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Derivative of Eigensolutions of Nonviscously
Damped Linear Systems

Sondipon Adhikari¤

University of Cambridge, Cambridge, England CB2 1PZ, United Kingdom

Derivatives of eigenvalues and eigenvectors of multiple-degree-of-freedom damped linear dynamic systems with
respect to arbitrary design parameters are presented. In contrast to the traditional viscous damping model, a
more general nonviscous damping model is considered. The nonviscous damping model is such that the damping
forces depend on the past history of velocities via convolution integrals over some kernel functions. Because of the
general nature of the damping, eigensolutions are generally complex valued, and eigenvectors do not satisfy any
orthogonality relationship. It is shown that under such general conditions the derivative of eigensolutions can be
expressed in a way similar to that of undamped or viscously damped systems. Numerical examples are provided
to illustrate the derived results.

Nomenclature
C = viscous damping matrix
C = space of complex numbers
c = damping constant
D.s/ = dynamic stiffness matrix
G.s/ = damping function in the Laplace domain
G.t/ = damping function in the time domain
I = identity matrix
=( ) = imaginary part of ( )
i = unit imaginary number,

p
¡1

K = stiffness matrix
k1; k2; k3 = spring constants
M = mass matrix
m = order of the characteristic polynomial
N = degrees of freedom of the system
O = null matrix
p = design parameter
R = space of real numbers
s = Laplace domain parameter
t = time
u j = j th eigenvector of the system
Nu.s/ = Laplace transform of u.t/
u.t/ = response vector
± j k = Kroneker delta function
±.t/ = Dirac delta function
µ j = normalization constant for j th mode
¸ j = j th eigenvalue of the system
¹1; ¹2 = parameters of the Golla–Hughes–McTavish

(see Refs. 23 and 32) damping model
º.s/ = diagonal matrix containing º j .s/
º j .s/ = j th eigenvalue of D.s/
U .s/ = matrix containing Á j .s/
Á j .s/ = j th eigenvector of D.s/
! j = j th undamped natural frequency
j. /j = l2 norm of the vector . /

Subscripts

e = elastic modes
n = nonviscous modes
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Superscripts

T = matrix transpose
¡1 = matrix inverse
¢ = derivative with respect to t
¤ = complex conjugate

I. Introduction

D URING the design process of a structure, it is often required
to make changes in the design parameters so that the design

is optimal. When dynamic problems are considered, the interest of
designers lies in understanding the changes in natural frequencies
and mode shapes due to the changes in the system parameters. The
sensitivity of eigensolutions, or more precisely, the derivative of
eigensolutions with respect to the design parameters has an impor-
tant role in such studies because it helps to avoid repeated calcu-
lations. Also the eigensensitivity analysis plays a major role in the
system identi� cation problems and in the analysis of stochastically
perturbed dynamic systems. Because of such widespread applica-
tions, the calculation of derivative of eigenvalues and eigenvectors
has emerged an important area of research over past four decades.

In one of the earliest works, Fox and Kapoor1 gave exact ex-
pressions for the derivative of eigenvalues and eigenvectors with
respect to any design variable. Their results were obtained in
terms of changes in the system property matrices and the eigen-
solutions of the structure and have been used extensively in a wide
range of application areas of structural dynamics. The expressions
derived in Ref. 1 are valid for symmetric undamped systems. Later,
many authors2¡5 extended Fox and Kapoor’s1 approach todetermine
eigensolution derivatives for more general asymmetric systems. For
these kinds of systems, Nelson6 proposed an ef� cient method to cal-
culate the derivative of eigenvectors that requires only the eigenvalue
and eigenvector under consideration. A review on calculating the
derivatives of eigenvalues and eigenvectors associated with general
(non-Hermitian) matrices may be found by Murthy and Haftka.7

The cited works do not explicitly consider the damping present in
the system. To apply these results to systems with general nonpro-
portional (viscous) damping, it is required to convert the equations
of motion into state-space form (for example, see Ref. 8). Although
exact in nature, state-space methods require signi� cant numerical
effort as the size of the problem doubles. Moreover, these methods
also lack some of the intuitive simplicity of the analysis based on
N space. For these reasons some authors have considered the prob-
lem of the calculation of derivatives of eigensolutions of viscously
damped systems in N space. One of the earliest work to consider
damping was by Cardani and Mantegazza9 in the context of � utter
problems. Note that, unlike undamped systems, in damped systems
the eigenvalues and eigenvectors, and consequently their deriva-
tives, become complex in general. Adhikari10 derived an exact ex-
pression for the derivative of complex eigenvalues and eigenvectors.

