutions, has emerged as an important area of research. Sensitivity of
eigenvalues and eigenvectors with respect to some system parameters may be represented
by their derivatives with respect to those parameters. In one of the earliest works, Fox and
Kapoor [1] gave exact expressions for the �rst derivative of eigenvalues and eigenvectors with
respect to any design variable. Their results were obtained in terms of changes in the system
property matrices and the eigensolutions of the structure, and have been used extensively in a
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wide range of application areas of structural dynamics. The expressions derived in Reference
[1] are valid for symmetric undamped systems.
However, it is well known that in many problems in dynamics the inertia, sti�ness and

damping properties of the system cannot be represented by symmetric matrices or self-adjoint
di�erential operators. These kinds of problems typically arise in the dynamics of actively
controlled structures and in many general non-conservative dynamic systems, for example—
moving vehicles on roads, missile following trajectories, ship motion in sea water or the
study of aircraft 
utter. The asymmetry of damping and sti�ness terms is often addressed in
the context of gyroscopic and follower forces. Many authors [2–5] have extended Fox and
Kapoor’s [1] approach to determine eigensolution derivatives for more general asymmetric
conservative systems. For these kinds of systems, Nelson [6] proposed an e�cient method
to calculate the �rst-order derivative of eigenvectors which requires only the eigenvalue and
eigenvector under consideration. Murthy and Haftka [7] have written an excellent review
on calculating the derivatives of eigenvalues and eigenvectors associated with general (non-
Hermitian) matrices.
The work discussed so far does not explicitly consider the damping present in the system.

In order to apply these results to systems with general non-proportional damping it is required
to convert the equations of motion into state-space form (see Reference [8] for example). Al-
though exact in nature, the state-space methods require signi�cant numerical e�ort as the size
of the problem doubles. Moreover, these methods also lack some of the intuitive simplicity
of the analysis based on ‘N -space’. For these reasons the determination of the derivatives
of eigenvalues and eigenvectors in N -space for non-conservative systems is very desirable.
Note that unlike undamped systems, in damped systems the eigenvalues and eigenvectors, and
consequently their derivatives, become complex in general. Recently, some authors have con-
sidered the problem of the calculation of �rst-order derivatives of eigensolutions of viscously
damped symmetric systems. Bhaskar [9] has obtained the derivative of eigenvalues using
a �rst-order formalism. Lee et al. [10; 11] have proposed a similar approach to determine
natural frequency and mode shape sensitivities of damped systems. Recently, Adhikari [12]
derived an exact expression for the �rst-order derivative of complex eigenvalues and eigen-
vectors. The results were expressed in terms of the complex eigenvalues and eigenvectors
of the second-order system and the �rst-order representation of the equation of motion was
avoided. Later Adhikari [13] suggested an approximate method to calculate the �rst derivative
of complex modes using a modal series involving only classical normal modes.
First-order derivatives are useful for practical problems as long as the perturbations of

the system parameters remain ‘small’. To consider a wide range of changes in the design
parameters the linear approximation associated with the �rst-order derivatives may not be suf-
�cient. Apart from large perturbations of system parameters, Brandon [14] has shown that the
second-order eigensolution derivatives are not negligible compared to the �rst-order derivatives
when the system has closely spaced natural frequencies. Second-order eigensolution deriva-
tives are also required in design optimization to calculate the so-called ‘Hessian Matrix’. For
these reasons there has been considerable interest in obtaining the second-order derivatives
of the eigensolutions. Plaut and Huseyin [3] gave an expression for the second derivative
of the eigenvalues for asymmetric systems. Rudisill [5] suggested a similar expression for
the second derivative of the eigenvalues and went on to derive the second derivative of
the eigenvectors. Brandon [15] derived the second derivative of the eigenvalues and eigen-
vectors for the case when the system matrices are linear functions of the design variables.
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Chen et al. [16; 17] derived the second-order derivative of eigenvectors in terms of a series
in the eigenvectors. Friswell [18] proposed a method, similar to Reference [6], to obtain the
second-order derivative of the eigenvectors which employs only the eigensolutions of inter-
est. Most of the methods discussed so far do not explicitly consider damped systems. In
order to apply these results to obtain the second derivatives of the eigensolutions of general
(non-proportionally) damped systems, the state-space formalism is required.
In this paper, the �rst and second derivatives of the eigenvalues and eigenvectors of linear

asymmetric non-conservative systems are derived in N -space. It is assumed that, in general,
the damping matrix cannot be diagonalized simultaneously with the mass and sti�ness matrix
by any linear transformation and that the system does not possess repeated eigenvalues. In
Section 2, we brie
y discuss complex eigenvalues and eigenvectors of asymmetric linear multi
degree-of-freedom discrete systems. The �rst-order derivatives of the complex eigenvalues are
derived in Section 3. The result is expressed in terms of the corresponding right and left
eigenvectors and the eigenvalue of the system. In Section 4 the �rst-order derivative of the
right and left eigenvectors are obtained. The derivation uses the �rst-order representation
of equations of motion and then relates the �rst-order eigenvector derivatives to the right
and left eigenvectors of the original system. Joint second-order derivatives of the complex
eigenvalues with respect to two design parameters are derived in Section 5 in terms of the
�rst-order derivatives of eigenvalues and eigenvectors obtained before. In Section 6, second
order derivatives of right and left eigenvectors are obtained. A symmetric two-degree-of-
freedom non-conservative system is considered in Section 7 to illustrate the usefulness of a
special case of the derived expressions. A rigid rotor on 
exible supports, subject to gyroscopic
e�ects, is used as an example of an asymmetric system.
It should be highlighted that only systems with distinct eigenvalues are considered in this

paper. The eigensystem derivatives of conservative systems with repeated eigenvalues have
been considered in depth [19–22]. Even for conservative systems, the derivatives with respect
to more than one parameter do not exist, in general. The physical reason for this is that small
perturbations to the parameters often cause the eigenvalues to become distinct. Unfortunately,
these distinct eigenvectors are usually not consistent for di�erent parameters, leading to the
notion that only certain sets of parameters are permissible [21; 22]. There is a further di�culty
for damped systems. It has recently been shown that if a unit rank change in the viscous
damping matrix of a proportional damped system leads to a repeated eigenvalue (that was
not an eigenvalue of the original system), then the modi�ed system will defective [23]. A
defective system does not have a full set of eigenvectors, and thus calculating the eigenvalue
and eigenvector derivatives for such a system is clearly unreasonable. Recent research has
demonstrated that higher rank modi�cations to the damping matrix also produce defective
systems [24]. Because of these di�culties it will be assumed, in this paper, that the eigenvalues
are distinct.

