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Nonlocal vibration of a double-nanoplate-system is considered. The two nanoplates are assumed to be
bonded by an enclosing elastic medium. Situation of this type would arise in multiple graphene sheets
dispersed in nanocomposites. Expressions for free bending-vibration of double-nanoplate-system are
established utilising nonlocal elasticity. An analytical method is introduced for determining the natural
frequencies of nonlocal double-nanoplate-system (NDNPS). Explicit closed-form expressions for natural
frequencies are derived for the case when all four ends are simply-supported. Two single-layered graph-
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tion than in the asynchronous modes. The increase of the stiffness of the coupling springs in NDNPS
reduces the small-scale effects during the asynchronous modes of vibration. Further, the effect of aspect
ratio and higher modes on the natural frequencies of NDNPS is studied in this manuscript. Present work
may provide an analytical scale-based nonlocal approach which could serve as the starting point for fur-
ther investigation of more complex n-nanoplates systems arising in future generation graphene based
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1. Introduction

For realistic designing of nanodevices and nanocomposites [1-3]
one must incorporate the small-scale effects and the atomic forces in
the analysis of nano-components (carbon nanotubes, graphene) to
achieve solutions with acceptable accuracy. At the small-scale, the
sizes of nanostructures often become prominent. Both experimental
[4-7] and atomistic simulation [8] results have shown a significant
‘size-effect’ in the mechanical properties when the dimensions of
these structures become small. Ignoring the small-scale effects
and the atomic forces in sensitive nano-designing fields may cause
completely incorrect solutions and hence erroneous designs. Atom-
istic methods such as molecular mechanics simulation [9] are able to
capture the small-scale effects and atomic forces. However these ap-
proaches are computationally prohibitive for mechanical analyses of
nanostructures with large numbers of atoms. Thus analyses have
been generally carried out by using the classical mechanics [10].
Though classical mechanics delivers reasonable solutions, it is inde-
pendent of small-scale effects and thus may not be always reliable
for analysis of nanostructures.

Recently one such promising theory which contains informa-
tion about the forces between atoms, and the internal length scale
is the nonlocal elasticity theory [11]. Nonlocal elasticity theory
has been applied in various structural studies of nanostructures.
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Nonlocal elasticity accounts for the small-scale effects arising at
the nanoscale level. Recent literature shows that the theory of non-
local elasticity is being increasingly used for reliable and fast anal-
ysis of nanostructures [12-50].

A large amount of investigations have been conducted on one
dimensional nanostructure such as CNTs using nonlocal elasticity
[13,15,18-20,28,32,33,36-38,41,43,44,46-48]. However, com-
pared to one-dimensional nonlocal nanostructures (nanobeams
and nanorods), very limited number of studies have been reported
on the nonlocal nanoplates (graphene sheets), even though nano-
plates possesses many superior properties. Nanoplates such as
graphene would be one of the prominent new materials for the
next generation nano-electronic devices. Reports related to its
use as strain sensor, mass and pressure sensors, atomic dust detec-
tors, enhancer of surface image resolution are observed. Studies on
graphene sheets include vibration studies on single-walled and
multi-walled graphene sheets.

It is reported that the study of transversal vibration of an elas-
tically connected double-plate system is important for both theo-
retical and practical reasons [51]. Many important structures can
be modelled as composite structures. Similar to macro plates, an
important technological extension of the concept of the single-
nanoplate-system would be that of the complex-nanoplate-
systems. Complex-nanoplate-systems may find applications in
nanooptomechanical systems (NOMS). Vibration of double-nano-
beam systems in NOMS is reported [52-55]. Vibration analysis of
double-nanoplate systems with small aspect ratio is very relevant
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Nanocomposite Model

Two dimensional Nanostructures
in Nanocomposites

Fig. 1. Nanoplates dispersed in polymer matrix in nanocomposites.

to NOMS. Elastically connected double-nanoplate system can also
be used for the acoustic and vibration isolation.

Further complex-nanoplate-systems can be important in nano-
sensors applications and in nanocomposites. Vibration characteris-
tics of multiple nanoplates (graphene sheets) dispersed in
nanocomposites can be important from the structural performance
of nanocomposites [56-58]. Vibration of double-nanoplate-system
coupled by elastic medium is worth understanding in this respect.
The different stiffness of elastic medium will impart different vibra-
tion characteristic of the system in nanocomposites. A schematic
model of nanocomposites is shown in Fig. 1. Though complex-nano-
plate-systems are important in nanodevices and nanocomposites,
no works appear related to the study of its vibration characteristics.