2061



2062 ADHIKARI

The results were expressed in terms of the complex eigenvalues and
eigenvectors of the second-order system and the state-space repre-
sentation of the equation of motion was avoided. Lee et al.11;12 have
proposed an approach to determine natural frequency and mode
shape sensitivities of damped systems. However, unlike Adhikari,10

who employed a complex modal expansion approach, their method
for the calculation of eigenvector derivative involves direct matrix
inversion. Adhikari13 suggested an approximate method to calculate
the derivative of complex modes using a modal series involving only
classical normal modes. Later, Friswell and Adhikari14 extended
Nelson’s method6 to nonproportionally damped systems with com-
plex modes. Recently, Adhikari and Friswell15 have derived the � rst
and second-order derivative of complex eigensolutions of more gen-
eral asymmetric nonconservative systems.

The studies so far consider only viscous damping model. How-
ever, it is well known that viscous damping is not the only damping
model within the scope of linear analysis, examples are damping
in composite materials,16 energy dissipation in structural joints,17;18

and damping mechanism in composite beams,19 to mention a few.
We consider a class of nonviscous damping models in which the
damping forces depend on the past history of motion via convolu-
tion integrals over some kernel functions. The equations of motion
describing free vibration of an N -degree-of-freedom linear system
with such damping can be expressed by

M Ru.t/ C
Z t

¡1
G.t ¡ ¿ / Pu.¿/ d¿ C Ku.t/ D 0 (1)

where M and K 2 RN £ N are the mass and stiffness matrices,
G.t/ 2 RN £ N is the matrix of kernel functions, and 0 is an N £ 1
vector of zeros. In the special case when G.t ¡ ¿/ D C±.t ¡ ¿/,
Eq. (1) reduces to the case of viscously damped systems. The
damping model of this kind is a further generalization of the fa-
miliar viscous damping. Recently, Adhikari and Woodhouse20 pro-
posed a method for identi� cation of exponential nonviscous damp-
ing model where the kernel function matrix has the special form
G.t ¡ ¿ / D ¹Ce¡¹.t ¡ ¿ /.

The central aim of this paper is to extend the eigensensitivity anal-
ysis to nonviscously damped systems of the form (1). In the next
section, we brie� y discuss eigenvalues and eigenvectors of such sys-
tems. In the two subsequent sections, the derivative of eigenvalues
and eigenvectors are derived. Note that, unlike viscously damped
systems, the conversion of Eq. (1) into state-space form does not
give any advantage because the eigenvalue problem in state space
cannot be cast in the form of the conventional matrix eigenvalue
problem involving constant matrices. For this reason, the approach
adopted here does not employ the state-space formulation of the
equations of motion. An application of the derived expressions for
the derivative of eigensolutions is illustrated by considering a two-
degree-of-freedom system with nonviscous damping.

II. Eigenvalues and Eigenvectors
The determination of eigenvalues and eigenvectors of nonvis-

cously damped systems has been recently discussed by Adhikari.21

Here we brie� y outline the topics required for further development.
Taking the Laplace transform of Eq. (1), we have

s2M Nu.s/ C sG.s/ Nu.s/ C K Nu.s/ D 0 or D.s/ Nu.s/ D 0 (2)

where the dynamic stiffness matrix

D.s/ D s2M C sG.s/ C K 2 CN £ N (3)

and where Nu.s/ D L [u.t/] 2 CN , G.s/ D L [G.t/] 2 CN £ N , and L [ ]
is the Laplace transform. In the context of structural dynamics,
s D i!, where ! 2 RC is the frequency. We consider the damping to
be nonproportional . (Conditions for proportionality of nonviscous
damping were derived in Ref. 22.) That is, the mass and stiffness
matrices as well as the matrix of kernel functions cannot be simul-
taneously diagonalized by any linear transformation. However, it is
assumed that M¡1 exist and G.s/ is such that the motion is dissi-
pative. The conditions that G.s/ must satisfy to produce dissipative
motion were given by Golla and Hughes.23

The eigenvalue problem associated with Eq. (1) can be de� ned
from Eq. (2) as

£
¸2

j M C ¸ j G.¸ j / C K
¤
u j D 0 or D.¸ j /u j D 0 (4)

where u j 2 CN is the j th eigenvector. The eigenvalues ¸ j are roots
of the characteristic equation

det[s2M C sG.s/ C K] D 0 (5)

For the linear viscoelastic case, it can be shown that,24;25 in general,
the elements of G.s/ can be represented by

G j k.s/ D
p jk .s/

q jk .s/
(6)

where p jk .s/ and q jk .s/ are � nite-order polynomials in s and the
degree of p jk .s/ is not more than that of q jk.s/. Under such assump-
tions, in general, the order of the characteristic equation m is more
than 2N , that is, m D 2N C pI p ¸ 0. Thus, although the system has
N degrees of freedom, the number of eigenvalues is more than 2N .
This is a major difference between nonviscously damped systems
and viscously damped systems where the number of eigenvalues is
exactly 2N , including any multiplicities. Following Adhikari,21 one
may group the eigenvectors as 1) elastic modes (corresponding to N
complex conjugate pairs of eigenvalues) and 2) nonviscous modes
(corresponding to the additional p eigenvalues). The elastic modes
are related to the N modes of vibration of structural systems. In this
paper we assume that all m eigenvalues are distinct.

