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Abstract.  In the reliability analysis of a complex engineering structures a very
large number of system parameters can be considered to be random variables. The
difficulty in computing the failure probability increases rapidly with the number
of variables. In this paper, a few methods are proposed whereby the number of
variables can be reduced without compromising the accuracy of the reliability
calculation. Based on the sensitivity of the failure surface, three new reduction
methods, namely (a) gradient iteration method, (b) dominant gradient method, and
(c) relative importance variable method, have been proposed. Numerical examples
are provided to illustrate the proposed methods.
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1. Introduction

Uncertainties in specifying material properties, geometric parameters, boundary conditions
and applied loadings are unavoidable in describing real-life engineering structural systems.
Traditionally, this has been catered for through the use of safety factors at the design stage.
Such an approach may not be always satisfactory in today’s competitive design environment,
for example, in minimum weight design of aircraft structures. The situation may also arise
when system safety is being jeopardized due to the lack of detailed treatment of uncertainty
at the design stage, for example, finite probability of occurring a resonance is unlikely to be
captured by a safety-factor based approach due to the intricate nonlinear relationships between
the system parameters and the natural frequencies. For these reasons a scientific and systematic
approach is required to predict the probability of failure of a structure at the design stage.
Probabilistic structural reliability analysis is one such approach. This can be implemented in
conjunction with the stochastic finite element, method (see for example Adhikari & Manohar
1999, 2000; Ghanem & Spanos 1991; Kleiber & Hien 1992; Manohar & Adhikari 1998a,b;
Matthies et al 1997), to consider general structural systems. The books by Augusti ef al
(1984), Ditlevsen & Madsen (1996), Haldar & Mahadevan (2000), Melchers (1999), Thoft-
Christensen & Baker (1982), Tichy (1993) and the review paper by Manohar & Gupta (2003)
give the accounts of extensive research works which have been done over the last three decades.
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The practical methods for reliability calculations can be broadly divided into (i) approxi-
mate analytical methods like FORM (First Order Reliability Method by Hasofer & Lind
(1974)) and SORM (Second Order Reliability Method (Adhikari 2004; Cai & Elishakoff
1994; Der-Kiureghian et al 1987; Der-Kiureghian & Stefano 1991; Fiessler et al 1979;
Hohenbichler & Rackwitz 1988; Hong 1999; Koyliioglu & Nielsen 1994; Madsen et al
1986; Mahadevan & Shi 2001; Polidori et al 1999; Tvedt 1990; Zhao & Ono 1999a,b));
(i1) simulation based methods, for example, importance sampling (Bucher 1988; Mahade-
van & Raghothamachar 2000; Schuéller & Stix 1987); (iii) methods based on surrogate
modelling, for example response surface method (Bucher & Bourgund 1990; Faravelli 1989)
and the improved response surface method (Gupta & Manohar 2004a,b); and (iv) artificial
intelligence methods, such as neural networks (Chapman & Crossland 1995; Hurtado 2002)
and genetic algorithms (Deng et al 2005; Shao & Murotsu 1999) based methods. There are
several other methods which include, but not limited to, methods using intervening variables
(Wang & Grandhi 1996), higher-order nonlinear approximations (Grandhi & Wang 1999),
fast Fourier transformations (Penmetsa & Grandhi 2003) and other methods by Penmetsa &
Grandhi (2002a,b). In each case the efficiency and applicability of a particular methodology
largely depends on the efficient computation of the so called design point. The design point
and the ‘region’ around it contains the most important information regarding the probability
of failure of a structure. The calculation of the design point requires the solution of a con-
strained optimization problem. In the reliability analysis of a complex engineering structure
a very large number of the system parameters can be considered to be random variables. The
difficulty in computing the design point and consequently the failure probability increases
rapidly with the number of variables. For gradient based optimization methods, it is often
required to compute the gradient vector and the Hessian matrix numerically. If there are n
random variables, then the computation of the gradient vector and the Hessian matrix require
(n+1) and n(n+1)/2 evaluations of the failure surface respectively. Thus, the computational
expense is roughly proportional to (n + 1) + n(n + 1)/2 = (n + 1)(n 4 2)/2. Clearly, for
large n, computational expense can be significantly reduced if the number of random vari-
ables can be reduced. The aim of this paper is to consider methods whereby the number of
variables can be reduced without compromising the accuracy of the solution.