Therefore, based on the above discussion there is a strong
encouragement to gain an understanding of the vibration of com-
plex-nanoplate-system and the mathematical modelling of such
phenomena. In the present paper attempt is made to study the
vibration of double-nanoplates-systems. The two nanoplates are
elastically bonded by enclosing elastic medium. It should be noted
that similar model is developed for a different problem of double-
layered [14] and multi-layered nanoplates [30] with constant van
der Waals forces between nanoplates. Here we will study the effect
of bonding elastic medium. The elastic medium is modelled by
vertical springs. Expressions for free bending-vibration of double-
nanoplate-system are established within the framework of
Eringen’s nonlocal elasticity by updating the Kirchhoff's plate
theory. An analytical method is introduced for determining the
natural frequencies of nonlocal double-nanoplate-system
(NDNPS). Explicit closed-form expressions for natural frequencies
are derived for the case when all four ends are simply-supported.
Further, this paper presents a unique yet simple method of obtain-
ing the exact solution for the free vibration of double-nanoplate
system. The simplification in the computation is achieved based
on the change of variables to decouple the set of two fourth-order
partial differential equations. Two single-layered graphene sheets
enclosed by polymer matrix are considered for the study. Isotropic
assumption of graphene sheet is considered in the study. The study
highlights that the small-scale or nonlocal effects considerably
influence the transverse vibration of NDNPS. Further, the effect of
aspect ratio and higher modes on the natural frequencies of NDNPS
is also investigated. In summary, this work may provide an
analytical scale-based nonlocal approach which could serve as
the starting point for further investigation of more complex
n-nanoplates systems for nanocomposites.

2. Review of nonlocal plate theory
In the nonlocal elasticity theory, the small-scale effects are cap-

tured by assuming that the stress at a point is a function of the
strains at all points in the domain. Nonlocal theory considers

long-range inter-atomic interaction and yields results dependent
on the size of a body. According to the nonlocal elasticity, the basic
equations for an isotropic linear homogenous nonlocal elastic body
neglecting the body force are given as [11]

Oijj = 07
oi(X) = / o(X —X|,a)tdV(X'),Vx e V
ti = Hyjéu,

1
&jj = j (u,-_j + u,;i)

The terms oy, ty, &, Hyji are the nonlocal stress, classical stress,
classical strain and fourth order elasticity tensors respectively. The
volume integral is over the region V occupied by the body. The
above equation (Eq. (1)) couples the stress due to nonlocal elastic-
ity and the stress due to classical elasticity. The kernel function
¢(Jx —X'|,o0) is the nonlocal modulus. The nonlocal modulus acts
as an attenuation function incorporating into constitutive equa-
tions the nonlocal effects at the reference point x produced by local
strain at the source x'. The term |x — X'| represents the distance in
the Euclidean form and o is a material constant that depends
on the internal (e.g. lattice parameter, granular size, distance
between the C—C bonds) and external characteristics lengths
(e.g. crack length, wave length). Material constant « is defined as
o = epa/l Here e is a constant for calibrating the model with
experimental results and other validated models. The parameter
eo is estimated such that the relations of the nonlocal elasticity
model could provide satisfactory approximation to the atomic dis-
persion curves of the plane waves with those obtained from the
atomistic lattice dynamics. The terms a and ¢ are the internal
(e.g. lattice parameter, granular size, distance between C—C bonds)
and external characteristics lengths (e.g. crack length, wave length)
of the nanostructure.

Eq. (1) is in partial-integral form and generally difficult to solve
analytically. Thus a differential form of nonlocal elasticity equation
is often used. According to Eringen, the expression of nonlocal
modulus can be given as [11]

b(X], o) = (2m20?) " Ko(vVXX/L0r) (2)

where K, is the modified Bessel function.
The equation of motion in terms of nonlocal elasticity can be ex-
pressed as

o +fi = pii; 3)

where f;, p and u; are the components of the body forces, mass den-
sity, and the displacement vector, respectively. The terms i,j take up
the symbols x,y and z.