2. COMPLEX EIGENVALUES AND EIGENVECTORS

The equations of motion describing the free vibration of a linear, damped discrete system
with N degrees-of-freedom are

M�u(t) +Cu̇(t) +Ku(t)= 0 (1)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:709–733
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where M; C and K∈RN×N are the mass, damping and sti�ness matrices, respectively,
u(t)∈RN is the vector of generalized co-ordinates, and t ∈R+ denotes time. The traditional
restrictions of symmetry and positive de�niteness are not imposed on M; C and K, however,
it is assumed that M−1 exists. Taking the Laplace transform of Equation (1) and without loss
of generality, assuming all the initial conditions are zero, we have

s2M�u+ sC�u+K�u= 0 (2)

Here, �u is the Laplace transform of u(t); s= i! with i=
√−1 and !∈R+ denotes frequency.

The eigenvalues sj associated with Equation (2) are the roots of the characteristic polynomial

det
[
s2M+ sC+K

]
=0 (3)

The order of the polynomial is 2N and the roots appear in complex conjugate pairs. For
convenience in this paper, we arrange the eigenvalues as

s1; s2; : : : ; sN ; s∗1 ; s
∗
2 ; : : : ; s

∗
N (4)

where (•)∗ denotes complex conjugation. The right eigenvalue problem associated with the
above equation can be represented by the �-matrix problem [25]

s2jMuj + sjCuj +Kuj= 0; ∀j=1; : : : ; N (5)

where sj ∈C is the jth latent root (eigenvalue) and uj ∈CN is the jth right latent vector (right
eigenvector). The left eigenvalue problem can be represented by

s2j v
T
j M+ sjvTj C+ v

T
j K= 0

T; ∀j=1; : : : ; N (6)

where vj ∈CN is the jth left latent vector (left eigenvector) and (•)T denotes the matrix
transpose. When M;C and K are general asymmetric matrices the right and left eigenvectors
can easily be obtained from the �rst-order formulations, for example, the state-space method
[26] or Duncan forms [27]. Equation (1) is transformed into the �rst-order (Duncan) form as

Aż(t) +Bz(t)= 0 (7)

where A;B∈R2N×2N are the system matrices and z(t)∈R2N is the state vector given by

A=
[
C M
M O

]
; B=

[
K O
O −M

]
and z(t)=

{
u(t)
u̇(t)

}
(8)

In the above equation O is the N ×N null matrix and IN is the N ×N identity matrix. Taking
the Laplace transform of Equation (7) we obtain

sA�z+B�z= 0 (9)

Here, �z is the Laplace transform of z(t). The right eigenvalue problem associated with
Equation (9) can be expressed as

sjAzj +Bzj= 0; ∀j=1; : : : ; 2N (10)

where sj ∈C is the jth eigenvalue and zj ∈C2N is the jth right eigenvector which is related
to the jth right eigenvector of the second-order system as

zj=
{
uj
sjuj

}
(11)
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The left eigenvector yj ∈C2N associated with sj is de�ned by
sjyTj A+ yTj B= 0 (12)

Assume that the left eigenvectors yj can be expressed by

yj=
{
y1j
y2j

}
(13)

where y1j; y2j ∈CN . Substituting yj into Equation (12) and simplifying, the following equations
may be obtained:

sj
(
yT1jC+ y

T
2jM

)
+ yT1jK = 0

sjyT1jM = yT2jM
(14)

Elimination of y2j gives

yT1j
[
s2jM+ sjC+K

]
=0 (15)

By comparing this with Equation (6), one obtains y1j= vj. Since it has been assumed that M
is non-singular, from the second equation of (14), y2j= sjvj. Thus, the left eigenvectors of the
�rst-order system can be related to those of the second-order system by

yj=
{
vj
sjvj

}
(16)

For distinct eigenvalues it is easy to show that the right and left eigenvectors satisfy an
orthogonality relationship, that is

yTj Azk =0 and yTj Bzk =0; ∀j 6= k (17)

The above two equations imply that the dynamic system de�ned by (7) possesses set of
biorthogonal eigenvectors with respect to the system matrices. Premultiplying Equation (10)
by yTj one obtains

yTj Bzj=−sjyTj Azj (18)

The eigenvectors may be normalized so that

yTj Azj=
1

j

(19)

where 
j ∈C is the normalization constant. In view of the expressions of zj and yj in Equations
(11) and (16) the above relationship can be expressed in terms of the eigensolutions of the
second-order system as

vTj [2sjM+C]uj=
1

j

(20)

There are several ways in which the normalization constants can be selected. The one that is
most consistent with traditional modal analysis practice, is to choose 
j=1=2sj. Observe that
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this degenerates to the familiar mass normalization relationship vTj Muj=1 when the damping
is zero. It should be noted that 
j will be assumed constant and should not vary with the
design parameters. If 
j=1=2sj then 
j should be �xed, based on the baseline model.
The normalization in Equation (20) is insu�cient and the eigenvectors are not unique to

the extent of an unknown scalar multiplier. Normalizing uj and vj so that their norms are
equal is insu�cient since the eigenvectors may be multiplied by any complex scalar of unit
modulus. The normalization approach adopted here was described by Nelson [6] and Murthy
and Haftka [7]. For the jth eigenvector pair the eigenvectors are normalized so that the njth
elements are equal. Thus,

{uj}nj = {vj}nj (21)

where {•}j denotes the jth element of a vector. nj is chosen so that the corresponding elements
of the eigenvectors are as large as possible. Thus,

|{uj}nj ||{vj}nj |=maxn |{uj}n||{vj}n| (22)

The �rst-order formulation described above, although exact in nature, requires signi�cant
numerical e�ort to obtain the eigensolutions as the size of the problem doubles. Moreover, this
approach also lacks some of the intuitive simplicity of the analysis based on ‘N -space’. For
these reasons, the determination of eigenvalues and eigenvectors in N -space for asymmetric
non-conservative systems is very desirable. Ma and Caughey [28] (see Theorem 3) have
shown that in the special case, when M−1C and M−1K commute, the linear asymmetric
non-conservative system (1) can be decoupled by an equivalence transformation and hence
the N -space method can be used. But in general, linear non-conservative systems do not
satisfy this condition and some kind of approximate methods have to be used for further
analysis. Meirovitch and Ryland [29] and Malone et al. [30] used a perturbation method
to determine the eigensolutions of gyroscopic systems. Recently, Adhikari [31] proposed a
Neumann series-based method in which the (complex) right and left eigenvectors of the
non-conservative systems are expressed as a series in corresponding undamped eigenvectors.
Adhikari’s method can be used to obtain the complex eigensolutions up to any desired level
of accuracy without using the state-space formalism. This motivates us towards developing
procedures to obtain the eigensolution derivatives in N -space.
We suppose that the variation of interest in the structural system de�ned by Equation

(1) can be described by a set of m parameters (design variables), g= {g1; g2; : : : ; gm}T ∈Rm,
so that the mass, damping and sti�ness matrices become functions of g, that is M;C and
K : g→RN×N . Consider two arbitrary elements of the design vector g, say g� and g�. For
convenience, the notation (•);�≡ @(•)=@g� and (•);��≡ @2(•)=@g� @g� is used. Our aim is to
obtain the �rst and second derivatives of the eigenvalues sj, right eigenvectors uj and left
eigenvectors vj with respect to any arbitrary entries of the design vector, or more precisely,
want to obtain the expressions for sj;�; uj;�; vj;�; sj;��; uj;�� and vj;��.