The proposed reduction methods are based on the sensitivity of the failure surface in the
transformed standard Gaussian space. If the failure surface is close to linear, then the design
point obtained from these methods will be close to the exact design point obtained using
the full set of random variables. However, if the failure surface is significantly nonlinear, the
different reduction methods introduce different kind of errors. The nature of these errors are
studied using a wide range of numerical examples. It is shown that the design point obtained
using the proposed reduction methods have acceptable accuracy for many large scale structural
engineering problems.

2. Brief review of approximate reliability analysis

Suppose the random variables describing the uncertainties of the structure and loading are
considered to form a vector y € R”. The statistics of the system are fully described by the
joint probability density function p(y). In general the random variables y are non-Gaussian.
In principle, these random variables can be transformed to a set of uncorrelated Gaussian
random variables via the Rosenblatt transformation (Rosenblatt 1952). Further, they can
be scaled so that each random variable has zero mean and unit variance. Suppose these
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transformed and scaled random variables are x € R” with a joint probability density function
p(x) : R" > R = (27)"/?exp (—x'x/2). For a given set of variables x the structure will
either fail under the applied (random) loading or will be safe. The condition of the structure
for every x can be described by a safety margin g(x) : R + R such structure has failed if
g(x) < 0 and is safe if g(x) > 0. Thus, the probability of failure is given by

P = / p)dx. (1)
8(x)=0

The function g(x) is also known as the limit-state function and the (n — 1)-dimensional
surface g(x) = 0 is known as the failure surface. The central theme of a reliability analysis
is to evaluate the multidimensional integral (1). For most real-life cases the dimensionality
of the integral is large and consequently the exact evaluation of the integral in equation (1)
is not possible. For this reason some kind of approximate method is required to evaluate this
integral. Using the first-order reliability method (FORM) the probability of failure is given by

Py =®(—p) with B=(x"x9", )
where x*, the ‘design point’ is the solution of following optimization problem
x* = min{x’x/2 subjectto g(x) < 0}. 3)

To obtain x* construct the Lagrangian

L(x) =x"x/2 4+ rg(x) 4)
and set
oL
X _0 for k=1.2.....n. )
axk

Substituting £(x) into the above equation one obtains

x* = —AVg(x*). (6)
Taking transpose and multiplying we have

(x*'x*) = 22(Vg" (x") Vg (x)). (7
From this, the Lagrange multiplier A can be obtained as

x|

= —. 8
Ve x| ®

Hasofer & Lind (1974) defined the reliability index 8 = |x*|, which is the minimum distance
of the failure surface from the origin. Substituting the value of A from equation (8) into
equation (6) one obtains

Vg(x*)
k k| OV 7 — 9
o) )

x| Vg
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where a* is the unit vector to the design point. This implies that at the design point the gradient
vector to the failure surface and the vector from the origin are parallel. Once the reliability
index or B is known, several more accurate reliability analyses, for example, second-order
reliability methods (SORM) or importance sampling methods can be performed. Thus the
calculation of the design point and the reliability index is crucial for all approximate reliability
methods. Over the years several ‘tailor-made’ optimization algorithms have been developed
to solve the optimization problem (3). Hasofer & Lind (1974) proposed an iterative method
to obtain x* from equation (3). Later, based on equation (9), Rackwitz & Fiessler (1978)
proposed an efficient iterative method which is now known as RF algorithm. Several variants
of the RF algorithm have been proposed and we refer the readers to Sudret & Der-Kiureghian
(2000) for further discussions. In this paper, three methods are proposed for the calculation
of x* and B. Proposed methods are based on reduction of random variables using sensitivity
based approach.

