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In recent years, nonlocal elasticity theory is widely used for the analytical and computational modeling of
nanostructures. This theory, developed by Eringen, has shown to be practical for the vibration and buck-
ling analysis of nanoscale structures and reliable for predesign procedures of nano-devices. This paper
considers buckling and dynamic analysis of multi-nanoplate systems. This type of system can be relevant
to composite structures embedded with graphene sheets. Exact solutions for the natural frequencies and
buckling loads of multi-nanoplate systems have been proposed by considering that the multi-nanoplate
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show the influence of increasing number of nanoplates in the system. Analytical expressions are
validated with existing results in the literature for some special cases. Numerical results based on the
analytical expressions is shown to quantify the effects of the change in nonlocal parameter, stiffness
coefficients of the elastic mediums and the number of layers on the natural frequencies and buckling
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1. Introduction

In analogy to the plate structures widely used in macro-
engineering practice, there are also two-dimensional structures
on nano-scale level called nanoplates. These structures are synthe-
tized from various types of new materials that makes graphene
sheets [1-8], gold nanoplates [9-11], silver nanoplates [12-15],
boron-nitride sheets [16-19] and ZnO nanoplates [20-22] and car-
bon nanotubes [23-25] that can be obtained by rolling the two-
dimensional nanostructures into a tube. Due to the exceptional
characteristics, nanoplates are convenient for possible application
in nanoelectromechanical systems (NEMS), nanooptomechanical
systems (NOMS), nanocomposites, nanosensors, nanoactuators
and biomedical systems [26-30].

Many of the above mention types of single or multi-nanoplate
systems, bounded with certain type of medium, can be theoreti-
cally modeled using the same phenomenological assumptions as
in case of classical plate systems [31,32]. However, experimental
investigations [33,34] and atomistic simulations [35] have shown
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that the small-scale effects in the analysis of mechanical properties
of nanostructures cannot be neglected. Molecular dynamics simu-
lation is convenient method to simulate the mechanical behavior
of small size structures but it is computationally expensive for
structures with large number of atoms. Thus, much effective
approaches are one that uses methods of classical continuum
mechanics with necessary modifications that considers the effects
appearing at the nano-scale level. In papers, [36-39] authors have
used continuum-based models of single and multi-layered graph-
ene sheets taking into account van der Waals (vdW) interaction
between sheets and using different potential models. Another
way to consider small-scale effects and the atomic forces in analy-
sis of nano-scale structures is to use the nonlocal elasticity theory
of Eringen [40]. This theory is used in numerous studies of nano-
strucures and it is often used for reliable and fast analysis.

The multi-nanoplate system considered in this paper is different
from multi-layer or double-layer systems presented in [37-39,41].
This difference is reflected in the fact that mentioned multi-layer
and double-layer systems are bonded by a constant vdW force
while the multi-nanoplate systems are bonded by an elastic
medium with certain stiffness. The system studied here is particu-
larly relevant to the future generation graphene based composite
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materials. Nonlocal theory is widely used for theoretical investiga-
tion of mechanical properties of nanostructures. However, vibra-
tion and buckling analysis of nanoplates is performed in the
limiting number of studies [42-56].

Complex nanoplate systems bonded by a certain type of medium
are important from both practical and theoretical point of view. As
reported in [11] uniform stress imposed by the polymer matrix
causes the symmetric buckling of ultrathin gold nanoplates.
Vibration properties of single and multi-layer graphene sheets as
electromechanical resonators are reported in [5]. In addition, nano-
plates can be used in nano-optomechanical system (NOMS) [57,58].
Graphene sheets, gold nanoplates or other type of nanoplates
dispersed in polymer matrix are behaving as nanocomposites
[59-63]. Thus, vibration and buckling analysis of these systems
may be important for their potential application in nano-scale
devices.

Important results on the vibration of a single, double and mul-
tilayer graphene sheets embedded in an elastic medium, with vdW
forces considered, are those by Pradhan and Phadikar [64,65]. The
natural frequencies are determined analytically for a single and
double-layer graphene sheet systems, whereas for a multi-layer
system the frequencies are determined numerically. Recently,
Murmu and Adhikari [66] and Pouresmaeeli et al. [68] used the
nonlocal theory for vibration analysis of double-nanoplate system
bonded with elastic medium. For the same system, Murmu et al.
[67] performed buckling analysis for the system under uniaxial
compression and later in [69] for the system under biaxial com-
pression. Extension of the previously mentioned work would be
vibration and buckling analysis of these systems for arbitrary num-
ber of nanoplates.

In this paper, we consider such kind of contribution proposing
the exact solution method for the free transverse vibration of
multi-nanoplate system and for the buckling stability. The paper
is done within the framework of Eringen’s nonlocal elasticity and
modifying the Kirchhoff’s plate theory. Simply supported boundary
conditions to all four ends of nanoplates are employed for two dif-
ferent “chain” conditions, “Clamped-Chain” and “Free-Chain”. This
paper presents the unique procedure to find the exact solution for
natural frequencies and buckling load of elastically coupled multi-
nanoplate system (MNPS) using the so-called trigonometric
method. Results are validated for the special case of MNPS when
two elastically coupled nanoplates are system with the results
for double-nanoplate system presented in [66] for vibration and
in [69] for buckling analysis. The paper examines the nonlocal scale
effects, effects of higher modes, aspect ratio and various coupling
springs on natural frequencies and buckling load of MNPS. This
study may be useful for future investigations of other types of
multi nano-structure systems.