3. FIRST-ORDER DERIVATIVES OF THE EIGENVALUES

In this section, we will derive an expression for �rst-order derivative of the complex
eigenvalues of asymmetric non-conservative systems. For notational convenience rewrite
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Equations (5) and (6) as

Fjuj= 0 (23)

and

vTj Fj= 0
T (24)

where the regular matrix pencil

Fj ≡F(sj; g)=
[
s2jM+ sjC+K

]∈CN×N (25)

Di�erentiating Equation (23) with respect to g� one obtains

Fj;�uj + Fjuj;�= 0 (26)

where Fj;� is equivalent to @Fj=@g�, and may be obtained by di�erentiating Equation (25) as

Fj;�= F̃j;� + sj;�Gj (27)

Here the terms F̃j;� and Gj are de�ned by

F̃j;� = s2jM;� + sjC;� +K;�

Gj = 2sjM+C
(28)

Premultiplying Equation (26) by vTj one obtains the scalar equation

vTj Fj;�uj=0 (29)

since vTj Fjuj;�=0 from Equation (24). Now substituting Fj;� from Equation (27) into the above
equation we obtain the expression for derivative of the jth complex eigenvalue as

sj;�= − vTj F̃j;�uj
vTj Gjuj

= − vTj
[
s2jM;� + sjC;� +K;�

]
uj

vTj [2sjM+C]uj
(30)

The derivative of a given eigenvalue requires the knowledge of only the corresponding eigen-
value and right and left eigenvectors under consideration, and thus a complete solution of the
eigenproblem is not required. Equation (30) can be used to derive the derivative of eigenvalues
for various interesting special cases:

1. Symmetric conservative system [1]: In this case, M=MT; K=KT and C= 0 results
in sj= i!j where !j ∈R is the jth undamped natural frequency and vj= uj ∈RN . Thus,
from Equation (30),

−2i!ji!j;�=
(
!2j

)
;�=

uTj
[
K;� −!2jM;�

]
uj

uTjMuj
(31)

which is a well known result.
2. Asymmetric conservative system [2; 3]: In this case, C= 0, and hence uj ∈RN , vj ∈RN
and Equation (30) reduces to

(
!2j

)
;�=

vTj
[
K;� −!2jM;�

]
uj

vTj Muj
(32)
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3. Symmetric non-conservative system [9; 12]: In this case, M=MT; K=KT and C=CT

results in vj= uj and reduces Equation (30) to

�j;�= − uTj
[
s2jM;� + sjC;� +K;�

]
uj

uTj [2sjM+C]uj
(33)

Following a similar approach the derivatives of the eigenvalues of undamped and damped
gyroscopic systems can also be obtained as special cases of Equation (30).

4. FIRST-ORDER DERIVATIVES OF THE EIGENVECTORS

For asymmetric systems, we need to obtain the derivatives of both right and left eigenvectors.
At this stage, it turns out to be useful to perform the calculations in state-space and then relate
the results to the right and left eigenvectors of the second-order system. Thus, the derivatives
of the right and left eigenvectors of the �rst-order system with respect to some design variable
g� will be determined at �rst.
It is convenient to rewrite Equations (10) and (12) in the following form:

Pjzj= 0 (34)

and

yTj Pj= 0T (35)

where the complex matrix pencil Pj is de�ned as

Pj= sjA+B∈C2N×2N (36)

Di�erentiating Equations (34) and (35) with respect to g� one obtains

Pj; �zj +Pjzj; �= 0 (37)

and

yTj Pj; � + yTj; �Pj= 0
T (38)

where from Equation (36),

Pj; �= sj; �A+ sjA; � +B; � (39)

In the above equations, zj; � and yj; � denote the derivatives of the right and left eigenvectors
with respect to g� that we want to obtain.
Because it has been already assumed that the system has distinct eigenvalues, the right and

left eigenvectors form a complete set of vectors. Thus, we can expand zj; � and yj; � as complex
linear combinations of zl and yl, for all l=1; : : : ; 2N . Thus an expansion of the following
form is considered:

zj; �=
2N∑
l=1
a(�)jl zl (40)
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and

yj; �=
2N∑
l=1
b(�)jl yl (41)

Here a(�)jl and b(�)jl ; ∀l=1; : : : ; 2N; are sets of complex constants to be determined. Substitut-
ing the assumed expansion for zj; � from Equation (40) into Equation (37) and premultiplying
by yTk gives

yTk Pj; �zj+
2N∑
l=1
a(�)jl y

T
k

[
sjA+B

]
zl=0 (42)

Using the biorthogonality relationship of the right and left eigenvectors described by Equa-
tion (17) and also using Equation (18), we obtain

a(�)jk =− yTk Pj; �zj
yTk Azk(sj − sk)

; ∀k=1; : : : ; 2N ; k 6= j (43)

Similarly, substituting the assumed expansion for yj; � from Equation (41) into Equation (38),
postmultiplying by zk and using the biorthogonality relationship, gives

b(�)jk =− yTj Pj; �zk
yTk Azk(sj − sk)

; ∀k=1; : : : ; 2N ; k 6= j (44)

The expressions for a(�)jk and b(�)jk derived above are not valid when k= j. To obtain a(�)jj
and b(�)jj we begin by di�erentiating Equation (19)

yTj; �Azj + y
T
j A; �zj + yTj Azj; �=0 (45)

Substituting the assumed expansion for zj; � and yj; � from Equations (40) and (41) and also
making use of the biorthogonality property, one has

a(�)jj + b
(�)
jj =−y

T
j A; �zj
yTj Azj

(46)

The second equation for a(�)jj and b(�)jj comes from the relative normalization expression for
the left and right eigenvectors, Equation (22). It is clear that if the njth elements of the left
and right eigenvectors remain equal then so do the corresponding elements of the derivatives.
Thus,

{uj; �}nj = {vj; �}nj = {zj; �}nj = {yj; �}nj (47)

Substituting the assumed expressions for zj; � and yj; � from Equations (40) and (41), into
Equation (47), gives

b(�)jj − a(�)jj =
1

{yj}nj
2N∑
k=1
k 6=j

[
a(�)jk {zk}nj − b(�)jk {yk}nj

]
(48)

Since all the quantities on the right-hand side of (48) are known, the constants a(�)jj and b(�)jj
are easily computed from Equations (46) and (48).
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The constants a(�)jk ; b
(�)
jk ; ∀k=1; : : : ; 2N; expressed in Equations (43), (44), (46) and (48)

are not very useful because they are in terms of right and left eigenvectors of the �rst-order
system. In order to obtain a relationship in terms of the eigenvectors of the second-order
system we utilize the expressions of zj and yj in Equations (11) and (16), respectively. First
consider Equation (43). Substituting Pj; � from Equation (39) and using the biorthogonality
relationship in Equation (17), when k 6= j+N the numerator on the right side of this equation is

yTk Pj; �zj = y
T
k

[
sjA; � +B; �

]
zj

=

{
vk
skvk

}T [
sjC; � +K; � sjM; �

sjM; � −M; �

]{
uj
sjuj

}

= vTk
[
s2jM; � + sjC; � +K; �

]
uj (49)