3. Method 1: Gradient iteration method

First-order sensitivity based approaches have been used widely (see Haukaas & Kiureghian
2005, 2006; Zona et al 2005, for some applications) in the context of risk and reliability
analysis of complex engineering systems. For some point x € R" the first-order Taylor series
expansion of g(x) about x* can be given by

ag(x
() ~ g + (x — x7 BX (1)
0X |x_x
If g(x) is linear then % is independent of x. In this case x* will be simply the projection of

the origin (x = 0) on g(x) = 0 (see Melchers 1999, Chapter 3). Also note that the outward
normal vector to the hypersurface g(x) = 0 is

9g(x)
8)(,' X=0.

(12)

Ci =

Assume that Vg = { 2%} ¢ R” is normalized so that (Vg7 Vg) = 1. This normalization is

chosen for simplicity only and it is not a requirement for the applicability of the method to
be proposed. For a truly linear g(x) from equation (9) it can be easily seen that

x* = —BVg. (13)
Motivated by this, for a general nonlinear limit-state function we express x by
x = vVyg, (14)

where v € R is a new random variable. In view of (14), the constrained optimization problem
(3) becomes a simple search problem, that is we need to solve for v such that
g(wVg) =0
or hj(v) =0, where hi(e)=g(eVyg) (15)

is a (nonlinear) function of a single variable v. Comparing (13) and (14) it is clear that
v = —f. The zeros of h1(v) can be obtained easily since it is a function of a single variable.
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4F Failure domain:
g(x) = x1—2x2+10 <0

~

Safe domain
g(x) = xl—2x2+10 >0

-10 -8 -6 -4
Xl

Figure 1. Linear failure surface in R?: g(x) = g(x1,x) = x; — 2x, + 10, x* = {—2,4} and
B = 4.472.

Depending on the nature of nonlinearity of /; (v) it can have multiple real zeros. In this paper
we exclude such cases. Indeed if /1 (v) = 0 has multiple real solutions, the critical value of
v would be the smallest one since it would correspond to the highest probability of failure
as v = —p. This method yields accurate result when g(x) is linear or very close to linear.
This is due to the fact that for linear g(x), Vg in the right-hand side of equation (14) is
independent of the choice of x so that the direction of the outward normal from the failure
surface does not change with position along the failure surface. For this reason Vg|x—
becomes the unit vector along true x* and consequently 8 becomes simply the ‘length’ of this
vector from the origin to the failure surface. To illustrate this approach consider the following
example:

3.1 Example 1: A linear failure surface with two variables

Figure 1 shows a transformed failure surface in a two dimensional space R?.

The limit-sate function assumed to be linear with g(x) = g(x;, x2) = x; — 2x, 4+ 10. It is
trivial to show that for this simple example x* = {—2, 4}7 and B8 = 4-472. Now we will show
how this result can be alternatively obtained using proposed approach.

First, we obtain the gradients of the failure surface:

dg® _ | 98(x) _
8x1 ’ aXQ

—2. (16)

Using these, the normalized gradient vector can be expressed as

v _{L __Z}T (17)
S VRV B
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Figure 2. The function 4, (v) and v*, the solution % (v) = 0.

Since 8§(X) are independent of x, this is also the unit vector V g|x—¢ and is shown by the arrow

in figure 1. Now we construct the function /2 (v) as

+ 10. (18)

) 4
hl(v)—gwg)—g( ”)—” v

B G)T

The function £, (v) is plotted in figure 2 for different values of v. Clearly the solution of
hy(v) = 0 from equation (18) is v* = —24/5 = —4.472. Therefore, B = —v* = 4.472 and
the design point x* = v*Vg = —2«/5{ %, %}T = {—2,4}7, which are exactly the same as
obtained using full set of two random variables.