2. Overview of nonlocal elasticity relations

The basic assumption in the nonlocal theory of elasticity is that
the stress at a point is function of strains at all points of the elastic
body. Based on this assumption, in [70] Eringen presented an inte-
gral form of constitutive relation for a nonlocal stress tensor. In
addition, the small-scale effects are accounted by considering
internal size effects as a material parameter. The integral form of
the nonlocal constitutive relation for a three-dimensional homog-
enous elastic body is

oiji(x) = / o(|x — X'|, )Gy (x)dV (X'),Vx € V, (1a)

Gijj = O7 (1b)
1

&j =5 (Uij + W), (1c)

where Cjj is the elastic modulus tensor for classical isotropic elas-
ticity; oj; and ¢ are stress and strain tensors, respectively, and u; is
displacement vector. With «(|x — x'|,7) we denote the nonlocal mod-
ulus or attenuation function, which incorporates nonlocal effects
into the constitutive equation at the reference point x produced
by the local strain at the source x'. The above absolute value of
difference |x —x’| denotes the Euclidean metric. The parameter
T = (eoa)/l where | is the external characteristic length (crack
length, wavelength), a describes the internal characteristic length
(lattice parameter, granular size and distance between bounds)
and ep is a constant appropriate to each material that can be iden-
tified from atomistic simulations or by using the dispersive curve of
the Born-Karman model of lattice dynamics. Eringen has intro-
duced constant ey as equal to 0.39. In the general case, the value
of (epd) is taken in range of 0-2[nm] [45]. In fact, the value of non-
local parameter is quite scattered and its exact value depends on
various parameters of a structure. However, due to difficulties aris-
ing in analytical analysis of continuum systems by using the consti-
tutive equations in integral form, Eringen [40] has reformulated
constitutive equations by its transformation to a differential form.
Further, such form is proved as very effective, simple, and conve-
nient for analytical analysis of nanostructured systems. The differ-
ential form of the nonlocal constitutive relation

(1 - ;Nz)o-,-, = ty, @)

where V72 is the Laplacian; p = (e0@)” is the nonlocal parameter;
and t;; = Gjer is the classical stress tensor. From Eq. (2), the consti-
tutive relations for homogeneous elastic nanoplates can be
expressed as

N £ % 0] [
A=uvi)| oy | = 1252 ﬁ 0| éw |, 3)
Tay 0 0 GJ\7y

where E, G and 9 are the Young’s modulus, shear modulus and Pois-
son’s ratio, respectively. In the continuation of this paper, we use
expression (3) to derive governing equations for vibration and
buckling load of MNPS.

3. Mathematical model of m-coupled nanoplates

Consider a set of m isotropic elastic nanoplates embedded in an
elastic medium, as shown in Fig. 1. We assume that all nanoplates
are made of a same material and with same dimensions such as
uniform cross-section area A, thickness h, length a, width b, same
elastic modulus E, Poisson’s coefficient ¢, shear modulus G and
mass density p. In addition, we assume that the material of the
elastic matrix, which is located between nanoplates, is described
by a continuously distributed linear elastic springs, i.e. Winkler’s
elastic medium. The elastic medium is of stiffness k;i=1,2,3,..., m.
In general, we may consider different types of medium between
nanoplates, etc. viscoelastic medium with different viscoelastic
models, elastic medium by Pasternak model and others. Each
nanoplate is under the influence of biaxial compression loads Ny
and N, in x and y directions (see Fig. 1(b) and (c)). The transverse
displacements of m-coupled nanoplates are denoted by wj(x,y,t),
(i=1,2,3,...,m). This study is limited to the case of the nonlocal
Kirchhoff-Love plate theory and simply supported boundary con-
ditions. In addition, we will consider two different chain systems.
In the case of “Clamped-Chain” system, the first and the last nano-
plate in the system are coupled with a fixed base by the Winkler
elastic medium of stiffness of ko and k,, respectively, as shown
in Fig. 1b). In the case of “Free-Chain” system the stiffness’s of Win-
kler elastic medium ko and k,,, are vanishes (see Fig. 1c)), i.e. there
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Fig. 1. Multi-nanoplate system: (a) schematic diagram of graphene sheets embedded in an elastic medium; (b) Clamped-Chain system; (c) Free-Chain system.

is no coupling with the fixed base. The x and y are the coordinates
in the directions of width and length of nanoplates, while z is the
coordinate in the direction of the thickness.