Utilizing the expression of the normalization in (19) from Equation (43) we have

a(�)jk =−
k
vTk
[
s2jM; � + sjC; � +K; �

]
uj

(sj − sk) ; ∀k=1; : : : ; 2N; k 6= j; j + N (50)

When k= j+N , from the ordering of the eigenvalues in Equation (4) we have sk = s∗j and
yk = y∗j . Recalling the expression of sj; � in Equation (30), the numerator on the right side of
Equation (43) is

yTk Pj; �zj = y
∗T
j

[
sjA; � +B; �

]
zj + sj; �y∗

T

j Azj

= v∗
T

j

[
s2jM; � + sjC; � +K; �

]
uj − vTj

[
s2jM; � + sjC; � +K; �

]
uj
v∗

T

j

[
(sj + s∗j )M+C

]
uj

vTj
[
2sjM+C

]
uj

= (v∗j − �vjvj)T
[
s2jM; � + sjC; � +K; �

]
uj (51)

where the scalar

�vj =
v∗

T

j

[
(sj + s∗j )M+C

]
uj

vTj
[
2sjM+C

]
uj

= 
j v∗
T

j

[(
sj + s∗j

)
M+C

]
uj (52)

Using this relationship, Equation (43) becomes

a(�)jj+N = i

∗
j

(v∗j − �vjvj)T
[
s2jM; � + sjC; � +K; �

]
uj

2=(sj) (53)

where =(•) denotes the imaginary part of (•). Following a similar procedure, Equation (44)
becomes

b(�)jk =−
k
vTj
[
s2jM; � + sjC; � +K; �

]
uk

(sj − sk) ; ∀k=1; : : : ; 2N; k 6= j; j + N (54)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:709–733



EIGENDERIVATIVE ANALYSIS OF ASYMMETRIC NON-CONSERVATIVE SYSTEMS 719

and

b(�)jj+N = i

∗
j

vTj
[
s2jM; � + sjC; � +K; �

]
(u∗j − �ujuj)

2=(sj) (55)

where the scalar �uj is

�uj =
vTj [(sj + s∗j )M+C]u∗j
vTj [2sjM+C]uj

= 
jvTj [(sj + s
∗
j )M+C]u∗j (56)

From Equations (46) and (48) we also have

a(�)jj + b
(�)
jj =−
jvTj [2sjM; � +C; �]uj (57)

and

b(�)jj − a(�)jj =
1

{vj}nj
2N∑
k=1
k 6=j

[
a(�)jk {uk}nj − b(�)jk {vk}nj

]
(58)

Equations (50), (54), (57) and (58) completely determine a(�)jk ; b
(�)
jk ; ∀k=1; : : : ; 2N; from the

right and left eigenvectors of the second-order system and derivatives of the system property
matrices.
It is interesting to observe that if the system is undamped, that is, when u∗j = uj; v∗j = vj

and C= 0, the scalar constants are unity, �uj = �vj =1, which implies that a
(�)
jj+N = b

(�)
jj+N =0.

Now returning to the assumed expansion of zj; � and yj; � in Equations (40) and (41) it may
be noted that they are vector equations with 2N rows. In view of the expressions for zj and yj
in Equations (11) and (16), the �rst N rows are the derivatives of right and left eigenvectors
of the second-order system. Thus, taking only the �rst N rows of Equation (40) and recalling
the order of the eigenvalues in (4) one obtains

uj; �= a
(�)
jj uj + a

(�)
jj+Nu

∗
j +

N∑
k=1
k 6=j

[
a(�)jk uk + a

(�)
jk+Nu

∗
k

]
(59)

Similarly, taking only the �rst N rows of Equation (41) the derivative of left eigenvector
of the second-order system can be obtained as

vj; �= b
(�)
jj vj + b

(�)
jj+Nv

∗
j +

N∑
k=1
k 6=j

[
b(�)jk vk + b

(�)
jk+Nv

∗
k

]
(60)

The expressions derived above relate the derivatives of the right and left eigenvectors to
the derivative of the system property matrices and the eigenvectors of the second-order sys-
tem. The (complex) eigenvectors of the second-order system can be obtained exactly from
the (real) eigenvectors of the corresponding undamped system [31]. It in turn indicates that
�rst-order eigen-sensitivity analysis of asymmetric non-conservative systems can be performed
simply by a proper ‘postprocessing’ of the eigensolutions of the corresponding conservative
systems. Because the state-space formalism is avoided this approach provides signi�cant re-
duction in computational e�ort. In e�ect, we need to solve only two N th-order eigenvalue
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problems instead of solving two 2N th-order eigenvalue problems. Moreover, this approach
also provide good physical insight as the simplicity of the N -space eigenvectors are pre-
served. Equations (59) and (60) can be used to obtain the derivative of eigenvectors for
various useful special cases:

1. Symmetric conservative system [1]: In this case, M=MT; K=KT and C= 0. The
eigenvalues are sj= i!j where !j is the jth undamped natural frequency and vj= uj=
v∗j = u∗j ∈RN . As explained before the coe�cient associated with u∗j in Equation (59)
vanishes and with usual mass normalization 
j=1=2i!j. Using these Equation (59) gives

uj; � =−1
2
1
2i!j

(
2i!juTjM; �uj

)
uj −

N∑
k=1
k 6=j

uTk [K; � −!2jM; �]uj
2i!k

[
1

i!j − i!k −
1

i!j + i!k

]
uk

=−1
2
(
uTjM; �uj

)
uj+

N∑
k=1
k 6=j

uTk [K; � −!2jM; �]uj
!2j −!2k

uk (61)

which is a well-known result.
2. Asymmetric conservative system [2; 3]: In this case, C= 0; uj ∈RN and vj ∈RN .
Equations (59) and (60) reduce to

uj; �=−1
2
(
vTj M; �uj

)
uj+

N∑
k=1
k 6=j

vTk [K; � −!2jM; �]uj
!2j −!2k

uk (62)

and

vj; �=−1
2
(
vTjM; �uj

)
vj+

N∑
k=1
k 6=j

vTj [K; � −!2jM; �]uk
!2j −!2k

vk (63)

3. Symmetric non-conservative system [12]: In this case, M=MT; K=KT and C=CT,
and thus vj= uj and reduces expression (59) to

uj; � =−1
2

j
(
uTj G̃j; �uj

)
uj − 
∗j

(u∗j − �vjvj)TF̃j; �uj
2=(sj) u∗j

−
N∑
k=1
k 6=j

[

k
uTk F̃j; �uj
sj − sk uk + 


∗
k
u∗

T

k F̃j; �uj
sj − s∗k

u∗k

]
(64)

The term associated with u∗j , however, has not been explicitly obtained in Reference [12].
Following similar approach derivative of the right and left eigenvectors for undamped and

damped gyroscopic systems can also be obtained as special cases of Equations (59) and (60).