The simple facts arising for a linear failure surface as shown in this example do not hold
when g (x) is a nonlinear function. In this case V g depends on the choice of x and the direction
of the outward normal from the failure surface changes along the failure surface. Therefore,
Vg|x—o is in general not the unit vector along true x*. To solve this problem we propose an
iterative method so that Vg is updated at each iteration step. We first obtain an initial x*, say
Xx{;, by projecting V g|x—¢ to the failure surface. Next we use this point to obtain a new unit
vector Vg|x—x:. Projecting this vector from the origin to the failure surface we obtain the
next estimate of x*, say x}. The method then uses this point to calculate Vg and continues
until two successive estimates of design points are close enough. In summary, for a general
smooth differentiable nonlinear g(x), the iterative procedure can be described as follows:

1. For k = 0, select xX® = 0, a small value of ¢, say € = 0-001, a large value of 8, say
O = 10.

2. Calculate Vg* = 8g(X) |x_xo fori = 1,....n. Construct the vector Vg® = vg®y e
R”" and normalize so that (Vgh'v g(")) =1.

3. Use the transformation x = vV g® to obtain 4, (v) from g(x).
4. Solve hy(v) = 0 for v.



Sensitivity based reduced approaches for structural reliability analysis 325

5

4F Failure domain
gx)<0

Safe domain
g(x)>0

I
|
I
I
|
I
<2 :
I
|
I
1 [ I
Vo
X
|
op--/---------—---~- B - s —m oo
I
|
4 . j .
-5 -4 -3 -2 -1 0 1 2 3 4
X
1
Figure 3. Nonlinear failure surface in R?: g(x) = —%(xl — )2 — xp + 4 = 0; “— actual design
vector x* obtained using full set of variables; ‘——" design vectors obtained at each iteration step of

the proposed iterative method.

5. Increase the index: k = k + 1; denote %) = —v and x® = vV g®,
6. Denote 88 = g1 — g®,

7. (a) If §8 < O then the iteration is going in the wrong direction. Terminate the iteration
procedure and select 8 = B% and x* = x® as the best values of these quantities.
(b) If 68 < € then the iterative procedure has converged. Terminate the iteration procedure
and select B = B% and x* = x® as the final values of these quantities.
(c) If §8 > € then go back to step 2.

It should be noted that the convergence of the proposed iterative method cannot be always
guaranteed. It is hoped that if the failure surface is fairly regular and smooth then the method
would converge. Next, this method is illustrated through numerical examples.

3.2 Example 2: Nonlinear failure surface with two variables:

Consider a system with two random variables x; and x,. The nonlinear failure surface is given
by

4
gX) = —— (i — 1)’ —x +4=0. (19)
25
This example is taken from Melchers (1999) (page 105). Figure 3 shows the failure surface

together with the design vector. The actual design vector and reliability index obtained by
Melchers (1999) is given by

x* ={-236,2-19}" and B =3-22. (20)
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Table 1. Numerical values of the design vector and reliability
index at each iteration step of the proposed iterative method.

Iteration number x* B

1 {—1-0623, 3-3195}7 3-4854
2 {—1-8075, 2-7389}7 3.2815
3 {—2-1591, 2-4033)7 3.2307
4 {—2-2914, 2-2667)" 3.2231
5 {—2-3367,2-2186}7 3.2222

To apply the proposed method we need to obtain the gradients of the failure surface:

9g(x) _ dg(x) _

8
=———(@x -1, —1. 21
Bxl 25(XI ) 8)(2 ( )

The starting point of the iterative scheme is x = {0, 0} . Table 1 shows the values of 8 and
x* at each iteration step using the proposed method.

Figure 4 shows the function £ (v) at each iteration step. Note that after five iterations the
results obtained from the proposed method converge to the actual values.