According to the Kirchhoff-Love plate theory, displacement
components (U, vy, w;;) defined for an arbitrary point of the mid-
dle surface of ith nanoplate as
Uiy = —Z

aw.
,yiy:—Z—l7Wiz:Wi(X7y,t), (4)

oy
where u;, and v, are in plane rotation displacements of nanoplates
and w;, is a transverse displacement. Based on the given displace-
ment field and assuming small deformations, we can obtain non-
zero strain-displacement relations as

aZW,‘

BZW,'
Exx = —Z o’ by =~2 53/2 » Yy =

ox

6 w;
8x6y ()

where &, and &y, are normal strains, and 7y, is a shear strain. Using
the D’Alembert’s principle, we get the equilibrium equations
expressed through stress resultants terms in the following form

*w; ?w;  8Q, 9Q, 82w,
TN G N+ 5 Ty =P o (6a)
OM; 8Mxy
My O _ g, (6)
oM, aMxy
y T Y (69

Introducing expressions (6a) and (6b) into the first equilibrium
Eq. (6a) leads to the governing equation of motion of ith nanoplate
of the form

o*w; *w;

O* My
ox? Ny a2 T

ox?

M,
y?

My _
oxdy

82 Wi

N a2 )
q + Ny o

+2

)
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where M, and M, are bending moments and M,, is a twisting
moment

h/2
(My, My, Myy) = /h (ux: Oy, Tay)2d2. (8)
~h/2
External load from Winkler elastic medium defined as
q = Fii — Fio1 = kiWipr —wi) — kisg (w; — wiq). 9)

By substituting Eq. (5) into Eq. (3) and then using expression (8)
leads to

82W,' (‘)zwi
(1 — uAM, = D( T ) (10a)
aZWf 82W,' b
(1~ ua)My = —D| G5+ 055 ). (10b)
"V
(1 — uAMy = —D(1 — 9) 22 (100

oxoy’
where D=Eh3/[12(1 — 9?)] is bending rigidity of a nanoplate.
Finally, using Eqgs. (7) and (10) we obtain partial differential equa-
tions of motion in terms of transversal displacements

o*w;
ph E)tzl +ki(Wi —Wist) + ki1 (Wi —Wi_1)
4D 64Wi 4 84Wi 2 QZW,' B 62W1' B OZW,'
ox4 oyt T ox20y? ox2 Y oy?
o O*w; Pw . Pw
= ,UW <phw+ ki(Wi —Wi1)+ ki1 (W —w,_1) _NXW _Nya—yz
02 OZW' aZWi 02W'
+ 'u@_yz <Pha—tzl+ ki(wi —wiq) + ki (Wi —wig) — N"W - szl ;
(11)

fori=1,2,3...,m.

Assuming that the all-rectangular nanoplates in MNPS are hav-
ing same simply supported boundary conditions at all four edges,
we can write the following

wi(x,0,t) =w;(x,b,t) =0, w;(0,y,t)=wi(a,y,t)=0, i=1,2,3,....m. (12a)
M,i(0,y,t) =Myi(a,y,t) =0, M,i(x,0,t) =M,i(x,b,t)=0. (12b)

4. Analytical solutions

An analytical solution for system of simply supported nano-
plates can be obtained by introducing Navier’s solutions, as shown
in many papers [42-45] and books [71,72]. In order to solve the
equations of motion for proposed system of coupled nanoplates,
we assumed the solution by the following expansions of general-
ized displacements wy(x,t)

WiX,y,t) = > Wigsino,xsin g,ye', i=1,2,3,....m,  (13)
n=1

wherej=v-1 o =28, ="(r,n=1,2,3,...); Win0m(i=1.23,

...,m) are amplitudes and natural frequencies, respectively. Substi-

tuting expressions for the assumed solution (13) into the equation

of motion (11), we obtain the system of m algebraic equations of

the form

_Ui—lrnWi—lm +SirnWirn - z)irnWiJr]rn = 07 i= 172737 s, (14)

where
Sim = —Ph@ &+ D(02 + F2)° + Nu(02 + 2)

+ Vim + Vioim, (15a)
Vi = Ki&m, (15b)
Viiim = ki—lérm (]SC)
Em = (14 pog + ). (15d)

in which 6 = Ny/N define the relation between biaxial compression
loads Ny and N,,.
Introducing dimensionless parameters

. 2 4
an:(Urna2 %h, N:_Nx%; R:E’ Ki:ki%-,
K _ (eod)”
"=G=g (16)

where # is the nonlocal parameter in dimensionless form, u is the
nonlocal parameter and a is the length of a nanoplate (Fig. 1).
we can rewrite Eq. (15) as

~ N 2 ~ ~
Sim = —Q2.&m + [(r)* + R (nm)*]” — N[(rm)* + 0R*(nm)*)&

+ Vim + Vicam, (17a)
Vim = Ki&m, (17b)
Vi am = Ki 1&m, (17¢)
¢m =1+ 12 (rm)® + B*R*(nm)?, (17d)

where Si = Sim % and Vi = Vi 5.
4.1. Clamped-Chain system

Let us first consider a system of coupled identical nanoplates
embedded in the Winkler elastic medium named “Clamped-Chain”
system, where the first and the last nanoplate in the system are
elastically connected with the fixed base. Coupling conditions for
this system are