5. SECOND-ORDER DERIVATIVES OF THE EIGENVALUES

In this section, we derive an expression for the joint derivatives of the complex eigenvalues
with respect to two independent design parameters, say g� and g�. Di�erentiating Equation (26)
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with respect to g� one obtains

Fj; ��uj + Fj; �uj; � + Fj; �uj; � + Fjuj; ��=0 (65)

The term Fj; �� appearing in the above equation can be obtained by using Equations (27) and
(28) as

Fj; �� = [Fj; �]; �=[F̃j; � + sj; �Gj]; �

= [F̃j; �]; � + sj; �Gj; � + sj; ��Gj
(66)

where the terms [F̃j; �]; � and Gj; � are

[F̃j; �]; �=
˜̃Fj; �� + sj; �G̃j; �

with

˜̃Fj; ��= s2jM; �� + sjC; �� +K; ��

G̃j; �=2sjM; � +C; �
(67)

and

Gj; �= G̃j; � + 2sj; �M

Combining Equations (66) and (67), Fj; �� is obtained as

Fj; ��=
˜̃Fj; �� + sj; �G̃j; � + sj; �G̃j; � + 2sj; �sj; �M+ sj; ��Gj (68)

Premultiplying Equation (65) by vTj yields

vTj Fj; ��uj + v
T
j Fj; �uj; � + v

T
j Fj; �uj; � + v

T
j Fjuj; ��=0 (69)

By virtue of Equation (24), the last term of this equation is zero. Using Equation (27) for
Fj; � and Fj; � we can rewrite Equation (69) as

vTj Fj; ��uj + v
T
j

[
F̃j; � + sj; �Gj

]
uj; � + vTj

[
F̃j; � + sj; �Gj

]
uj; �=0 (70)

Now substituting Fj; �� from Equation (68) into the above equation we obtain the expression
for the joint derivative of the jth complex eigenvalue as with respect to g� and g� as

sj; �� =− 1
vTj Gjuj

[
vTj (
˜̃Fj; �� + sj; �G̃j; � + sj; �G̃j; �)uj

+ vTj (F̃j; � + sj; �Gj)uj; � + v
T
j (F̃j; � + sj; �Gj)uj; � + 2sj; �sj; �v

T
j Muj

]
(71)

All the terms in the right side of this equation are known, and are related to the �rst-order
derivative of the eigensolutions and the derivatives of the mass, damping and sti�ness matrices
with respect to the parameters g� and g�. The �rst-order derivatives of the complex eigenvalues
and eigenvectors have to be obtained from Equations (30) and (59) derived before. Second-
order derivatives of the eigenvalues of undamped systems have been studied in References
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[32; 3; 5; 33]. Their results may be obtained as a special case of Equation (71) by substituting
C= 0 and utilizing the usual mass orthogonality of the real undamped modes.
One particular special case which is useful in many applications is the double derivative

of the eigenvalues with respect to any one parameter, where the system matrices are linear
functions of g. Thus, setting �=� and setting ˜̃Fj; �� equal to zero, from Equation (71) we
obtain

sj; ��= − 2
vTj Gjuj

[
vTj F̃j; �uj; � + sj; �

(
vTj G̃j; �uj + v

T
j Gjuj; �

)
+ s2j; �v

T
j Muj

]
(72)

Similar problems have been discussed by Brandon [15] in the context of undamped systems.
One may verify that for undamped systems, Equation (72) reduces to the equivalent expression
derived in Reference [15].

6. SECOND-ORDER DERIVATIVES OF THE EIGENVECTORS

In this section we derive an expression for the joint derivatives of the right and left eigen-
vectors of the second-order system with respect to two independent design parameters, say g�
and g�. Since it has been assumed already that the system has distinct eigenvalues, the right
and left eigenvectors form a complete set of vectors. Thus we can expand zj; �� and yj; �� as
complex linear combinations of zl and yl, for all l=1; : : : ; 2N; as

zj; ��=
2N∑
l=1
c(��)jl zl (73)

and

yj; ��=
2N∑
l=1
d(��)jl yl (74)

Here c(�)jl and d(�)jl , ∀l=1; : : : ; 2N; are sets of complex constants to be determined. Di�erenti-
ating Equation (37) with respect to g� one obtains

Pj; ��zj +Pj; �zj; � +Pj; �zj; � +Pjzj; ��=0 (75)

Substituting the assumed expansion of zj; �� from Equation (73) into this equation and pre-
multiplying by yTk one obtains

yTk Pj; ��zj + y
T
k Pj; �zj; � + y

T
k Pj; �zj; � +

2N∑
l=1
c(��)jl yTk [sjA+B]zl=0 (76)

Using the biorthogonality relationship between the right and left eigenvectors described by
Equation (17) and also in view of Equation (18), we obtain

c(��)jk = − yTk Pj; ��zj + y
T
k Pj; �zj; � + y

T
k Pj; �zj; �

yTk Azk(sj − sk)
; ∀k=1; : : : ; 2N; k 6= j (77)
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Similarly, di�erentiating Equation (35) successively with respect to g� and g�, substituting the
assumed expansion of yj; �� from Equation (74) and then postmultiplying by zTk one obtains

d(��)jk = − yTj Pj; ��zk + yTj; �Pj; �zk + y
T
j; �Pj; �zk

yTk Azk(sj − sk)
; ∀k=1; : : : ; 2N; k 6= j (78)

The constants c(��)jk and d(��)jk given above are not very useful since they are in terms of left
and right eigenvectors of the �rst-order system. Following the procedure in the appendix these
constants can be related to the left and right eigenvectors of second-order system and their
�rst derivatives.
To obtain c(��)jj and d(��)jj we �rst di�erentiate Equation (45) by g� and obtain

yTj; ��Azj + y
T
j; �A; �zj + yTj; �Azj;�y

T
j; �A; �zj

+ yTj A; ��zj + yTj A; �zj; � + yTj; �Azj; � + y
T
j A; �zj; � + yTj Azj; ��=0 (79)

Substituting the assumed expansion of zj; �� and yj; �� from Equations (73) and (74) and also
making use of the biorthogonality property,

c(��)jj + d(��)jj =− 1
yTj Azj

[
yTj A; ��zj + yTj; �A; �zj

+ yTj; �Azj; � + y
T
j; �A; �zj + yTj; �Azj;� + y

T
j A; �zj; � + yTj A; �zj; �

]
(80)

From the above equation it may be noted that c(��)jj and d(��)jj are not derived uniquely but
de�ned as a joint sum. As for the �rst-order derivatives of the eigenvectors, the second
equation for these constants comes from the relative normalization expression for the left
and right eigenvectors, Equation (22). It is clear that if the njth elements of the left and
right eigenvectors remain equal then so do the corresponding elements of the second-order
derivatives. Thus,

{uj; ��}nj = {vj; ��}nj = {zj; ��}nj = {yj; ��}nj (81)