3.3 Example 3: Nonlinear failure surface with three variables:

Consider a system with three random variables so that x = {x;, x2, x3} . The nonlinear failure
surface is given by

(x2 —5/2)*(x1 = 5) _

3. 22
10 X3+ (22)

_ 4 12
g(X)——g(Xl-lr ) —

First iteration

h, (v)

Final iteration

-6 -5 -4 -3 -2 -1 0

Figure 4. The function /;(v) and v*, the solution /2 (v) = O for different iteration steps for the failure
surface as in figure 3.
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X, SI
Figure 5. Nonlinear failure surface in R?: g(x) = —% (1 +1)%— %)2(’”_5) —x3+3; ‘— actual
design vector x* obtained using full set of variables; ‘——" design vectors obtained at each iteration

step of the proposed iterative method.

Figure 5 shows the failure surface together with the design vector. The actual design vector
and reliability index obtained by using all the three random variables is given by

x* = {2-1286, 12895, 1-8547})" and B =3-1038. (23)

To apply the proposed method, we need to obtain the gradients of the failure surface:

Jgx) 8 (x2—5/2)*  9g(x) (2 —5/2)(x; —5)
- —_(.X'] + 1) - ) - = )
oxy 25 10 ox2 5
8™ _ . 24)
8x3

The starting point of the iterative scheme is x = {0, 0, 0}7". Table 2 shows the values of 8 and
x* at each iteration step using the proposed method.

Table 2. Numerical values of the design vector and reliability index at each
iteration step of the proposed iterative method.

Iteration number x* B

1 X" = {42245, 111758, 4-4703}7 12-7565
2 x* = {3-8085, —0-5572, 0-4140}7 3-8713
3 x* = {28825, 0-8490, 1-1654}7 3.2230
4 x* = {24309, 1-1219, 16046} 3-1213
5 x* = {22506, 1.2375, 1.7476}7 3-1066
6 x* = {2-1788, 1-2610, 1-8163}7 3-1042
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Figure 6. The function 4 (v) and v*, the solution /; (v) = O for different iteration steps for the failure
surface as in figure 5.

Figure 6 shows the function %;(v) at each iteration step. Note that after six iterations the
results obtained from the proposed method converge to the actual values.

3.4 Example 4: Non-smooth failure surface with two variables:

We consider a failure surface similar to that in example 2, except that in this time it has been
perturbed by a sinusoidal noise. The assumed non-smooth failure surface is given by

4 1
gx) = — 55 (v — D —x) +4+ S sin(5x1) = 0. (25)

Figure 7 shows the failure surface together with the design vector. The actual design vector
and reliability index obtained using full set of variables can be obtained as
x* ={—1.619,2.708}" and B =3-155. (26)

The design point for each iteration steps is shown in figure 7. After 16 iterations the method
converges to:

x* = {—2.732,1.5932}7 and B = 3-163. (27)

Note that although the value of 8 is close to the actual value, the design point obtained using
the proposed method is quite far from the actual design point. This example shows that for
non-smooth failure surfaces the proposed method may converge to a wrong design point.

4. Method 2: Dominant gradient method

The reduction method outlined in the previous section effectively uses only one variable.
Here we keep more than one random variable in the analysis. The criteria for selecting the
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4F Failure domain
2x)<0

Safe domain
2g(x)>0

Figure 7. Non-smooth failure surface in R*: g(x) = —t(x; — 1)*> — x, + 4 + Lsin(5x)) = 0;
‘— actual design vector x* obtained using full set of variables; ‘——" design vectors obtained at each
iteration step of the proposed iterative method.

random variables is based on the sensitivity of the failure surface with respect to the variables.
Assume that

0
e[

} eR" (28)
X=0

is normalized so that (Vg”Vg) = 1. Suppose only n, entries of Vg has significant non-zero
(negative or positive) values while all the other entries are close to zero. Consider the index
set of these dominant variables is given by I;. We construct the vector of dominant random
variables v € R™ so that

vi=x;, Vj=1,...,ng and i€ ly. 29)
This equation can be represented in a matrix form as

v = Dx, (30)
where D € R">" is such that D;; = 1Vj = 1,...,n4;i € I; and zero everywhere else.