Assuming the kernel function ¢ as the Green’s function, Eringen
[11] proposed a differential form of the nonlocal constitutive rela-
tion as

i+ L(fi — pli) =0 (4)
where

£ =[1-(e0a)’V?] (5)
and V? is the Laplace operator and is represented by V2 = 5’% +%

Using Eq. (5) the nonlocal constitutive stress-strain relation can
be simplified as [11,31]
(1 - o22V?)0y = t; (6)

Employing the nonlocal constitutive stress—strain relation (Eq.
(6)), the equation of motion of a nonlocal nanoplate can be derived
as



T. Murmu, S. Adhikari/Composites: Part B 42 (2011) 1901-1911 1903

DV*w(x,y,t) — q+ phw(x,y,t) + (eoa)’ V?q

~ ph(eoa)*(V)*W(x,y,t) =0 7)
where
ot o o
4 2\2 v vy v
V=V =5a ox*y? * oyt ®)

and w denotes the deflection of the nonlocal plate. The terms D and
p are the bending rigidity and density of the nonlocal plate, respec-
tively. Term q is the distributed transverse load on the nonlocal
plate.

3. Equations of motion for nonlocal double-nanoplate-system
(NDNPS)

Consider the nonlocal double nanoplate system (NDNPS) as
shown in Fig. 2a. The two nanoplates of the NDNPS are referred
to as nanoplate-1 and nanoplate-2. The two nanoplates are coupled
by an elastic medium (polymer matrix). Here we will develop
equations based on the change of variables. For mathematical
modelling it is assumed that vertically distributed identical Win-
kler springs couples the two nanoplates (Fig. 2b). In generality
the springs may be used to substitute the elastic medium, forces
due to nanooptomechanical effect [52-55], or van der Waals forces
between the two nanoplates. The springs are assumed to have stift-
ness k. Different values of k for different polymer matrix can be
used for the study. The nanoplates are considered to be of length

L and width W. Generally, the two nanoplates are different where
the length, width, mass per unit length and bending rigidity of the
ith plate are L;, W;, m; and D; (i = 1, 2) respectively. These parame-
ters are assumed to be constant along each nanoplate.

The bending displacements over the two nanoplates are de-
noted by wy(x,y,t) and wa(x,y,t), respectively (Fig. 2).

Using nonlocal plate equations, i.e. Eq. (7), the individual gov-
erning equations for NDNPS can be written as

(nanoplate-1) Dy V4w (x,y,t) + p;hiw(x,y, t) + k[w1 (x,y, £)

— W2 (X,¥,6)] = k(eo@)* V*[Wi (X, Y, £) — (%, 1)]

— (e00)’ Py VAW (x,y,t) = f(x,y,£) — (€00)* V*f (%, £) 9)
where the bending rigidity of nanoplate-1 can be expressed as
Dy = E;h3/12(1 —v?). (10)

The terms Eq, h; and v, are the Young’s modulus, thickness and
Poisson’s ratio of the nanoplate. Term f(x, y, t) is the forcing func-
tion. Subscript 1 denotes the properties of the nanoplate-1.

(nanoplate-2) D, V*wy(x,y, t) + p,hoWs (X, ¥, t) — k[wy (x,y, t)
— Wy (x,y,8)] + k(eoa)® V2 [w; (X, Y, ) — Wy (X, Y, 1)]
~ (e0a)’ Py 12 V2 (X,y, 1) = 0

where the bending rigidity of nanoplate-2 is expressed as

D, = E;hy/12(1 —v2) (12)

Nanoplate - 1
(b) Dy, m,

2" Quter Nanoplate

NDNPS

b4

D,m,

Nanoplate - 2

w(x, ¥ )

WX,y 1)

Coupled springs between
nanoplates characterising the
elastic medium

Fig. 2. (a) Double-nanoplate system coupled by an elastic medium. (b) Mathematical idealisation of nanoplate-system characterised by the coupling springs.
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For the present analysis we assume that
Dy = D, = D = constant
p1h1 = p,hy = ph = constant (13)
f(x,y,t) =0 (free vibration)
Substituting the assumptions (Eq. (13)) in Egs. (9) and (11) we get
(nanoplate-1) DV*w; (x,y,t) + phw(x,y,t) + k[w; (x,y,t)

— Wa(x,y, )] - k(eoa)* V2 [wi (x,y,t) — Wa(x.y, 0)]

— (eoa)> phVivy(x,y,t) = 0 (14)

(nanoplate-2) DV*w;(x,y,t) + pha (x,y,t) — kjw; (x, ¥, t)
—Wa(x.y,0)] + k(eoa)’ VA [wi (X,y,£) — w2 (%, 1)]
— (eoa)’ phV*W(x,y,t) = 0 (15)
Next, for the NDNPS we employ a change of variables by consid-

ering w(x, y, t) as the relative displacement of the nanoplate-1 with
respect to the nanoplate-2:

W(X7Y7t) =W1(X,y,t)*W2(X,y,t), (16)

such that for nanoplate-1, the displacement is expressed as

WI(X7Y7t) :W(X,y,t)+W2(X7y,t) (17)