Substituting the assumed expressions for zj; �� and yj; �� from Equations (73) and (74), into
Equation (81), gives

c(��)jj − d(��)jj =
1

{yj}nj
2N∑
k=1
k 6=j

[
c(��)jk {zk}nj − d(��)jk {yk}nj

]
(82)

Since all the quantities on the right-hand side of (82) are known, the constants c(��)jj and d(��)jj
are easily computed from Equations (80) and (82).
The values of the constants c(��)jj and d(��)jj have been expressed in terms of the eigenvec-

tors of the �rst-order system and thus, cannot be used directly for N -space-based analysis.
Following the procedure outlined in the appendix these constants can be related to the right
and left eigenvectors of second-order system and their �rst derivatives.
Now following an approach similar to that used before to determine the �rst derivative,

one may consider only the �rst N rows of Equation (73) to obtain the second derivative of
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right eigenvectors of the second-order system. Using the fact that the eigenvalues occur in
complex conjugate pairs uj; �� can be expressed as

uj; ��= c
(��)
jj uj + c

(��)
jj+Nu

∗
j +

N∑
k=1
k 6=j

[
c(��)jk uk + c

(��)
jk+Nu

∗
k

]
(83)

Again, considering only the �rst N rows of Equation (74) and following a similar procedure,
the joint derivatives of the left eigenvectors of the second-order system with respect to g�
and g� can be expressed as

vj; ��=d
(��)
jj vj + d

(��)
jj+Nv

∗
j +

N∑
k=1
k 6=j

[
d(��)jk vk + d

(��)
jk+Nv

∗
k

]
(84)

All the terms in the right-hand side of Equations (83) and (84) are related to the �rst-order
derivatives of the eigensolutions and the derivatives of the mass, damping and sti�ness matri-
ces with respect to the parameters g� and g�. The �rst-order derivatives of the complex eigen-
values and eigenvectors are obtained from Sections 3 and 4. The expressions of the second-
order derivative of the complex eigenvectors derived here are very general in nature–undamped
systems, symmetric non-conservative systems, damped and undamped gyroscopic systems may
be considered as special cases. One particular case that is useful in many applications is the
double derivative of the eigenvectors with respect to any one parameter, and where the system
matrices are linear functions of g. For this case, the forms of Equations (83) and (84) will
still be valid but the values of the constants c(��)jk and d(��)jk appearing in these equation will be

di�erent. These may be obtained by setting �=� and setting ˜̃Fj; �� equal to zero. Thus, we have

c(��)jk =− 2
k
(sj − sk)

[
vTk F̃j; �uj; � + (sj + sk)sj; �v

T
kMuj; �

+ sj; �
(
vTkC; �uj + v

T
kCuj; �

)
+ 2sjsj; �vTkM; �uj + 2s2j; �v

T
kMuj

]
; ∀k=1; : : : ; 2N; k 6= j

(85)

and

d(��)jk =− 2
k
(sj − sk)

[
vTj; �F̃j; �uk + (sj + sk)sj; �v

T
j; �Muk

+ sj; �
(
vTj C; �uk + v

T
j; �Cuk

)
+ 2sjsj; �vTj M; �uk + 2s2j; �v

T
j Muk

]
; ∀k=1; : : : ; 2N; k 6= j

(86)

The sum of constants, c(��)jj + d(��)jj is given by

c(��)jj + d(��)jj =−2
j
{
vTj; �G̃j; �uj + v

T
j G̃j; �uj; � + v

T
j; �Gjuj; �

+ sj; �
(
vTj; �Muj + v

T
j Muj; � + 2v

T
j M; �uj

)}
(87)

The di�erence in these constants is given by Equation (82).
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Problems similar to this have been discussed by Brandon [15] in the context of undamped
systems. One may verify that for undamped systems Equation (85) reduces to the equivalent
expression derived in Reference [15].

7. AN EXAMPLE OF A SYMMETRIC SYSTEM

A simple two-degree-of-freedom system has been considered to illustrate a possible use of
the expressions developed so far. Figure 1 shows the example, together with the numerical
values of the masses, spring sti�nesses and damping. When the eigenvalues are plotted versus
a system parameter they create family of ‘root loci’. When two loci approach each other
they may cross or rapidly diverge. The latter case is called ‘curve veering’. It is known that
during veering rapid changes take place in the eigensolutions and this produces an interesting
example to apply the results derived in this paper.
The system matrices for the example are

M=
[
m 0
0 m

]
; C=

[
c −c
−c c

]
and K=

[
k1 + k3 −k3
−k3 k2 + k3

]
(88)

Because all the system matrices are symmetric the left and right eigenvectors are same in
this case. We have focused our attention on calculating the �rst and second order derivatives
of the complex eigenvalues with respect to the damping parameter ‘c’. The derivative of the
system matrices with respect to this parameter may be obtained as

dM
dc

= 0;
dC
dc
=

[
1 −1
−1 1

]
and

dK
dc
= 0 (89)

Figure 2 shows the real parts (normalized by dividing with
√
k1=m) of the �rst derivative of the

eigenvalues with respect to c over a parameter variation of k2. This plot was obtained by the
direct programming of Equation (30) in MATLABTM. The complex eigenvalues and eigenvectors

Figure 1. The two-degree-of-freedom discrete
system, m=1kg, k1 = 1000N=m, k3 = 20N=m,

c=4:0N s=m.

Figure 2. The real parts of �rst derivatives of
the eigenvalues with respect to the damping pa-
rameter (c) for the mass, spring damper system,

normalized by −
√
k1=m.
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Figure 3. The real parts of second derivatives of
the eigenvalues with respect to the damping pa-
rameter (c) for the mass, spring damper system,

normalized by −
√
k1=m.

Figure 4. A schematic of the rigid rotor example.

appearing in this equation were obtained from the procedure outlined in Reference [31].
The real part has been chosen to be plotted here because a change in damping is expected
to contribute to a signi�cant change in the real part of the eigenvalue. Since the value of
the connecting spring constant k3 is quite small, we expect a strong veering e�ect in this
case. The change in the values of the derivatives around the veering region, that is when
0:75¡k2=k1¡1:25, shows that the both the natural frequencies are very sensitive to small
changes in the value of c. This could be guessed intuitively: because k3 is small, the damper
becomes the only ‘connecting element’ between the two masses, so any change made there
is expected to have a strong e�ect.
The real parts of the second derivatives of the eigenvalues with respect to c over a parameter

variation of k2 are shown in Figure 3. Equation (72) is applied to obtain these results. The
�rst derivatives of the eigenvectors appearing in this equation are calculated using Equation
(64). Observe the sharp changes in the value of the second derivatives in the veering region
(when 0:75¡k2=k1¡1:25). The near-zero value of the double derivatives outside this region
indicates that the �rst derivatives are approximately constant, which may be veri�ed from
Figure 2. Note that the values of the second derivative in the veering region are about the
same magnitude as the corresponding values of the �rst derivative. This illustrates that the
second-order derivatives can not be neglected in this region.