Ko # O,Km # 0 and Wom = 0, Wm+1rn =0. (18)

Introducing expression (18) into Eq. (14) and assuming that
stiffnesses of elastic layers between nanoplates are same, we
obtain the system of algebraic Eq. (14) in the following form

ern 0
[Sw —#m O .. 0 0 0 ..0 0 0 ]]|Wm 0
~Vm Sm ~Vmw .. O O O ..0 O O Wi 0
0 0 0 .. S, 4w O ..0 0 © Wistm 0
0 0 0 — U Sm —Um 0 0 O Wi =<0
0 0 0 .. 0 —m Sm 0 0 Wisim 0
0 0 0 .. 0 0 O 0 Sw —m| | Wnoam 0
0 0 0 0 0 0 0 ~¥m S J | Wnoim 0
ern O
(19)
where
~ A 2 o . - N
Sm=—Qn+[(rn)? + R (nm)?)” = N|(rm)? +bR2(nn)2] Em + 2, (20a)
D =KEpn. (20b)

The closed form solutions for dimensionless natural frequencies
and buckling load are obtained by using the trigonometric method,
as shown in papers [73-75]. In addition, it should be noted that the
analytical solution for the homogenous system of algebraic Eq. (19)
is possible only under the assumption that the system is made of a
set of m identical nanoplates and identical coupling layers. Based
on the methodology presented in [74], we assumed solution of
i — th algebraic equation in the form

Wim = Ncos(ip..) + Msin(ip,.), i=1,2,3,...,m. (21)
By substituting assumed solution (21) into the ith algebraic
equation of system (19), we get system of two algebraic equations,
where the constants M and N are not simultaneously equal to zero
N{=0mc0s[(i — 1)Pee] + SmcC0S(i.) — VmCoS[(i + 1)P]}

-0, i=23,....m-1, (22a)
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M{iierSin[(i - 1)(Pcc] + §rn5in(i(pcc) - i}mSin[(i + 1)@[[}}

=0, i=273,....m-1, (22b)
where after simplification we obtain
(Sm — 2¥mcos, )N cos(ip,.) =0, (23a)
(Sm — 2¥mc0s(,)M sin(iq,,) =0, (23b)

in which, N # 0 and cos(i¢.)#0 or M # 0 and sin(i¢..)#0 for the case
when system has an oscillatory behavior, fori=2,3,...,m — 1. From
expressions (23), we get the frequency and stability equation

St = 20mC0SQ,,, (24)

where ¢ is an unknown parameter, which is determined from the
first and the last equation of the system of algebraic Eq. (19) i.e.
from the boundary conditions of the chain system. Introducing
assumed solutions from Eq. (21) i.e. Wi =N cos@e+ M SinQcc
and Wy, =N cos(2¢.) + M sin(2¢ ) into the first equation and
Wi_1m=N cos[(m — 1)(f) o] + M sin[(m — l)(pcc] and Wp_1m=N
cos(m )+ M sin(m¢.) into the last equation of the system (19),
yields

N[§mc05(pcc — UmC0S(2¢,)] +M[§msin(pCC — UmsSin(2¢,.)] =0, (25a)
N[Smc0S(M@e) — Dnc0S[(M — 1) pce]) + M[Ssin(mep,e)

— Busin](m — 1), J] =O. (25b)

From the system of trigonometric Eqs. (25), we obtain the
determinant where non-trivial solutions solution yields the
unknown ¢

1 0

cos((m + 1)) sin[(m+1)g.]| 0= sin[(m+1)¢.] =0,

(26)
in which @ has the following form
ST
@cc,s:m7$=172,...,m. (27)

Introducing Eq. (27) ¢.sand Eq. (20) into the Eq. (24), we get
the frequency and stability equation as
C Qb 4 (1) + R — Noal(r70)? + R (n70)%)m

+20m(1 - COSPcrs)

=0. (28)

For the case when N = 0, from Eq. (28) we obtain the natural
frequency of elastic MNPS as

)

o ()% + R (nm))” +2K(1 + 12 (rm)* + 2R (nm)*) (1 — cos . ,)
mecs — 1 + nz(rn)z + }12R2 (nﬂ:)z
s=1,2,...,m, (29)

When the bi-axial load applied to each nanoplate in MNPS
reaches a certain critical value, MNPS becomes unstable and we
can consider that system begins to buckle. Introducing €,,, = 0 into
Eq. (28) gives

~[rn)? YR (M) +2K(1 + 2(rm)? + PR (nm)2)(1 — COSP,. )
e [(r)? + 6R? (n10)*] (1 + 12 (rm) + 2R (nm)?) ’
s=1,2,....m, (30)

4.2. Free-Chain system

Here, we consider the system where the first and the last nano-
plate are without coupling with the fixed base where coupling

conditions are Ko = 0 and K, = 0. Also, it is assumed that the system
is consist of identical nanoplates coupled by the same Winkler
elastic layers. The system of algebraic Eq. (14) in the case of
“Free-Chain” system is