Subtracting Eq. (14) and (15) leads to
DV (w1 (X,y.) = Wa(x,y, )] + 2k[wi (X, £) = Wa(X,¥.1)]
+ ph{n (X,¥,6) = W2 (x,y, £)] — 2k(e0a)* V2 [wi (x,y, £) — W, (x,, 1)]
— ph(eoa)* V[ (x,y,t) — Wa(x,y,1)] = 0 (18)
The use of Eq. (16) in Eqgs. (18) and (15) results
DV*W(x,y, t) + 2kw(x,y, t) + phw(x,y,t) — 2k(eoa)* V> w(x,y, t)
— ph(eea)’ V*W(x,y,t) =0 (19)
and
DV*w, (x,y,t) + phviy (x,y, t) — (€0a)> phVA(x, y, t)
= k(eoa)*w(x,y, t) — k(eoa)*V2w(x,y,t) (20)
For the present analysis of coupled NDNPS, we observe the sim-
plicity in using Egs. (19) and (20). It should be noted that when the
nonlocal effects are ignored (eqa = 0) and a single nanoplate is con-

sidered, the above equations revert to the equations of classical
scale-free Kirchhoff’s plate theory.

4. Boundary conditions in nonlocal double-nanoplate-system
(NDNPS)

Now we present the explicit mathematical expressions of the
boundary conditions of the double-nanoplate-system. Different
boundary condition can be studied. Here we assume that all the edges
in the nanoplate system are simply supported. At each ends of the
nanoplates in NDNPS, the displacement and the nonlocal moments
are considered to be zero. They can be mathematically expressed as

(nanoplate-1) Displacement condition

wi(0,y,t) =0; wi(L,y,t) =0; wi(x,0,t) =0; wi(x,W,t) =0;
(21)

Nonlocal moment condition

Ml (07y7 t) = O; Ml (L7y> t) = 0* MI(X7 07 t) = 0; MI(X7 W7 t) = O;
(22)

(nanoplate-2) Displacement condition

W2(07Y7 t) = 0, WZ(L7y7 t) = 07 Wz(x7 07 t) = 07 Wz(x7 W7 t) = 07
(23)

Nonlocal moment condition

M2(07y7 t) = 07 M2(L1y7 t) = 0~ Mz(xv 07 t) = 07 MZ(Xv W7 t) = 07
(24)

Now we use Eq. (16) in the boundary conditions (21)-(24), and
obtain

W(0,y,t) = w1 (0,y,£) — w5(0,y,£) = 0 (25a)
w(L,y,t) =wi(L,y,t) —wa(L,y,t) =0 (25b)
W(x,0,t) = wy (x,0,t) — W (x,0,t) =0 (25¢)
w(x, W, t) = w; (x, W, t) — wy(x, W, ) = 0 (25d)
M(0,y,t) = My(0,y,t) — My(0,y,t) =0 (26a)
M(L,y,t) = My(L,y,t) — Ma(L,y,t) = 0 (26b)
M(x,0,t) = My (x,0,t) — My(x,0,t) = 0 (26¢)
M(X, W, t) = My (X, W, t) — My(x, W, t) = 0 (26d)

Similarly one can obtain the nonlocal boundary conditions for
all edges clamped (CCCC) of NDNPS

W(0,y.t) = Wi(0,y,6) — w(0,y.t) = 0 (27a)
W(LY,t) = wi(L,y,t) — wa(L,y,t) = 0 (27b)
W(x,0,t) = w; (x,0,t) — W,(x,0,) = 0 (27¢)
WX, W, t) = wi (X, W, 1) — wy(x, W, ) = 0 (27d)
w(0,y,t) =w;(0,y,t) —w;(0,y,t) =0 (28a)
W(Lyt)=wi(Ly,t)-wy(Lyt)=0 (28b)
W (x,0,1) = W, (x,0,t) — W)(x,0,) = 0 (28¢)
W (x, W, ) = wj (x, W, 1) — w)(x, W, 1) = 0 (284)

Egs. (19) and (20) along with boundary conditions (Egs. (25)
and (26)) will yield the frequencies of NDNPS.

5. Exact solutions of the frequency equations
5.1. Both nanoplates of NDNPS are vibrating out-of-phase; (w;— wz # 0)

Consider the case of the NDNPS when both the nanoplates are
vibrating with in-phase sequence (synchronous) and out-of-phase
(asynchronous) sequence. The configuration of the NDNPS with the
out-of-phase sequence of vibration (w; —w, # 0) is shown in
Fig. 3. In this Section we solve the frequency for the out-of-phase
(asynchronous) vibration. Here we consider the case when all the
ends have simply supported boundary conditions. For the present
case we deal with Eq. (19).