8. AN EXAMPLE OF AN ASYMMETRIC SYSTEM

A simple rotating machinery example will now be used to demonstrate the calculation of
eigensystem derivatives for asymmetric systems. Figure 4 shows a schematic of a rigid rotor
on 
exible supports. The rotor consists of a rigid cylinder of length 0:5m, diameter 0.2m and
mass density 7810 kg=m3. The rotor is supported in bearings that are modelled using springs
and dashpots. The spring sti�nesses are kx1 = 1:6GN=m; kx2 = 1:4GN=m; ky1 = 1:1GN=m and
ky2 = 1:6GN=m. The dashpots all have a damping coe�cient of 1 kN s=m. For this exercise
the four degrees of freedom are the lateral displacement of the rotor mass centre, and the
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Figure 5. The Campbell diagram for the
rotor example.

Figure 6. The imaginary part of the �rst derivative
of the eigenvalues for the rotor example.

Figure 7. The imaginary part of the second derivative of the eigenvalues for the rotor example.

rotation about the two axes orthogonal to the rotor axis. The asymmetry in the equations of
motions arises from the gyroscopic e�ects that increase with rotational speed. Figure 5 shows
the Campbell diagram (the change in the damped natural frequency with rotor speed) and
clearly shows that the gyroscopic e�ects are signi�cant, particularly, in the higher modes. The
asymmetric spring sti�nesses mean that the modes in the two lateral planes are not equal at
zero speed, and this is clearly seen in Figure 5. Figures 6 and 7 show the imaginary parts of
the �rst and second derivatives of the eigenvalues with respect to the rotor mass, respectively.
The imaginary part is chosen because the rotor mass is likely to have a signi�cant in
uence on
the damped natural frequency. As expected the derivatives are large near the veering regions.
To demonstrate the calculation of the eigensystem derivatives a single rotor speed is chosen.

A suitable speed is near one of the two veering regions at about 8300 and 12 500 rpm, where
the natural frequencies become close. A rotor speed of 8300 rpm is chosen, which produces
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Table I. The eigenvalues and their �rst and second derivatives for the rotor example.

Eigenvalues, sj dsj=dm d2sj=dm2

−8:2247 + 130:17i 0:068774− 0:52184i −1:2251× 10−3 + 6:0452× 10−3i
−10:406 + 153:51i 0:33511− 0:38926i −2:4198× 10−2 − 5:5357× 10−2i
−11:651 + 159:22i −0:27082− 0:25210i 2:3254× 10−2 + 6:3482× 10−2i
−29:689 + 347:53i −1:6848× 10−4 − 9:6179× 10−4i 3:0769× 10−6 + 1:9497× 10−5i

the system matrices

M=



122:68 0 0 0
0 122:68 0 0
0 0 2:8625 0
0 0 0 2:8625


 (90)

C=



2 0 0 0
0 2 0 0
0 0 0:125 0:53315
0 0 −0:53315 0:125


 (91)

and

K=



2:1 0 0 0:025
0 3 −0:05 0
0 −0:05 0:1875 0

0:025 0 0 0:13125


 (92)

Table I gives the eigenvalues for this system and Table II shows the second and third
eigenvectors, where the left and right eigenvectors are normalised according to Equations
(20) and (21), with 
j=1=2sj. The second and third eigenvectors are chosen because the
corresponding eigenvalues are close, as shown in Figure 5. Suppose we wish to take the
derivatives of the eigensystem with respect to the rotor mass, m. Thus,

dM
dm

=



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ; dC

dm
= 0 and

dK
dm

= 0 (93)

Table I also gives the �rst and second derivatives of the eigenvalues and Table II gives
the derivatives of the second and third eigenvectors with respect to the rotor mass. It is clear
that the second derivatives are signi�cant and should not be neglected at this rotor speed.
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Table II. The second and third eigenvectors and their �rst and second derivatives for the rotor example.

u2 du2=dm d2u2=dm2

7:2538× 10−3 − 4:5894× 10−3i −8:0043× 10−4 + 1:7854× 10−4i 9:2346× 10−5 + 1:4436× 10−4i
0:026271− 0:077468i −3:3198× 10−3 − 3:5156× 10−3i −2:6742× 10−4 + 1:4492× 10−3i

−0:078310− 0:20164i −2:4789× 10−3 + 0:017494i 4:5493× 10−3 − 5:7370× 10−4i
0:24732− 0:12197i −0:025341− 1:4616× 10−3i 1:4882× 10−3 + 6:3048× 10−3i

v2 dv2=dm d2v2=dm2

7:2538× 10−3 − 4:5894× 10−3i −8:0043× 10−4 + 1:7854× 10−4i 9:2346× 10−5 + 1:4436× 10−4i
−0:026271 + 0:077468i 3:3198× 10−3 + 3:5156× 10−3i 2:6742× 10−4 − 1:4492× 10−3i
0:078310 + 0:20164i 2:4789× 10−3 − 0:017494i −4:5493× 10−3 + 5:7370× 10−4i
0:24732− 0:12197i −0:025341− 1:4616× 10−3i 1:4882× 10−3 + 6:3048× 10−3i

u3 du3=dm d2u3=dm2

8:4324× 10−3 + 1:6450× 10−3i 2:1216× 10−4 − 5:0674× 10−4i −1:9000× 10−4 + 7:2052× 10−6i
0:029840 + 0:061027i 3:0957× 10−4 − 6:2541× 10−3i −1:5355× 10−3 + 3:7855× 10−4i
0:097315− 0:22388i −9:6786× 10−3 − 0:013136i −1:3803× 10−3 + 4:5250× 10−3i
0:33389 + 0:11301i 0:015577− 0:013703i −6:1042× 10−3 − 1:2157× 10−3i

v3 dv3=dm d2v3=dm2

8:4324× 10−3 + 1:6450× 10−3i 2:1216× 10−4 − 5:0674× 10−4i −1:9000× 10−4 + 7:2052× 10−6i
−0:029840− 0:061027i −3:0957× 10−4 + 6:2541× 10−3i 1:5355× 10−3 − 3:7855× 10−4i
−0:097315 + 0:22388i 9:6786× 10−3 + 0:013136i 1:3803× 10−3 − 4:5250× 10−3i
0:33389 + 0:11301i 0:015577− 0:013703i −6:1042× 10−3 − 1:2157× 10−3i

9. CONCLUSION

In the presence of general non-conservative forces linear dynamic systems do not possess
classical normal modes but possess complex modes. The �rst and joint second-order deriva-
tives of the eigenvalues and eigenvectors of such systems have been derived. It is assumed
that the mass matrix is non-singular and the system does not possess any repeated roots. The
approach taken here avoids the use of the �rst-order formulation of the equations of motion
and is consistent with traditional modal analysis procedures. For this reason the derived ex-
pressions can provide good physical insight and can be used e�ectively in model updating,
damage detection and design optimization. The advantage is that the damping matrix is con-
sidered, in addition to the mass and sti�ness matrices currently used. The results obtained
here are very general in nature; undamped systems, symmetric non-conservative systems, and
damped or undamped gyroscopic systems can be considered as special cases.