All other random variables are assumed to be zero, that is x; = 0, Vi ¢ ;. This implies that
these variables assumed to be deterministic so that they do not play any role in the reliability
analysis (see the discussion on ‘omission sensitivity factors’ by Madsen 1988). Using these
reduced set of variables one may obtain the failure surface in the reduced space &, (v). Thus
the optimization problem in the reduced space reads

min (VTV/2) subjectto  hy(v) = 0. 3D

The design point in the reduced space, v*, can be obtained from the solution of (31). From
v*, the design point in the actual space can simply be obtained by substituting x; = U;f, Vj=
1,...,I’ld;i S Id andx;* =0,Vi ¢ Id.



330 Sondipon Adhikari

It should be noted that this approach is based on the sensitivity of g(x) at x = 0. For linear
failure surface V g|x—_g¢ is the unit vector along the true x* and the dominant random variables
selected by the above procedure are actually the dominant random variables at the design
point. For nonlinear g(x), Vg|x—o is in general not the unit vector along true x*. Thus the
dominant random variables selected from V g|x—_¢ are not necessarily the dominant random
variables at the design point. Ideally the dominant random variables should be selected on
the basis of Vg evaluated at the design point. Keeping this in mind, we update Vg in an
iterative way so that the dominant random variables are selected on the basis of V g evaluated
at points gradually closer to the true design point. First, based on Vg|x—¢, an initial v* is
obtained by solving the optimization problem (31). From this initial v* the initial design point
in the original space, say X, is obtained. Next we use this point to obtain a new sensitivity
vector Vg|x—x:. Based on this we again select the dominant random variables and repeat
the procedure to obtain the next estimate of x*, say xj. The method then uses this point to
calculate Vg and continues until two successive estimates of design points are close enough.
In summary, for nonlinear g(x), the iterative procedure can be described as follows:

1. For k = 0, select x© = 0, a small value of €, say € = 0-001, a large value of 8, say
B® = 10 and also ny < n.

2. Calculate Vg = %L{:x(“‘ Fori = 1,...,n construct the vector Vg® = {vg®} e

R" and normalize so that (Vg(k)TVg(k)) =1.

Sort |V gi(k) | to obtain the index set /; corresponding to the highest n,; values.

Setv; = xi(k), Vji=1,...,nq,i € I;and xi(k) =0,Vi ¢ I;. Construct v = {v;} € R".

Using this transformation obtain /4, (v) from g(x).

Solve the constrained optimization problem: minimize 8 = (v’ v)!/? subject to /1, (v) = 0.

hglf)rease the index: k = k + 1. Using the solutions from step 6 denote 8 = B and

v =y,

8. Obtain x*) from the inverse transformation in step 4, that is x
ieljandx™ =0,vi ¢ .

9. Denote 88 = g*—D — g®,

Nk w

(k)

i

=vj,Vj=1,...,nd,

10. (a) If §8 < O then the iteration is going in the wrong direction. Terminate the iteration
procedure and select 8 = % and x* = x® as the best values of these quantities.
(b) If 38 < e then the iterative procedure has converged. Terminate the iteration procedure
and select 8 = A% and x* = x® as the final values of these quantities.
(c) If §8 > € then go back to step 2.

The initial choice of the dominant random variables, that is, n; and 1,4, can be automated by
imposing a selection criteria, for example, by fixing the ratio of V gl.(k) corresponding to the
most sensitive random variable and the least sensitive random variable. Note that the index
set of the dominant variables /; may change in different iterations, however we fix n, for all
iterations. Like the method in section 3, the convergence of the proposed iterative method
cannot be always guaranteed. In the next section another variant of this approach, which
considers the contribution of the neglected variables, is proposed.