Adhikari26 discussed the orthogonality and the normalization re-
lationships of the eigenvectors. Noting the symmetry of D.s/ and
using Eq. (4) for the kth set, we can obtain

uT
j [D.¸k / ¡ D.¸ j /]uk D 0 (7)

Because ¸ j and ¸k are assumed to be distinct for different j and k,
Eq. (7) can be divided by .¸k ¡ ¸ j / to obtain

uT
j

µ
D.¸k/ ¡ D.¸ j /

¸k ¡ ¸ j

¶
uk D 0; 8 j; kI j 6D k (8)

This equation may be regarded as the orthogonality relationship of
the eigenvectors. It is easy to verify that, in the undamped limit,
Eq. (8) degenerates to the familiar mass orthogonality relationship
of the undamped eigenvectors. Assume ±¸ D ¸k ¡ ¸ j , and rewrite
Eq. (8) as

uT
j

µ
D.¸ j C ±¸/ ¡ D.¸ j /

±¸

¶
u j D 0 (9)

Consider the case when ¸k ! ¸ j , that is, ±¸ ! 0. When ¸k D ¸ j is
substituted in Eq. (7), it is easy toverify that when the right-hand side
is zero the relationship represents a trivial case. For the nontrivial
case, the right-hand side of Eq. (7) must be nonzero as ¸k ! ¸ j .
Thus, for ±¸ ! 0, Eq. (9) reads

uT
j

@D.s/

@s

­­­­
s D ¸ j

u j D µ j or

uT
j

"
2¸ j M C G.¸ j / C ¸ j

@G.s/

@s

­­­­
s D ¸ j

#
u j D µ j

8 j D 1; : : : ; m (10)

where µ j 2 C is some nonzero constant. Note that Eq. (10) re-
duces to the corresponding normalization relationship for viscously
damped systems (for example, see Refs. 27 and 28), when G.s/ is
constant with respect to s. Numerical values of µ j can be selected
in various ways. For example, one can choose µ j D 2¸ j ; 8 j , which
reduces to uT

j Mu j D 1 when the damping is zero. This is consis-
tent with the familiar unity modal mass convention. One may also
choose µ j D 1; 8 j . Theoretical analysis becomes easiest with this
normalization. However, as pointed out by Fawzy29 and Vigneron,27
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in the context of viscously damped systems, this normalization is
inconsistent with undamped or classically damped modal theories.
Alternatively, one may choose other kind of normalizations, for ex-
ample,max.u j / D 1 or ju j j D 1. In such cases, one simply calculates
the numerical values of µ j from Eq. (10) and uses them subsequently.
Further discussions on the normalization of complex modes may be
found in Refs. 26 and 30.

III. Derivative of Eigenvalues
Suppose that the system matrices in Eq. (1) are functions of some

design parameter p. In this section, we intend to obtain anexpression
of the derivative of the j th eigenvalue with respect to the design
parameter p. Differentiating Eq. (4) with respect to p, one obtains
µ

2¸ j
@¸ j

@p
M C ¸2

j

@M
@p

C
@¸ j

@p
G.¸ j / C ¸ j

@[G.¸ j /]

@p
C

@K
@p

¶
u j

C
£
¸2

j M C ¸ j G.¸ j / C K
¤ @u j

@p
D 0 (11)

The term @[G.¸ j /]=@p appearing in Eq. (11) can be expressed as

@[G.¸ j /]

@p
D

@¸ j

@p

@G.s/

@s

­­­­
s D ¸ j

C
@G.s/

@p

­­­­
s D ¸ j

(12)

When Eq. (11) is premultiplied by uT
j , and the symmetry property

of the system matrices is used, it may be observed that the second
term of the equation vanishes due to Eq. (4). Substituting Eq. (12)
into Eq. (11), we obtain

uT
j

"
¸2

j

@M
@p

C ¸ j
@G.s/

@p

­­­­
s D ¸ j

C
@K
@p

#
u j

C uT
j

"
2¸ j

@¸ j

@p
M C

@¸ j

@p
G.¸ j / C ¸ j

@¸ j

@p

@G.s/

@s

­­­­
s D ¸ j

#
u j D 0

(13)
Rearranging the preceding equation, the derivative of eigenvalues
can be obtained as

@¸ j

@p
D ¡

(
uT

j

"
¸2

j

@M
@p

C ¸ j
@G.s/

@p

­­­­
s D ¸ j

C
@K
@p

#
u j

,

uT
j

"
2¸ j M C G.¸ j / C ¸ j

@G.s/

@s

­­­­
s D ¸ j

#
u j

)
(14)

Note that the denominator of Eq. (14) is exactly the normalization
relationship given by Eq. (10). In view of this, Eq. (14) can be
expressed in a concise form as

@¸ j

@p
D ¡

"
uT

j

@D.s/

@p

­­­­
s D ¸ j

u j

,
uT

j

@D.s/

@s

­­­­
s D ¸ j

u j

#
(15a)

or

@¸ j

@p
D ¡

1

µ j

Á
uT

j

@D.s/

@p

­­­­
s D ¸ j

u j

!
(15b)

This is the most general expression for the derivative of eigenvalues
of linear dynamic systems. Equation (15) can be used to derive the
derivative of eigenvalues for various special cases.