This equation system (Eq. (19) with nonlocal boundary condi-
tions (Egs. (25) and (26)) can be solved by the Navier method
assuming the solutions in the form [51]
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wi(x,y.t) —wy(x,y,t) =0

Nanoplate -1

t

Fig. 3. Out-of-phase type or synchronous vibration of the double-nanoplate-
system.

Nanoplate -2

w= Z Z W mnSin(apx)sin(by,y)e@n (29)
m=1 n=1

where

am =mmn/L, by, =nm/W (30)

and m and n are half wave numbers.
Substituting Eq. (29) into Eq. (19) yields

— D[(mm/L)?
= —ph(1 + (eoa)*[(m/L)?

We define the following parameters for the sake of convenience
and generality

4

Qo = opnl? /P R= LW K = ",ﬁ , u:% (32)

Using the parameters in Eq. (32) and substituting in Eq. (31) we

obtain the natural frequencies of the NDNPS for asynchronous
vibration as

+ (N /W)W — 2k(1 + (€0a)?[(mmt/L)? + (n7/ W))W
+ (N7 / W) @02, Wi (31

o _ \/[(mn)z + R ()’ + 2K + 2K2[(mm)? + R (nm)?]

2, 2 2 M, n
1+ 2[(mm)? + R (nm)?]
=1,2...
(33)
5.2. Both nanoplates of NDNPS are vibrating in-phase (w; — w,=0)

Next, the in-phase sequence (synchronous) of vibration is con-
sidered (Fig. 4). For the present NDNPS, the relative displacements
between the two nanoplates are absent(w; — w,=0). Here we
solve Eq. (20) for the vibration of NDNPS. The vibration of nano-
plate-2 here would represent the vibration of the coupled vibrating
system. We apply the same procedure for solving Eq. (20). Using
Eq. (29) we can obtain the natural frequencies. The natural fre-
quencies for the NDNPS in this case can be expressed as

o _ [_lmm? + R (nm)’’
"V + 2 ((mm)’ + R (nm?]

For this case the vibration, we see that NDNPS is independent of
the stiffness of the connecting springs and therefore the NDNPS
can be effectively treated as a single nanoplate.

1
1

Fig. 4. In-phase type or synchronous vibration of the double-nanoplate-system.

n=123... (34)

Nanoplate —1 wi(x, 3.0 —wy(x, 3.0 =0

Nanoplate -2

Nanoplate — 1 vibrating

»m= Nanoplate—2 fixed

Fig. 5. Vibration of NDNPS with one nanoplate stationary.

5.3. One nanoplate of NDNPS is stationary (wy(x,y, t)=0)

Consider a special case of NDNPS when one of the two nano-
plates (viz. nanoplate-2) is stationary (w, = 0) The schematic dia-
gram is shown in Fig. 5.For this case, using the equations from
nonlocal elasticity (Egs. (1)-(6)), the governing equation for the
NDNPS (Eq. (19)) with Eq. (17) reduces to

DV*W(X,y,t) + kw(x,y,t) + phw(x,y, t) — k(eoa)* V>w(x,y,t)
— ph(eoa)’ VAw(x,y,t) = 0 (35)
The boundary conditions are expressed as
w(0,y,t) = 0; w(L,y,t) =0; w(x,0,t) =0; wx,W,t)=0; (36)
and the nonlocal moment conditions are given by
M(0,y.t) =0; M(L,y,t) =0; M(x,0,t) =0; M(x, W,t)=0; (37)

In this case, the NDNPS behaves as if the nanoplate is embedded
in an elastic medium. The elastic medium can be modelled as Win-
kler elastic foundation. The stiffness of the elastic medium is de-
noted by k. By following the same procedure as solution of Eq.
(19), the nonlocal frequency of NDNPS can be explicitly expressed
as

0 \/[( n)? + R (nm)*)* + K + Kp2[(mm)* + R? (nm)?) %)

1+ @2((mn)? + R (nm)?]

where K is the stiffness parameter of the coupling springs and u is
nondimensional nonlocal parameter as defined in Eq. (32). In fact
when one of the nanoplate (viz. nanoplate-2) in NDNPS is fixed
(w =0), the NDNPS behaves as a single nanoplate on an elastic
medium.