APPENDIX. DETERMINATION OF THE COEFFICIENTS c(��)jk AND d(��)jk

The coe�cients c(��)jk and d(��)jk , ∀k=1; : : : ; 2N; in Equations (73) and (74) completely de-
termine zj; �� and yj; ��. In Section 6 they are expressed in terms of the system property
matrices and eigenvectors of the �rst-order system. In order to carry out a sensitivity analysis
in ‘N ’-space they must be related to the system property matrices and eigenvectors of the
second-order system.
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First, consider the expression for c(��)jk , k 6= j, in Equation (77). Di�erentiating the expression
of Pj in Equation (27) with respect to g� one obtains

Pj; �=[P̃j; � + sj; �A]; where P̃j; �= sjAj; � +Bj; � (A1)

Di�erentiating again with respect to g� gives

Pj; ��=[Pj; �]; �= ˜̃Pj; �� + sj; �Aj; � + sj; �Aj; � + sj; ��A (A2)

Using the biorthogonality property of yTk and zj the �rst term of the numerator of the right-
hand side of (77) can be rewritten as

yTk Pj; ��zj= y
T
k
˜̃Pj; ��zj + sj; �yTk Aj; �zj + sj; �yTk Aj; �zj (A3)

The terms appearing on the right side of this equation can be expressed in terms of the
second-order eigensolutions and system properties. The �rst term reduces to

yTk
˜̃Pj; ��zj =

{
vk
skvk

}T [
sjC; �� +K; �� sjM; ��

sjM; �� −M; ��

]{
uj
sjuj

}

= vTk
[
s2jM; �� + sjC; �� +K; ��

]
uj

(A4)

The second term on the right side of Equation (A3) produces

sj; �yTk A; �zj = sj; �

{
vk
skvk

}T [
C; � M; �

M; � O

]{
uj
sjuj

}

= sj; �vTkC; �uj + sj; �(sj + sk)v
T
kM; �uj

(A5)

Similarly expressing the last term, Equation (A3) can be represented in terms of the second-
order eigensolutions and system properties as

yTk Pj; ��zj = v
T
k

[
s2jM; �� + sjC; �� +K; ��

]
uj + sj; �vTkC; �uj

+ sj; �(sj + sk)vTkM; �uj + sj; �vTkC; �uj + sj; �(sj + sk)v
T
kM; �uj (A6)

Now di�erentiating the expression for zj in Equation (11) with respect to g� gives

zj; �=

{
uj; �

sj; �uj + sjuj; �

}
(A7)

Using this relationship, the second term in the numerator expression for c(��)jk , k 6= j; in Equation
(77) can be expressed as

yTk Pj; �zj; � =

{
vk
skvk

}T [
sjC; � +K; � + sj; �C sjM; � + sj; �M
sjM; � + sj; �M −M; �

]{
uj; �

sj; �uj; � + sjuj; �

}
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= vTk
[
s2jM; � + sjC; � +K; �

]
uj; � + sj; �vTkCuj; � + sj; �(sj − sk)vTkM; �uj

+ sj; �(sj + sk)vTkMuj; � + sj; �sj; �v
T
kMuj (A8)

Similarly, the last term in the numerator of the right-hand side of Equation (77) can also be
expressed in terms of the second-order eigensolutions. Now from Equations (A6), (A8) and
(77) we �nally have

c(��)jk =− 1
(sj − sk)vTk

[
2skM+C

]
uk

{
vTk
[
s2jM; �� + sjC; �� +K; ��

]
uj

+ vTk
[
s2jM; � + sjC; � +K; �

]
uj; � + vTk

[
s2jM; � + sjC; � +K; �

]
uj; �

+ sj; �(sj + sk)
(
vTkM; �uj + vTkMuj; �

)
+ sj; �(sj + sk)

(
vTkM; �uj + vTkMuj; �

)
+(sj − sk)

(
sj; �vTkM; �uj + sj; �vTkM; �uj

)
+ sj; �

(
vTkC; �uj + v

T
kCuj; �

)
+ sj; �

(
vTkC; �uj + v

T
kCuj; �

)
+ 2sj; �sj; �vTkMuj

}
; ∀k=1; : : : ; 2N; k 6= j (A9)

For the left eigenvectors the coe�cients d(��)jk , k 6= j can be obtained from Equation (78).

Following a similar procedure used to obtain c(��)jk we can represent d(��)jk in terms of the
second-order eigenvectors and their derivatives and the derivatives of the system property
matrices as

d(��)jk =− 1
(sj − sk)vTk [2skM+C]uk

×{
vTk
[
s2jM; �� + sjC; �� +K; ��

]
uk

+ vTj; �
[
s2jM; � + sjC; � +K; �

]
uk + vTj; �

[
s2jM; � + sjC; � +K; �

]
uk

+ sj; �(sj + sk)
(
vTj M; �uk + vTj; �Muk

)
+ sj; �(sj + sk)

(
vTj M; �uk + vTj; �Muk

)
+(sj − sk)

(
sj; �vTj M; �uk + sj; �vTj M; �uk

)
+ sj; �

(
vTj C; �uk + v

T
j; �Cuk

)
+ sj; �

(
vTj C; �uk + v

T
j; �Cuk

)
+ 2sj; �sj; �vTj Muk

}
; ∀k=1; : : : ; 2N; k 6= j (A10)

Now consider the coe�cients c(��)jj and d(��)jj expressed in Equations (80) and (82). All the
terms appearing in the numerator of the right side of Equation (80) can be expressed in terms
of system property matrices, second-order eigenvectors and their derivatives. To illustrate the
procedure for a typical term consider the (third) term yTj; �Azj; �. Using the expression of zj; �
(and similarly for yj; � also) in Equation (A7) one has

yTj; �Azj; � =

{
vj; �

sj; �vj + sjvj; �

}T [
C M
M O

]{
uj; �

sj; �uj + sjuj; �

}

= vTj; �[C+ 2sjM]uj; � + sj; �v
T
j; �Muj + sj; �v

T
j Muj; � (A11)
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Expressing the other terms using a similar procedure, Equation (80) becomes

c(��)jj + d(��)jj =− 1
2vTj [sjM+C]uj

×{
vTj [2sjM; �� +C; ��]uj + vTj; �[2sjM; � +C; �]uj

+ vTj [2sjM; � +C; �]uj; � + vTj; �[2sjM; � +C; �]uj + vTj [2sjM; � +C; �]uj; �

+ vTj; �[2sjM+C]uj; � + vTj; �[2sjM+C]uj; � + sj; �
(
vTj; �Muj + v

T
j Muj; � + 2v

T
j M�uj

)
+ sj; �

(
vTj; �Muj + v

T
j Muj; � + 2v

T
j M�uj

)}
(A12)

With the above de�nitions, and Equation (82), c(��)jj and d(��)jj ; ∀k=1; : : : ; 2N; are expressed in
terms of the system property matrices, eigenvectors and their �rst derivatives of the second-
order system.
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