1) For the undamped systems1 G.s/ D 0 results,

D.s/ D s2M C K; µ j D 2¸ j u
T
j Mu j (16)

Assuming ¸ j D i! j , from Eq. (15), one obtains

¡2i! j i
@! j

@p
D

@!2
j

@p
D

»
uT

j

µ
@K
@p

¡ !2
j

@M
@p

¶
u j

¿
uT

j Mu j

¼
(17)

which is a well known result.

2) For the viscously damped systems10;15 G.s/ D C, a constant
matrix with respect to s. This results in

D.s/ D s2M C sC C K; µ j D uT
j [2¸ j M C C ]u j (18)

Using these, from Eq. (15), one obtains

@¸ j

@p
D ¡

»
uT

j

µ
¸2

j

@M
@p

C ¸ j
@C
@p

C
@K
@p

¶
u j

¿
uT

j [2¸ j M C C]u j

¼

(19)

Thus, the result obtained in Eq. (15) generalize earlier expressions
of the derivative of eigenvalues. A further generalization, when the
system matrices are not symmetric is reported in Appendix A. The
derivatives of associated eigenvectors are considered in the next
section.

IV. Derivative of Eigenvectors
The various methods of calculating the derivative of eigenvectors

can be divided into three main categories7: 1) adjoint method or
modal method, 2) direct method, and 3) iterative method. In this
paper we adopt the modal method, where the derivative of each
eigenvector is expanded in the space of the complete set of eigen-
vectors. The main dif� culty in applying available methodologies for
the modal method to nonviscously damped systems is that the eigen-
vectors do not satisfy any familiar orthogonality relationship. We
propose a new approach to calculate the derivatives of eigenvectors
without using the orthogonality relationship.

It turns out that the eigenvalue problem of the dynamic stiffness
matrix [given by Eq. (3)] plays an important role. For any given
s 2 C, the eigenvalue problem associated with the dynamic stiffness
matrix can be expressed by

D.s/Ák.s/ D ºk.s/Ák .s/; 8k D 1; : : : ; N (20)

In the Eq. (20), the eigenvalues ºk .s/ 2 C are the roots of the char-
acteristic equation

det[D.s/ ¡ º.s/I] D 0 (21)

and Ák.s/ 2 CN is the kth eigenvector of D.s/. It is assumed that all
of the eigenvalues are distinct for any � xed value of s. The symbols
ºk.s/ and Ák.s/ indicate functional dependence of these quantities
on the complex parameter s. Such a continuous dependence is ex-
pected whenever D.s/ is a suf� ciently smooth matrix function of s.
Note that, because D.s/ is an N £ N complex matrix for a � xed s,
the number of eigenvalues (and consequently the eigenvectors) must
be N . Furthermore, it can be shown that, for distinct eigenvalues,
Ák.s/ also satisfy an orthogonality relationship, although uk do not
enjoy any such simple relationship. We normalize Ák .s/ such that

ÁT
j .s/Ák .s/ D ±k j ; 8k; j D 1; : : : ; N (22)

In view of the preceding relationship, from Eq. (20) we have

ÁT
j .s/D.s/Ák .s/ D ºk .s/±k j ; 8k; j D 1; : : : ; N (23)

or in matrix form,

U T .s/D.s/ U .s/ D º.s/ (24)

Here

U .s/ D [Á1.s/; Á2.s/; : : : ; ÁN .s/] 2 CN £ N (25)

º.s/ D diag[º1.s/; º2.s/; : : : ; ºN .s/] 2 CN £ N (26)

It is possible to establish the relationships between the original
eigenvalue problem of the system de� ned by Eq. (4) and that by
Eq. (20). Consider the case when the parameter s approaches any
one of the system eigenvalues, for example, ¸ j . Because all of the
ºk.s/ are assumed to be distinct, for nontrivial eigenvectors, by com-
paring Eqs. (4) and (20) we can conclude that one and only one of the
ºk.s/ must be zero31 when s ! ¸ j . Suppose that the r th eigenvalue
of the eigenvalue problem (20) is zero when s ! ¸ j . It is also clear
that the eigenvector in Eq. (20) corresponding to the r th eigenvalue
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also approaches the eigenvector in Eq. (4) as s ! ¸ j . Thus, when
s D ¸ j , one has

ºr .¸ j / D 0; ºk .¸ j / 6D 0; 8k D 1; : : : ; N I 6D r (27)

and also

Ár .¸ j / D u j (28)

These equations completely relate the eigensolutions of Eq. (4) with
Eq. (20). Now, these relationships will be utilized to obtain the
derivative of eigenvectors of system (4).