Wim 0
[Sm—¥m - O ... 0 0 O ..0 O 0 1| Wom 0
~m Sm —Um.. 0O O O ..0 O 0 Wi 0
0 0 0 .. Sw - 0 ..0 O 0 Wiim 0

0 0 o0 U Sm —Um 0 0 0 Win ¢=¢0

0 0 0 .. 0 —#y Sw ...0 O 0 Wisim 0

0 0 0 .. 0 0 0 ..0 Sy —Vm Win_am 0

0 0 0 .. 0 0 0 .0 —m Su—omd | Wnim 0
Wonm 0

31

where expressions Sm and ¥y, are defined in Eq. (20).
Substituting Eq. (21) into ith algebraic equation of system (31),
we get the frequency and stability equation as for the previous case

Sm = 2UmC0SQy., (32)

where @ is an unknown parameter, which is determined from the
first and the last equation of the system of algebraic Eq. (31) i.e.
boundary conditions of the “Free-Chain” system. Introducing
assumed solutions for the first and the second amplitude,W,,
=N cos@ + M singg and Wo, = N cos(2¢p ) + M sin(2¢y), into the
first equation and Wp,_1, =N cos[(m — 1)@g] + M sin[(m — 1)¢@y]
and Wp,_1,=N cos(mqs) + M sin(mey) into the last equation of
system (31), after some transformations we get

N[(Sm — Um)cos@p. — VmC0S(2Qp )] + M[(Sm — Drm)Singy,

— Umsin(2¢;)] = 0, (333)
N[(Sm — Dm)cos(M@y.) — DmcoS[(mM — 1) ]
+M{(Sm — ¥m)sin(mey,) — Umsin[(m — 1)¢]] = 0. (33b)

Starting from the system of algebraic Egs. (33) leads to the trig-
onometric equations of the form

1—cosqy, —Singy,

cos[(m+1) (.| — cos(mey.) sin[(m+ 1)) —sin(mey)| = 0~ M) =0:

(34)
where unknown ¢y is equal to
ST
(pfc‘s_ﬁ,s_OJ,..wm—l. (35)

Introducing expression for parameter ¢y and Eq. (20) into Eq.
(32), we obtain the frequency and stability equation in the follow-
ing form

~ Qb + (1) + R (1)) — Noa(r)? + OR (7))
+2omn <1 - COSQDfC‘S>
=0. (36)

For the case when N = 0, from Eq. (36) we obtain the natural
frequency of elastic MNPS as

)

0. [(rm)? +R2(nn)2]2 +2K(1+n2(rm)® + 2R (n)*) (1 — cos ey, ;)
mes = 1+12(rm)® + y2R* (nm)?
s=0.1,...m—1, (37)

Same as in the previous case, when the bi-axial load applied to
each nanoplate in MNPS reaches a certain critical value, MNPS
becomes unstable and we can consider that system begins to
buckle. Introducing €2,, = 0 into Eq. (36) gives
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P+ R ()2 + 2K(1 + 02 (rm) + R (nm)?) (1 — cosQy.)
mes = [(rm)? 4 6R*(nm)2)(1 + 2 (rm)? + 12R* (nm)?)
s=0,1,.... m—-1, (38)

4.3. Asymptotic analysis and analytical validation

When the number of nanoplates in the elastic MNPS, increase to
the infinity, i.e. entering m — oo into Eqs. (29) and (37) or Egs. (30)
and (38), we obtain critical natural frequency and critical buckling
load such as

[(rm)? + R (nm)*]”

(rn)? + R (nm))”

’ anfc,O = 1+ 1’]2(1‘7'5)2 + 1’]2R2 (nn)2’ (40&)
R = (rm)? + R (nm)*)
mfc0 = [(rn)2 + 5R2 (nﬂ:)Z](] + nz(rﬂ.)Z + anZ(nTC)2)7
(rn=1.2,...), (40b)

in which Q4.0 and Nmfc_o represents a synchronous modes of vibra-
tion and stability. For the second case or asynchronous modes of
vibration and stability, we introduced s=1 and m=2 into Egs.
(37) and (38) where we obtained

Qnm = > 2 22 2 (393) 2 2 2,2 2 2 2
1+ n?(rm)” + n*R* (nm) Onger = [(r)® + R*(nm)*]” + 2K(1 + 2(rm)* + n2R*(nm)?)
R (rm)? + R2(nm)]’ ' 1+ 12(rm)° + PR (nm)?
" () 4 oR*(nm)*)(1 4 n2(rm)? + PR (nm)?) (41a)
(r,n=1,2,...). (39b) ,
R 2 2 2 2 2 2 p2 2
Finally, we can conclude that the critical natural frequency and Nie1 = [rm) +2R (T”? ) +22K(1 thn (rzn) + '72 R (nzn) )
critical buckling load represented by the expressions (39) are the [(rm)® + oR*(nm)”](1 + n?(rm)” + n*R°(nm)")
natural frequency and critical buckling load of the system when (rrn=1,2,..)). (41b)

the numbers of nanoplates are increased to the infinity. By the
term critical, we are not always meaning the first mode frequency
and buckling. It is observed that these critical values are indepen-
dent of the chain boundary conditions and are same in both cases,
"Clamped-Chain” and “Free-Chain” system.