6. Results and discussions
6.1. Bonded double-graphene-sheet-system

The nonlocal plate theory for NDNPS illustrated here is a gener-
alised theory and can be applied for the bending-vibration analysis
of coupled graphene sheets, gold nanoplates, etc. The applicability
of nonlocal elasticity theory in the analysis of nanostructures
(nanotubes and graphene sheet) can be observed in various earlier
works [12-50].

As an illustration, the properties of the nanoplates are consid-
ered that of a single-layered graphene sheets. The two single-lay-
ered graphene sheets (GS) are coupled by embedded polymer as
shown in Fig. 6. The Young’s modulus of the GS is considered as
E=1.06 TPa, the Poisson ratio v=0.25, and the mass density as
p =2250 kg/m>?The thickness of the GS is taken as h=0.34 nm.
Similar use of material and geometrical values can be seen in [59].
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The frequency results of the NDNPS are presented in terms of
the frequency parameters (Eq. (32)). The nonlocal parameter and
the stiffness of the springs are computed as given in Eq. (32). Dif-
ferent values of spring parameters, K, are considered. Spring stiff-
ness represents the stiffness of the enclosing elastic medium.
Both high and large stiffness of springs are assumed. Values of K
range from 10 to 100. Both the graphene sheets (GS-1 and GS-2)
are assumed to have the same geometrical and material properties.

The nonlocal parameters are taken as ey=0.39 [11] and
a =0.142 nm (distance between carbon-carbon atoms). For carbon
nanotubes and graphenes, the range of epa = 0-2.0 nm has been
widely used. In the present study we take the scale coefficient p
or nonlocal parameter in the similar range as = 0-1.

6.2. Effect of small-scale on vibrating NDNPS

To see the influence of small-scale on the natural frequency of
the coupled-graphene sheet-systems, curves have been plotted
for frequency parameter and scale coefficient (nonlocal parameter,
). The GSs are coupled by a polymer matrix of stiffness K= 100. To
signify the small-scale effect we introduce a parameter frequency
reduction percent (FRP). Frequency reduction percent (FRP) is de-
fined as

FRP = 100 x (QLocal - QNonocal) (39)

Local

Fig. 7 shows the variation of the frequency parameter with the
scale coefficient for different cases of NDNPS (m=1, n=1). Here
NDNPS denotes the coupled-graphene sheet-systems. The results
for the frequency parameter 2 are in the dimensionless form as
in Eq. (32) .The stiffness parameter of the springs is assumed to
be constant (K=100). Unless stated the frequency parameter
would denote the parameter associated with the first natural fre-
quencies (in-phase and out-of-phase type vibration). From Fig. 7
it can be observed that as the scale coefficient p increases the
FRP increases. This implies that for increasing scale coefficient
the value of frequency parameter decreases. The reduction in fre-
quency parameter is due to the assimilation of small-scale effects
in the NDNPS in the material properties of the graphene sheets.
The small-scale effect reduces the stiffness of the material and
hence the comparative lower frequencies. Therefore by the non-
local elastic model the size-effects are reflected in the NDNPS.

Three different cases of NDNPS are considered. Case 1, Case2
and Case 3 depicts the conditions (i) when both the GS vibrates
in the out-of-phase sequence (w; — w; # 0) (ii) when one of the
GS in NDNPS is stationary (w, = 0) (iii) when both the GS vibrates
with in-phase sequence(w; — w, = 0), respectively. Comparing the
three cases of coupled-graphene-sheet-system, we observe that
the FRP for case 3 (in-phase vibration) is larger than the FRP for
case 1 (out of phase vibration) and case 2 (one-GS fixed). In other
words, the scale coefficient significantly reduces the in-phase nat-
ural frequencies (thus higher FRP) compared to other cases consid-

Single-layered
Graphene Sheets

Fig. 6. Coupled graphene sheet system in polymer matrix environment.
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Fig. 7. Change of frequency reduction percent with scale coefficient for out-of-
phase, in-phase and one nanoplate fixed in NDNPS.

ered. The relative higher FRP in in-phase vibration is due to the
absence of coupling effect of the spring and the two nanoplates
(GSs) and the whole NDNPS can be treated as a vibrating single
GS. In general, it is worth noticing that the small-scale effects in
NDNPS are higher with increasing nonlocal parameter in the in-
phase vibration than in the out-of-phase vibration. This is because
the stiffness of the springs in the out-of-phase (asynchronous)
vibration reduces the nonlocal effects. In addition, it can be seen
that the values of the FRP for case-2 (one-GS fixed) is larger than
the values of the FRP for case-1 (out-of-phase vibration). For
Case-2 the coupled-graphene-sheet-system becomes similar to
the vibration characteristic of the single GS with the effect of elas-
tic medium.