When the r th set is considered, Eq. (20) can be rewritten as

Zr .s/Ár .s/ D 0 (29)

where

Zr .s/ D D.s/ ¡ ºr .s/I 2 CN £ N (30)

In view of Eq. (27), from Eq. (30) it is clear that

lim
s ! ¸ j

Zr .s/ D D.s/js D ¸ j (31)

From Eq. (31) together with Eq. (28), we conclude that in the limit
s ! ¸ j the eigenvalue problem given by Eq. (29) approaches the
original eigenvalue problem given by Eq. (4).

Differentiating Eq. (29) with respect to the design parameter p,
one has

@Zr .s/

@p
Ár .s/ C Zr .s/

@Ár .s/

@p
D 0 or

Zr .s/
@Ár .s/

@p
D ¡

@Zr .s/

@p
Ár .s/ (32)

Premultiplying Eq. (32) by D¡1.s/ and using Eq. (30), we have

£
I ¡ D¡1.s/ºr .s/

¤@Ár .s/

@p
D ¡D¡1.s/

@Zr .s/

@p
Ár .s/ (33)

The derivative of eigenvector of the original system with respect to
the design parameter p, that is, @u j =@p, should be obtained from
Eq. (33) by taking the limit s ! ¸ j . Because lims ! ¸ j D.s/ is at most
of rank .N ¡ 1/, it is not possible to obtain @u j =@p directly from
Eq. (33). We avoid this dif� culty by expanding D¡1.s/ in terms of
the poles and their associated residues.

From the de� nition of the matrix inverse, it is known that

D¡1.s/ D
adj[D.s/]
det[D.s/]

(34)

Note that the poles of D¡1.s/ are exactly the eigenvalues of the
system as given by Eq. (5). Because it is assumed that all of the m
eigenvalues are distinct, each pole is a simple pole. Thus, D¡1.s/
may be expressed in a pole-residue form as

D¡1.s/ D
mX

j D 1

R j

s ¡ ¸ j
(35)

where

R j D res
s D ¸ j

[D¡1.s/]
defD lim

s ! ¸ j

.s ¡ ¸ j /[D¡1.s/] (36)

is the residue of D¡1.s/ at the pole ¸ j . Taking the inverse of Eq. (24)
and rearranging, one can express D¡1.s/ as

D¡1.s/ D U .s/º¡1.s/ U T .s/ D
NX

k D 1

Ák.s/ÁT
k .s/

ºk .s/
(37)

When the r th term of the right-hand side is separated, and Eq. (36)
is used, the residue at s D ¸ j may be obtained:

R j
defD lim

s ! ¸ j

.s ¡ ¸ j /

8
<

:
Ár .s/ÁT

r .s/

ºr .s/
C

2
4

NX

k D 1
k 6D r

Ák .s/ÁT
k .s/

ºk.s/

3
5

9
=

;

D lim
s ! ¸ j

.s ¡ ¸ j /
Ár .s/ÁT

r .s/

ºr .s/

D
µ

Ár .s/ÁT
r .s/

­­
s D ¸ j

¿
@ºr .s/

@s

­­­
s D ¸ j

¶

.using l’Hôspital’s rule/

D
µ

u j uT
j

¿
@ºr .s/

@s

­­­
s D ¸ j

¶
[by Eq. (28)] (38)

The denominator in the expression (38) for the residues
@ºr .s/=@sjs D ¸ j can be determined as follows. Differentiate Eq. (29)
with respect to s to obtain

@Zr .s/

@s
Ár .s/ C Zr .s/

@Ár .s/

@s
D 0 (39)

Premultiplying Eq. (39) by ÁT
r .s/, one obtains

ÁT
r .s/

@Zr .s/

@s
Ár .s/ C ÁT

r .s/Zr .s/
@Ár .s/

@s
D 0 (40)

When the transpose of Eq. (29) is taken and the symmetry prop-
erty of Zr .s/ is considered, it follows that the second term of the
left-hand side of the preceding equation is zero. When the normal-
izing condition in Eq. (22) is used, and the expression of Zr .s/ is
substituted from Eq. (30), Eq. (40) reduces to

ÁT
r .s/

@D.s/

@s
Ár .s/ D

@ºr .s/

@s
(41)

With the limit s ! ¸ j taken, and Eq. (28) used, Eq. (41) yields

@ºr .s/

@s

­­­­
s D ¸ j

D uT
j

@D.s/

@s

­­­­
s D ¸ j

u j (42)

Interestingly, observe that Eq. (42) is exactly the same as the nor-
malization condition given by Eq. (10). In view of Eq. (42), Eq. (38)
reads

R j D u j uT
j

¯
µ j (43)

Substituting D¡1.s/ from Eq. (35) into Eq. (33), using Eqs. (27) and
(43), and taking the limit as s ! ¸ j , one obtains