Further, we validate our model and method analytically by con-
sidering the special case of MNPS composed of only two nanoplates
coupled in "Free-Chain” system. It should be noted that in the lit-
erature we found exact solutions for natural frequencies and crit-
ical buckling load only for cases where maximum two coupled
nanoplates are considered e.g. see Murmu and Adhikari [66,69].
For systems with three and more nanoplates, in the literature we
found only numerical solutions for natural frequencies and critical
buckling load. The obtained analytical expressions for the dimen-
sionless natural frequency (37) and buckling load (38) are reduced
tos=0,1 and m = 2 in order to coincide with the expression for two
coupled nanoplates proposed by Murmu and Adhikari [66,69].
Introducing s=0 and m=2 into Eqgs. (37) and (38) yields the
expressions

Table 1

Finally, it can be ascertained that obtained theoretical model
represents a generalization of the vibration and stability problem
for systems with multiple coupled nanoplates embedded in elastic
medium. This model can be extended to consider the systems with
nanoplates embedded in different type of mediums.

5. Results and discussions

Various materials nanoplate structures can be modeled via non-
local elasticity model of MNPS. Theoretical analysis of mechanical
behavior of such systems can be crucial for their application in
nano devices. As reported in [11] buckling of golden nanoplates
embedded in a polymer matrix is imposed by a surrounding med-
ium. Vibration properties of systems with nanoplates dispersed in
polymer matrix may be also important for their application in
nanosensors and nanocomposites [11,15,19,26-30]. For an illustra-
tion, we consider MNPS as a system composed of multiple
graphene sheets embedded in a polymer matrix. The following

Comparison of analytical and numerical solutions for natural frequencies of elastically coupled MNPS.

Number of nanoplates “Free-Chain” System

“Clamped-Chain” System

N.S.* of Eq. (31) (Nry = 0)

AS." Eq. (37)

N.S.2 of Eq. (19) (N = 0) AS." Eq. (29)

The natural frequencies of coupled MNPS

m=2 1 8.102641359754337 8.10264135975433 12.870617584436328 12.870617584436328
2 16.298858763876737 16.29885876387674 19.122050020978442 19.122050020978440

m=5 1 8.102641359754331 8.102641359754337 9.614973543796884 9.614973543796877
2 10.190652487932876 10.190652487932857 12.870617584436213 12.870617584436328
3 14.277583763711931 14.277583763711986 16.298858763876922 16.298858763876740
4 18.095750768614074 18.095750768613915 19.122050020977852 19.122050020978440
5 20.675013806036212 20.675013806036286 20.948935003042514 20.948935003042262

m=10 1 8.102641359756117 8.102641359754337 8.588026681485388 8.588026681485225
2 8.685706289377503 8.685706289402773 9.869249740408922 9.869249740409114
3 10.190652487940827 10.190652487932857 11.605199275155108 11.605199275141490
4 12.169459583146475 12.169459583165843 13.511839045938950 13.511839045978320
5 14.277583763760147 14.277583763711986 15.400968455233263 15.400968454942843
6 16.298858763828850 16.298858763876740 17.149803632265010 17.149803633262350
7 18.095750768947923 18.095750768613915 18.674469194094154 18.674469192059487
8 19.575746408604815 19.575746408842146 19.915444852405102 19.915444855535080
9 20.675013806069206 20.675013806036286 20.830350539684872 20.830350538842062
1 21.350974222653280 21.350974222827220 21.390450946077390 21.390450947273200

4 N.S. - Numerical Solutions.
b AS. - Analytical Solutions.
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Table 2
Comparison of analytical and numerical solutions for critical buckling load of elastically coupled MNPS.

Number of nanoplates “Free-Chain” System “Clamped-Chain” System

N.S.c of Eq. (31) (21, =0) AS. Eq. (38) N.S.c of Eq. (19) (21, = 0) A.S.4 Eq. (30)
The critical buckling load buckling load of coupled MNPS,
m=2 1 4.434679401304418 4.434679401304419 11.189424977460272 11.189424977460272
17.944170553616118 17.94417055361612 24.698916129771966 24.698916129771973
m=5 1 4.4346794013044395 4.434679401304419 6.244608023513074 6.244608023513079
2 7.014762626037857 7.014762626037962 11.189424977460298 11.189424977460272
3 13.769508202194016 13.769508202193814 17.9441705536164 17.94417055361612
4 22.118832905038456 22.118832905038428 24.698916129771334 24.698916129771973
5 28.87357848119441 28.873578481194283 29.64373308371962 29.64373308371917
m=10 1 4.43467940130375 4.434679401304419 4.981908715865823 4.981908715865823
2 5.095880961381969 5.095880961378354 6.579263394981978 6.579263394982316
3 7.01476262603017 7.014762626037962 9.097335262368473 9.097335262385945
4 10.00349088834649 10.003490888311653 12.332125110984935 12.332125110929688
5 13.769508202105083 13.769508202193814 16.02156950497541 16.021569505120507
6 17.94417055361673 17.94417055361612 19.86677160331807 19.866771602111736
7 22.11883290508726 22.118832905038428 23.55621599538792 23.556215996302555
8 25.88485021879722 25.88485021892059 26.791005847718235 26.7910058448463
9 28.873578481444355 28.873578481194283 29.309077707986063 29.309077712249927
10 30.7924601454757 30.792460145853894 30.906432392673373 30.906432391366423
€ N.S. - Numerical Solutions.
4 AS. - Analytical Solutions.
0.0