6.3. Effect of stiffness of coupling springs in NDNPS

To illustrate the influence of stiffness of the springs on the nat-
ural frequencies of the coupled-GS-systems, curves have been plot-
ted for the FRP against the scale coefficient. Spring stiffness
represents the stiffness of the enclosing elastic medium. Different
values of stiffness parameter of the coupling springs are consid-
ered. Fig. 8a-f depicts the stiffness of the springs on the FRP of cou-
pled systems. The stiffness parameter of the coupling springs are
taken as K=0, 10, 20, 50, 80, 100. As the stiffness parameter of
the coupling springs increases the FRP decreases. Aspect ratio is ta-
ken as unity. Considering all values of the stiffness parameter; and
comparing the three cases of coupled-GS system, it is noticed that
the FRP for case 3 (in-phase vibration) is larger than the FRP for
case 1 (out of phase vibration) and case 3 (one-GS fixed). These dif-
ferent changes of FRP with the increasing scale coefficient for the
three different cases are more amplified as the stiffness parameter
of the spring’s increases. For case 1(out-of-phase vibration) and
case 2 (one-GS-fixed), the FRP reduces with increasing values of
stiffness parameter. This observation implies that case 1 (out-of-
phase vibration) and case 2 (one GS fixed) are less affected by
scale-effects. Comparing case 1 and case 2 it can be seen the FRP
is lesser for out of phase vibration than for vibration in case 2. Thus
the out-of-phase vibration is less affected by the small-scale or
nonlocal effects. This out-of-phase vibration can be attributed to
the fact that the coupling springs in the vibrating system dampens
the nonlocal effects.
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In-phase vibration of coupled-system is unchangeable with
increasing stiffness of springs. This is accounted due to the in-
phase vibration mode of behaviour. For in-phase type of vibra-
tion the coupled system behaves as if a single SWGS without
the effect of internal elastic medium. In other words the whole
coupled system can be treated as a single nano element and
the coupling internal structure is effect less. In summary, it
should be noted that the in-phase vibration of coupled-system

are more affected by small-scale effects compared to out-of-
phase vibration.

6.4. Effect of aspect ratio on NDNPS
Next we illustrate the influence of aspect ratios (L/W) of the

nanoplates (GS) on the natural frequencies of the coupled-GS-sys-
tems. The GSs are assumed to be coupled by a polymer matrix of
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stiffness K= 100. Curves have been plotted for the FRP against the
scale coefficient for different aspect ratios. Different values of as-
pect ratios of the NDNPS are considered. Fig. 9a-f depicts the effect
of aspect ratio on the FRP of coupled systems. The aspect ratios are
taken as L/W=0.1, 0.5, 1, 2, 5, 10.

From Fig. 9 we see that with the increase of aspect ratios (L/W)
of NDNPS, the FRP for all case of vibration increases. It is noticed
that the difference between the in-phase type vibration, out-of-
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phase type vibration and vibration with one GS fixed become less
for increasing aspect ratios (L/W) of NDNPS. Thus it can be con-
cluded that although the small scale effects are more in higher as-
pect ratios (L/W) of NDNPS, the effect of stiffness of coupling
springs are reduced in higher aspect ratios of NDNPS. And thus less
difference in curves between the in-phase type vibration, out-of-
phase type vibration and vibration with one GS fixed become less
for higher aspect ratios of NDNPS. The FRP between the different
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cases of vibrations (in-phase, out-of-phase and with one GS sta-
tionary) are reduced in the following order:

(L/W=0.1)>(L/W=05)>L/W=1)> (L/W=2)
> (L/W =5) > (L/W = 10).
6.5. Effect of small-scale on NDNPS on higher natural frequencies

To see the influence of small-scale effects on the higher natural
frequencies of coupled system, curves have been plotted for FRP
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against scale coefficient with higher FRPs. Similarly to Section 6.2,
three cases of vibration characteristics are considered here; case 1:
out-of-phase vibration; case 2: vibration with one GS fixed; case 3:
in-phase vibration. The plots are shown in Fig. 10a-f. The stiffness
parameter of the coupling springs between SWCNT is assumed to
be K=100. The higher natural frequencies are plotted for (m=1,
n=2),(m=2,n=2),(m=2,n=3),(m=3,n=3),(m=3,n=4) and
(n=4, m=4). Here it should be noted that we are considering in-
phase and out-of-phase vibration as submodes.