@u j

@p
D ¡ lim

s ! ¸ j

mX

k D 1

uk uT
k

µ j .s ¡ ¸k/

@Zr .s/

@p
Ár .s/

D a j j u j ¡
mX

k D 1
k 6D j

µ
uT

k

@D.s/

@p

­­­­
s D ¸ j

u j

¿
µk .¸ j ¡ ¸k /

¶
uk (44)

where

a j j D ¡ lim
s ! ¸ j

µ
uT

j

@Zr .s/

@p
Ár .s/

¿
µ j .s ¡ ¸ j /

¶
(45)

In deriving Eq. (44), we have also made use of the relationships (28)
and (31).Note that the limiting value of a j j , the coef� cient associated
with u j , cannot be obtained from Eq. (45) because the denominator
approaches to zero in the limit. In Appendix B, a different approach
is presented to bypass this dif� culty.
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From Eq. (B11) of Appendix B, one obtains

a j j D ¡

(
uT

j

@2[D.s/]

@s@p

­­­­
s D ¸ j

u j

,
2

"
uT

j

@D.s/

@s

­­­­
s D ¸ j

u j

#)
(46)

The denominator in Eq. (46) can be related to the normalization
constant µ j given by Eq. (10). The term

@2[D.s/]
@s@p

­­­­
s D ¸ j

appearing in the numerator may be obtained by differentiating
Eq. (3) as

@2[D.s/]
@s@p

­­­­
s D ¸ j

D 2¸ j
@M
@p

C
@G.s/

@p

­­­­
s D ¸ j

C ¸ j
@2[G.s/]

@s@p

­­­­
s D ¸ j

(47)

From Eqs. (44) and (47), the derivative of u j is obtained as

@u j

@p
D ¡

1

2µ j

Á
uT

j

@2[D.s/]

@s@p

­­­­
s D ¸ j
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!
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¡
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k D 1
k 6D j

"
uT

k

@D.s/

@p

­­­­
s D ¸ j

u j

,
µk .¸ j ¡ ¸k/

#
uk (48)

This is the most general expression for the derivative of eigenvectors
of linear dynamic systems. Equation (48) can be applied directly to
derive the derivative of eigenvectors for various special cases.

1) For the undamped systems1 G.s/ D 0 results, the order of the
characteristic polynomial m D 2N ; ¸ j is purely imaginary so that
¸ j D i! j . By use of Eq. (16), Eq. (47) results in

@2[D.s/]
@s@p

­­­­
s D ¸ j

D 2¸ j
@M
@p

(49)

Recalling that the eigenvalues appear in complex conjugate pairs
and all u j are real, from (48) one obtains
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¶
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Consider the unity mass normalization, that is, uT
k Muk D 1;

8k D 1; : : : ; N ; Eq. (50) can be rewritten as
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which is a well known result.
2) For the viscously damped systems10;15 G.s/ D C, a constant

matrix with respect to s and m D 2N . When Eq. (18) is used, Eq. (47)
results in
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@s@p

­­­­
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@C
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(52)

Recalling that the eigenvalues and eigenvectors appear in complex
conjugate pairs, from Eq. (48) one obtains
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(53)

Thus, the result obtained in Eq. (48) generalizes earlier expressions
of the derivative of eigenvectors. A further generalization, when the
system matrices are asymmetric, is derived in Appendix A.

V. Example
We consider a two-degree-of-freedom system shown in Fig. 1 to

illustrate a possible use of the expressions derived so far. The system
considered here is similar to the one used by Adhikari,10 except that
the dissipative element connected between the two masses is not a
simple viscous dashpot but a nonviscous damper. The equations of
motion describing the free vibration of the system can be expressed
by Eq. (1), with

M D
µ

m 0

0 m

¶
; K D

µ
k1 C k3 ¡k3

¡k3 k2 C k3

¶
(54)

G.t/ D g.t/ OI (55a)

where

OI D
µ

1 ¡1

¡1 1

¶
(55b)

The damping function g.t/ is assumed to be the Golla–Hughes–
McTavish model (see Refs. 23 and 32) so that

g.t/ D c
¡
¹1e

¡¹1t C ¹2e¡¹2 t
¢
; c; ¹1; ¹2 ¸ 0 (56)

where c is a constant and ¹1 and ¹2 are known as the relaxation
parameters. In Eq. (56) if the function associated with c were a delta
function, c would serve the purpose of the familiar viscous damping
constant. Taking the Laplace transform of (55), one obtains

G.s/ D G.s/ OI (57a)

where

G.s/ D L [g.t/] D c[¹1=.s C ¹1/ C ¹2=.s C ¹2/] (57b)

When Eqs. (54) and (57) are substituted in Eq. (5), it may be shown
that the system has six eigenvalues: four of which correspond to the
two elastic modes (together with corresponding complex conjugate
pairs) and the other two correspond to two nonviscous modes. For
convenience, arrange the eigenvalues as

¸e1 ; ¸e2 ; ¸¤
e1

; ¸¤
e2

; ¸n1 ; ¸n2 (58)