(@)

Fig. 2. The influence of the stiffness of Winkler elastic medium and nonlocal parameter on the natural frequencies for the “Clamped-Chain” system and different number of
nanoplates, (a) mode r=1 and n=1, (b) mode r=2 and n=2, c) mode r=3 and n =3, d) mode r=4 and n=4.
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material properties of graphene sheets similar to those in [66] are
assumed: Young’s modulus E =1.06 TPa, Poisson’s ratio 9 = 0.25,
density p=2250kg/m> and thickness h=0.34 nm. Natural fre-
quencies and critical buckling load for MNPS are computed
according to Egs. (29), (30), (37) and (38).

5.1. Comparison of analytical and numerical solutions

To justify the proposed trigonometric solution for natural fre-
quencies and buckling load we compared analytical solutions of
homogenous system of algebraic equations against the numerical
solution of the same system of equations. We must note that in fol-
low all plotted quantities are dimensionless. For the comparison
we considered the case when moder=1, n=1 and with aspect
ratio R=1, axial force ratio 6=0.5, nonlocal parameter 7 =0.5
and stiffness coefficient K=100. As shown in Table 1 for natural
frequencies and in Table 2 for buckling load, compared values
are in excellent agreement for both cases. It can be noticed that
the lowest natural frequency of MNPS does not depend of the num-
ber of nanoplates in the Free-Chain system (s = 0). In the case of

0.0

100

Clamped-Chain system, the natural frequency decreases towards
the lowest natural frequency of the system when increasing the
number of nanoplates in MNPS. The same can be observed for
the lowest value of critical buckling load for Free-Chain and
Clamped-Chain systems. All this alludes that applied trigonometric
method for finding the exact analytical solution is reliable method
for analysis of MNPS.

5.2. Effects of small-scale and coupling springs on vibration and
buckling of MNPS

Following plots are performed for the next values: aspect ratio
R =1, axial force ratio § = 0.5, nonlocal parameter in the range 5
=0-1, stiffness coefficient in the range K =0-100 and s = 1. Fig. 2
illustrate changes in natural frequencies Q,,; of MNPS for
“Clamped-Chain” system due to changes in nonlocal parameter
and stiffness of the elastic medium for different number of nano-
plates in the system. The presented plots are for four different
modes: r=1,n=1;r=2,n=2;r=3,n=3 and r=4, n=4. It can
be observe that in lower modes increase of nonlocal parameter

0.0

Q22 401 m=50

20

100

00

Fig. 3. The influence of the stiffness of Winkler elastic medium and nonlocal parameter on the natural frequencies for the “Free-Chain” system and different number of
nanoplates, (a) mode r=1 and n=1, (b) mode r=2 and n=2, (c) mode r=3 and n=3, (d) mode r=4 and n=4.
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Fig. 4. The influence of the stiffness of Winkler elastic medium and nonlocal parameter on the critical buckling load for the “Clamped-Chain” system and different number
of nanoplates, (a) mode r=1and n=1, (b) mode r=2 and n=2, (c) mode r=3 and n =3, (d) mode r=4 and n=4.

causes a significant decrease of natural frequency while the
increase of dimensionless stiffness coefficient causes a slight
increase. When nonlocal parameter is equal to zero, natural fre-
quencies are same as in case when using classical continuum the-
ories, which, as obvious, over determine its values. The observation
of increasing nonlocal parameter causing a significant decrease of
natural frequency is in-line to that explained in Ref. [76] for a sin-
gle nanoplate.

The consequence of increase of numbers of nanoplates in the
system is that value of natural frequency is approaching towards
certain constant value, which is in line with the asymptotic analy-
sis of MNPS where for the increase of number of nanoplates in the
system to infinity its value tends to the value of the lowest natural
frequency of the system. In addition, it can be noticed that in
higher modes, influence of nonlocal parameter is much more pro-
nounced and we have significant decrease of natural frequencies
for increase of the parameter. Opposite to this, change of elastic
medium stiffness does not change natural frequencies consider-
ably in lower modes and especially in higher modes. Effect of
increase of nanoplates in MNPS is also less noticeable in higher
modes than the lower one.

Fig. 3 illustrates effects of changes in nonlocal parameter, stiff-
ness coefficient and number of nanoplates on natural frequencies
of “Free-Chain” MNPS. The presented plots are for same modes
as in the previous case. It can be noted that for lower modes natu-
ral frequencies are significantly decreases for increase of nonlocal
parameter and slightly increase for increase of the stiffness coeffi-
cient. For this system, same as in Table 1 and Fig. 2, by increasing
the number of nanoplates in the system we have decrease of nat-
ural frequencies, which is less pronounced in higher modes. Here,
we can also notice a strong influence of nonlocal parameter on nat-
ural frequencies in higher modes while the influence of elastic
medium stiffness becomes negligible.