From Fig. 10 we see that with the increase of higher natural fre-
quencies, the FRP for all case of vibration increases. This implies
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that the higher natural frequencies of the coupled system are sig-
nificantly reduced due to the nonlocal effects. These results are
in-line with earlier results on nonlocal elasticity [60]. Further, it
can be also noticed that the difference between the in-phase type
vibration, out-of-phase type vibration and vibration with one GS
fixed. Thus it can be concluded that although the small scale effects
are more in higher modes of frequencies, the effect of stiffness of
coupling springs are reduced in higher frequencies. And thus less
difference in curves between the in-phase type vibration, out-of-
phase type vibration and vibration with one GS fixed. The effect
of stiffness of coupling springs in NDNPS is reduced in the follow-
ing order of natural frequencies:

m=1,n=2)>m=2n=2)>m=2n=3)>(m=3,n=3)
>(m=3,n=4)>(m=4,n=4).

6.6. Nonlocal double-nanobeam-system vs. nonlocal double-
nanoplate-system

Next we present the vibration behaviour of nonlocal double-
nanoplate-systems (NDNPS) with respect to double-nanobeam
system (NDNBS). Studies of double-nanobeam system by nonlocal
elasticity can be seen in [61]. Similar to previous analysis three
cases of vibration are considered, out-of-phase vibration, in-phase
vibration and one nano-entity fixed. Lower and higher stiffness of
coupling springs are assumed here, i.e. K=10 and K = 100. Fig. 11
shows the change of FRP against scale coefficient for NDNBS and
NDNPS with K=10. From the figure it is observed that the FRP
for double-nanoplate-systems are larger than the FRPs for dou-
ble-nanobeam-systems. This is true for majority of scale coefficient
or nonlocal parameter considered. However it should be noted that
if different cases of vibration (in-phase, out-of-phase and one
nano-entity fixed) are considered, then double-beam-systems have
prominent behaviour compared to double-nanoplate-systems. The
effect of spring stiffness is more prominent in double-nanobeam-
systems which reduce the small scale effect. However for higher
stiffness parameter, K=100, FRP in double-nanoplate-systems
would result in prominent difference in vibration with in-phase,
out-of-phase and one nano-entity fixed. This is illustrated in
Fig. 12.
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Fig. 11. Change of frequency reduction percent with scale coefficient for NDNBS
and NDNPS (K = 10).
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In the end we say, further to nanocomposites application, this
double GS system can be used as nanoresonators. For different
set of boundary conditions this behaviour may be different. As
small-scale effects reduce the natural frequencies of the vibrating
nanosystem, nanoresonators can be designed so as to vibrate in
the out-of-phase modes. Thus the nanoresonators would have
higher resonant frequencies. This implies the significance of the
use of small-scale effects in NDNPS. If some damping properties
are present within the NDNPS, then the damping behaviour could
be effective in the out-of-phase mode vibration (similar to stiffen-
ing NDNPS). Thus one of the nanoplates would act as a vibration
absorber. However, the damping behaviour would be ineffective
in the in-phase mode vibration.

7. Conclusions

In this paper, the expressions for free bending-vibration of
bonded double-nanoplate-system are established utilising non-
local elasticity. A simple analytical method is introduced for deter-
mining the natural frequencies of bonded nonlocal double-
nanoplate-system (NDNPS). Explicit closed-form expressions for
natural frequencies are derived for the case when all four ends
are simply-supported. Two single-layered graphene sheets coupled
by polymer matrix are considered for the study. The double-nano-
plate-system executes two kinds of vibrations: the synchronous
vibrations with lower frequencies and the asynchronous vibrations
with higher frequencies. The study highlights that the small-scale
effects considerably influence the transverse vibration of NDNPS.
The small-scale effects in NDNPS are higher with increasing values
of nonlocal parameter for the case of synchronous (in-phase)
modes of vibration than in the asynchronous (out-of-phase) modes
of vibration. The increase of the stiffness of the coupling springs in
NDNPS reduces the small-scale effects during the asynchronous
modes of vibration. The synchronous natural frequencies are not
dependent on the stiffness parameter of the elastic medium. In this
case, the double-nanoplate system oscillates as a single plate with
the same natural frequencies. For rectangular NDNPS with increas-
ing aspect ratios, FRP in the synchronous and asynchronous be-
comes similar. Finally we say that the analytical scale-based
nonlocal approach applied here can serve as the starting point
for further investigation of more complex n-nanoplates systems
arising in future generation graphene based nanocomposites.
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