Fig. 1 Two-degree-of-freedom spring–mass system with nonviscous
damping, m = 1 kg, k1 = 1000 N/m, k3 = 100 N/m, g(t) = c(¹1e–¹1 t +
¹2e–¹2 t ), c = 4.0 Ns/m, ¹1 = 10.0 s–1 , and ¹2 = 2.0 s–1.
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We consider the derivative of eigenvalues with respect to the
relaxation parameter ¹1 . The derivative of the system matrices with
respect to this parameter may be obtained as

@M
@¹1

D O;
@G.s/

@¹1
D OI

cs

.s C ¹1/2
;

@K
@¹1

D O (59)

Further, from Eq. (57), one also obtains

@G.s/

@s
D ¡OIc

»
¹1

.s C ¹1/2
C

¹2

.s C ¹2/2

¼

@2[G.s/]
@s@¹1

D ¡OIc
s ¡ ¹1

.s C ¹1/3
(60)

When Eqs. (59) and (60) are used, the terms µ j , @D.s/=@p, and
@2[D.s/]=@s@¹1 appearing in Eqs. (15) and (48) can be evaluated.

Figures 2 and 3 show the real part of the derivative of � rst and
second eigenvalue with respect to ¹1 over a parameter variation of k2

and k3 . These results are obtained by direct application of Eq. (15).
The system considered here shows the so-called veering10 when the
eigenvalues are plotted vs a system parameter. In the veering range,
that is, when k2 ¼ k1 and k3 ¼ 0, rapid changes take place in the
eigensolutions. From Figs. 2 and 3 note that around the veering range
the � rst eigenvalue is not very sensitive to ¹1, whereas the second

Fig. 2 Real part of the derivative of the � rst eigenvalue with respect to
the relaxation parameter ¹1.

Fig. 3 Real part of the derivative of the second eigenvalue with respect
to the relaxation parameter ¹1.

Fig. 4 Imaginary part of the derivative of the � rst eigenvalue with
respect to the damping parameters c, ¹1 , and ¹2.

Fig. 5 Imaginary part of the derivative of the second eigenvalue with
respect to the damping parameters c, ¹1 , and ¹2.

eigenvalue is very sensitive in this region. In the � rst mode, both the
blocks move in the same direction and consequently the damper is
not stretched, resulting insensitivity to the relaxation parameter ¹1.
In the second mode the blocks move away from each other. This
results stretching of the damping block and increases sensitivity to
the relaxation parameter ¹1 .

It is useful to understand the effect of different parameters on
the eigenvalues. Figures 4 and 5 show the imaginary part of the
derivative of the � rst and second eigenvalues with respect to the
damping parameters c, ¹1 , and ¹2 over a parameter variation of k2.
The value of k3 is � xed at k3 D 100. Figures 4 and 5 show that the
damping parameters not only affect the real part of the eigenvalues
but also affect the imaginary part. Again, observe that in the veering
range the � rst eigenvalue is insensitive to the damping parameters,
whereas the second eigenvalue is sensitive to them.

Now we turn our attention to the derivative of eigenvectors.
Figures 6 and 7 show the real part of the derivative of � rst and
second eigenvectors with respect to k2 over a parameter variation
of k2 . It is useful to compare these results with the corresponding
results by considering the damping mechanism to be viscous, that
is, when g.t/ given by Eq. (56) has the form g.t/ D c±.t/. In Figs. 6
and 7, the derivative of both eigenvectors for the corresponding
viscously damped system is also plotted. Observe that around the
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Fig. 6 Real part of the derivative of the � rst eigenvector with respect
to k2.

Fig. 7 Real part of the derivative of the second eigenvalue with respect
to k2.

veering range the derivatives of both eigenvectors are different for
viscously and nonviscously damped systems. This illustrates that
the nature of damping affects the parameter sensitivity of the real
part of complex modes.

VI. Conclusions
In general, structural systems are expected to be nonviscously

damped. The derivatives of eigenvalues and eigenvectors of non-
viscously damped discrete linear systems have been derived. The
assumed nonviscous damping forces depend on the past history of
velocities via convolution integrals over suitable kernel functions.
The familiar viscous damping model is a special case correspond-
ing to a memoryless kernel. It has been assumed that, in general,
the mass and the stiffness matrices as well as the matrix of the ker-
nel functions cannot be simultaneously diagonalized by any linear
transformation. The analysis is, however, restricted to systems with
nonrepetitive eigenvalues and nonsingular mass matrices.

Eigenvectors of linear dynamic systems with general nonviscous
damping do not satisfy any kind of orthogonality relationship (not
even in the usual state space). For this reason, none of the established
methodologies for determination of the derivative of eigenvectors
are applicable to nonviscously damped systems. In this paper, a new
approach is developed that utilizes the eigenvalue problem of the

associated complex dynamic stiffness matrix. The original eigen-
value problem is a limiting case of this eigenvalue problem. The ex-
pressions derived for the derivative of eigenvalues and eigenvectors
[Eqs. (15) and (48)] are very general and also valid for undamped
and viscously damped systems. The study conducted here opens up
the possibility of extending the conventional modal updating and
parameter estimation techniques to nonviscously damped systems,
and further research in this direction is worth perusing.