5. Method 3: Relative importance variable method

Based on the entries of Vg, we group the random variables into the ‘important’ and ‘unimpor-
tant’ random variables. The random variables for which the failure surface is more sensitive
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are called important variables. Like the approach in section 4, suppose only n,; < n entries
of Vg with an index set i € I; is important. Suppose that the important random variables
are casted in the vector v € R such that equation (29) is satisfied. However, unlike the
approach in section 4, we do not completely neglect all the “‘unimportant’ random variables,
but consider that they can be represented by a single random variable, say u such that

xi =uVg, Vig¢l,. (32)

This equation implies that the ‘direction’ of the unimportant random variables are fixed
according to the gradient vector so that u is effectively a scaling parameter in that direction.
This method can be viewed as a combination of the methods described in the previous two
sections. Now we construct the vector of reduced random variables z as

z={v,u}’ e RW*!, (33)

Using equations (29) and (32) one may obtain the failure surface in the reduced space 13(z).
Thus the optimization problem in the reduced space reads

min (z'z)'/? subjectto  h3(z) = 0. (34)
The design point in the reduced space, z* = {v*, u*}7, can be obtained from the solution of
(34). From z*, the design point in the actual space can simply be obtained by substituting
x = v;f,‘v’j =1,...,ng;i € lgand x} =uVg;, Vi ¢ ;.

The selection of the important and unimportant random variables are again based on Vg
evaluated at x = 0. The important and unimportant random variables should be selected on
the basis of Vg evaluated at the true design point x*. Because for nonlinear g(x), Vg|x—o¢ is
in general not the unit vector along true x*, we update Vg by an iterative method similar to
the ones described in the previous two sections. In summary this iterative approach can be
described as follows:

1. For k = 0, select X = 0, a small value of €, say € = 0-001, a large value of 8, say
B® = 10 and also ny < n.

2. Calculate Vg* = 8%5_() <_xw- Fori =1,....n construct the vector Vg = (vg®y e
R" and normalize so that Vg®' Vg® = 1.

3. Sort |Vgl-(k)| to obtain the index set I; corresponding to the highest n, values.

® — yvg® Vi ¢ I,. Construct z =

i

4. Setv; = xi(k),\?’j =1,...,n4,1 € I; and x
{vj,u} € R+l

Using this transformation obtain %3(z) from g(x).

Solve the constrained optimization problem: minimize 8 = (z”z)!/? subject to h3(z) = 0.
7. Increase the index: k = k + 1. Using the solutions from step 6 denote B = B and
2P =1z

Obtain x® from the inverse transformation in step 4.

9. Denote 88 = g%~V — g®,

S

*®

10. (a) If §8 < O then the iteration is going in the wrong direction. Terminate the iteration
procedure and select 8 = B% and x* = x® as the best values of these quantities.
(b) If 38 < e then the iterative procedure has converged. Terminate the iteration procedure
and select 8 = B% and x* = x® as the final values of these quantities.
(c) If §8 > € then go back to step 2.
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Again, like the methods in sections 3 and 4, the convergence of the proposed iterative method
cannot be always guaranteed. In the next section, the proposed methods are applied to some
structural engineering problems.

6. Discussions on the proposed methods

The three methods proposed in the previous sections are aimed at handling failure surfaces
with progressively increasing nonlinearity. As shown in section 3, if the failure surface is
linear then only one variable is enough to obtain the design point exactly. But as the failure
becomes more and more nonlinear, more variables are needed to obtain the design point
efficiently. This is due to the fact that the gradient of a nonlinear failure surface is not constant
with respective to the variables. The methods proposed in the paper exploits this fact. If the
failure surface is fairly linear then the gradient iteration method (method 1) can be used. For
increasingly nonlinear failure surfaces, dominant gradient method and relative importance
variable method (methods 2 and 3) should be used respectively.

Once the reliability index is obtained using one of the proposed reduced methods, several
tools are available to obtain the failure probability accurately. They include, but not limited to,
second-order reliability methods (SORM), response surface based methods and importance
sampling based methods. Note that for importance sampling based methods or response
surface based method, the design point does not have to be very accurate. Therefore, one can
terminate the proposed iterative methods at an early stage to accept a less accurate result.
This can be easily achieved by increasing the value of 68 in the iterative algorithms.