The effect of dimensionless nonlocal parameter and stiffness
coefficient of the layer on values of critical buckling load are
shown in Fig. 4 for “Clamped-Chain” and in Fig. 5 for the “Free-
Chain” MNPS. Effect of change of number of nanoplates in MNPS
is also demonstrated. Similar to vibration analysis, following four
modes are observed: r=1,n=1;r=2,n=2;r=3,n=3 and r=4,
n =4. Obviously, buckling load is significantly influenced by the
dimensionless nonlocal parameter i.e. increase of nonlocal param-
eter decrease value of critical buckling load. This effect is more
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Fig. 5. The influence of the stiffness of Winkler elastic medium and nonlocal parameter on the critical buckling load buckling load for the “Free-Chain” system and different
number of nanoplates, (a) mode r=1and n=1, (b) mode r=2 and n=2, (c) mode r=3 and n=3, (d) mode r=4 and n=4.

pronounced in higher modes. The changes of stiffness coefficient
slightly change the buckling load i.e. for the increase of stiffness
of the medium in range 0-100 we have slight increase of buckling
load. This increase is more pronounced in case of “Free-Chain”
MNPS (Fig. 5) and for lower modes than for the “Clamped-Chain”
MNPS (Fig. 4) and higher modes.

From Fig. 6(a) and (b) we can observe the influence of an
increase of aspect ratio on natural frequencies and critical buck-
ling load for different number of nanoplates in MNPS and both
“Clamped-Chain” and “Free-Chain” system. In both figures, curves
are plotted for the same values of parameters as in Tables 1 and 2.
It is obvious that there is a significant difference between
“Clamped-Chain” and “Free-Chain” systems when MNPS is com-
posed of a small number of nanoplates. It can be noticed that
the natural frequency and critical buckling load plotted for s =0
in the case of “Free-Chain” system represents a fundamental
natural frequency and critical buckling load which are indepen-
dent of a number of nanoplates in MNPS. The previous conclusion
is in line with the results presented in Tables 1 and 2 for the

“Free-Chain” system. In the case of “Clamped-Chain” system the
lowest natural frequency and critical buckling load are plotted
for s=1. It can be observed that an increase of a number of
nanoplates in MNPS causes a decrease of natural frequencies
and critical buckling loads towards the value of the lowest natural
frequency and the lowest critical buckling load of the “Clamped-
Chain” system i.e. these two values tends to the fundamental
natural frequency and critical buckling load of the “Free-Chain”
systems. This effect is also proved through the asymptotic analysis
(Eq. (39)). The effect of an increase of the aspect ratio (R) reflects
in an increase of natural frequencies of MNPS. This is in line with
other results in the literature where an increase of any dimension
of a structure leads to a decrease of the influence of small-scale
parameter. In addition, from Fig. 6(b) it can be noticed that in
the case of “Clamped-Chain” system for lower numbers of nano-
plates in MNPS value of critical buckling load decreases for an
increase of the aspect ratio. Hence, for higher numbers of nano-
plates in MNPS value of critical buckling load slightly increases
for an increase of the aspect ratio.
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Fig. 6. The influence of the aspect ratio (R), (a) natural frequencies and (b) critical buckling load for the different number of nanoplates in the first mode.

6. Conclusion

Vibration and buckling study of a multi-nanoplate system
embedded in the Winkler elastic medium is carried out using non-
local elasticity theory. Exact analytical solutions of dimensionless
natural frequencies and critical buckling load were derived for a
different number of simply supported nanoplates in MNPS by
using Navier’s and trigonometric method. For the case of two
coupled nanoplates, obtained results are validated with results
available in the literature. In order to ensure the reliability of trig-
onometric method, analytical results for natural frequencies and
buckling load obtained by solving the system of homogenous alge-
braic equations are compared with numerical solutions of the same
system of equations for both chain conditions. Novel analytical
expressions for critical values of the natural frequencies and criti-
cal buckling load are obtained by asymptotic analysis for the case
when the number of nanoplates in MNPS tends to infinity. In addi-
tion, the effects of nonlocal parameter and stiffness of the Winkler
elastic medium on natural frequencies and buckling load of MNPS
in different modes are explored. Both the natural frequency and
the critical buckling load are highly influenced by the small-scale
effects, while the effect of the Winkler elastic medium decrease at
higher modes. Regarding the effects of the number of nanoplates in
MNPS, it was noticed that this effect has smaller influence on the
natural frequencies and the critical buckling load at higher
modes. Furthermore, it is found that the effect of change of nano-
plate aspect ratio is more evident on natural frequencies than on
the critical buckling load. Theoretical study performed here may
be useful for practical design of nano-devices such as nanoreson-
ators and for future investigations on other multiple-nanostructure
systems embedded in different types of medium.
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