Appendix A: Asymmetric Systems
In this section we consider a more general case when M, G.t/,

and K are not restricted to symmetric matrices. For such asymmetric
systems, the adjoint eigenvalue problem or left eigenvalue problem
is de� ned as

vT
j

£
¸2

j M C ¸ j G.¸ j / C K
¤

D 0T or vT
j D.¸ j / D 0T (A1)

where v j 2 CN is the j th left eigenvector. Recently, Friswell and
Adhikari14 and Adhikari and Friswell15 derived the derivative of
eigensolutions of viscously damped asymmetric linear systems. Fol-
lowing the approach developed by Adhikari and Friswell,15 it may
be shown that the derivative of eigenvalues of nonviscously damped
asymmetric systems is given by

@¸ j

@p
D ¡

1

µ j

"
vT

j

@D.s/

@p

­­­­
s D ¸ j

u j

#
(A2)

where the normalization constants

µ j D vT
j

@D.s/

@s

­­­­
s D ¸ j

u j (A3)

The method developed in this paper for determination of the deriva-
tive of eigenvectors can also be extended to asymmetric systems.
The basic approach remains very much the same, except that suit-
able care in line with Ref. 15 must be taken to handle the asymmetry
of the system matrices. The derivatives of right and left eigenvectors
of nonviscously damped asymmetric systems are given by

@u j
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D a j j u j ¡
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k D 1
k 6D j
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uk (A4)
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#
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where

a j j C b j j D ¡
1

µ j

(
vT

j

@2[D.s/]

@s@p

­­­­
s D ¸ j

u j

)
(A6)

It is clear that, for symmetric systems u j D v j , Eq. (A2) for the
derivatives of eigenvalues reduces to its corresponding case in
Eq. (15) and also that the expressions for the derivatives of right
and left eigenvectors given by Eqs. (A4) and (A5) reduce to their
corresponding case in Eq. (48).

Appendix B: Determination of ajj

For a � xed value of s, Ák .s/; 8k D 1; : : : ; N , form a complete
basis. For this reason @Ár .s/=@p 2 CN can be expanded uniquely in
terms of all Ák .s/, that is, one can write
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@Ár .s/

@p
D

NX

k D 1

®
.r/

k .s/Ák .s/ (B1)

where ®
.r/

k .s/ 2 C are nonzero constants. The normalization rela-
tionship for the r th mode can be expressed from Eq. (23) as

ÁT
r .s/D.s/Ár .s/ D ºr .s/ (B2)

Differentiating this equation with respect to the design parameter
p, we obtain

@ÁT
r .s/

@p
D.s/Ár .s/ C ÁT

r .s/
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Ár .s/

C ÁT
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D

@ºr .s/
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(B3)

When the symmetry property of D.s/ and Eq. (30) are used, the
Eq. (B3) can be rearranged as

2ÁT
r .s/D.s/

@Ár .s/

@p
D ¡ÁT

r .s/
@Zr .s/

@p
Ár .s/ (B4)

Substituting @Ár .s/=@p from Eq. (B1) and using the orthogonality
relationship given by Eq. (23) from the preceding equation, one
obtains
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¿
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¶
(B5)

Now, taking the limit s ! ¸ j on Eq. (B1) and using Eq. (28), we
have
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s ! ¸ j
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NX
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Because it is assumed that all of the eigenvalues are distinct, the
associated eigenvectors are also distinct. Thus, lims ! ¸ j Ák .s/ 6D u j ;
8k D 1; : : : ; N I 6D r . Thus, when the coef� cient of u j in Eqs. (44)
and (B6) are compared, it is clear that

a j j D lim
s ! ¸ j
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s ! ¸ j

µ
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¶
[from Eq. (B5)]

(B7)

The preceding limit cannot be evaluated directly because from
Eq. (27) lims ! ¸ j ºr .s/ D 0. Now, differentiate Eq. (29) with respect
to p to obtain

@Zr .s/

@p
Ár .s/ C Zr .s/

@Ár .s/

@p
D 0 (B8)

Premultiplying Eq. (B8) by ÁT
r .s/, one obtains

ÁT
r .s/

@Zr .s/

@p
Ár .s/ C ÁT

r .s/Zr .s/
@Ár .s/

@p
D 0 (B9)

When the transpose of Eq. (29) is taken and the symmetry property
of Zr .s/ is considered, it follows that the second term of the left-hand
side of Eq. (B9) is zero. Thus, Eq. (B9) reduces to

ÁT
r .s/

@Zr .s/

@p
Ár .s/ D 0 (B10)

Equation (B10) shows that in the limit the left-hand side of Eq. (B7)
has a 0 by 0 form. Thus, applying l’Hôspital’s rule, using Eqs. (28),
(31), and (42), from Eq. (B7), one obtains
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!)
(B11)

This expression can now be used to obtain the derivative of u j in
Eq. (44).
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