For the case when the basic random variables are non-Gaussian, the failure surface can be
transformed into the standard normal space using the Rosenblatt transformation (Rosenblatt
1952). The methods developed in the paper can be in principle applied to this transformed
surface. However, it is well known that even for simple original failure surface, the transformed
failure surface can be significantly nonlinear and complex. Future research is needed to
investigate the applicability of the proposed method for such situations.

The design point loses its significance with the increase in dimension and nonlinearity.
Hence, forn > 30 and considerable nonlinearities, the design point based predictions become
increasingly inaccurate. Within the past few years several powerful methods have been pro-
posed, for example, Koutsourelakis (2004), Koutsourelakis et al (2004), Schuéller et al (2004),
for systems with large number of random variables. Using an asymptotic approach forn — oo,
Adhikari (2004, 2005) proved that

B + Trace(A)

Pf — o[ -
V14 2Trace(A?)

Here A € R"~Dx®=D j5 related to the matrix of the curvatures (the Hessian matrix) at the
design point. Equation (35) can be viewed as the correction needed to the FORM expression (2)
when the number of random variables become large. Equation (35) is asymptotically correct
and numerical results confirm that it becomes very accurate when n is large (equation (35)
however becomes invalid for small values of ). The methods proposed in the previous sections
can be used to obtain the design point, which in turn can be utilized in equation (35) to obtain
the probability of failure. Because the difference between FORM and other methods are well
established and the focus of this paper is on the derivation of 8, only FORM is used in the
numerical works to be followed in the next section.

) , when n — oo. (35)
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Figure 8. 2D frame with random element properties, P = 100 KN.

7. Numerical examples

7.1 2D Frame structure

We consider a 2D frame structure with three members. The structure is shown in figure 8 with
element numbering, node numbering and coordinates of the nodes in meters. It is assumed that
the axial stiffness (EA) and the bending stiffness (EI) of each member are Gaussian random
variables so that there are in total six random variables, x € R®. Further, it is also assumed
that EA and EI of different members are uncorrelated, that is

(EA;, EA;) = 0,Yi # j; (EI, EI;) = 0,Vi # j; (EA;, EI;) =0,Vi, j.
(36)

Therefore, the joint probability density function (pdf) of the random variables is completely
characterized by the mean and the standard deviation of the random variables. Table 3 shows
the numerical values of the system properties assumed for different members.

The standard deviations are expressed as a percentage of the corresponding mean values.
The vertical force applied in node 3 is assumed to be 100 KN. The failure condition is given
by specifying a maximum allowable vertical displacement at node 3, say dp.x. The failure

Table 3. Element properties of the random 2D frame as in figure 8. The standard
deviations are expressed as a percentage of the corresponding mean values.

EA (KN) EI (KNm?)
Member Id Mean Standard deviation Mean Standard deviation
1 1.0 x 10° 3-0% 2.0 x 10% 10-0%
2 5.0 x 10° 7-0% 6-0 x 10* 5-0%
3 3-0 x 10° 10-0% 4.0 x 10* 9.-0%
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Table 4. Comparison of reliability index and failure probability of the random 2D frame as
in figure 8.

Method B Py

Gradient Iteration Method (four iterations) 3590 0-165 x 1073
Dominant Gradient Method with n; = 3 (one iteration) 3590  0-165 x 1073
Relative Importance Variable Method with n; = 3 (one iteration) ~ 3-590  0-165 x 1073
Conventional FORM with full set of six variables 3.590 0-165 x 1073
MCS with 30,000 samples — 0-166 x 1073

surface assumed to be:
8(X) = diax — |6v3(X)], (37

where the random variable §vj is the vertical displacement at node 3. The structure is unsafe
when g(x) < O that is, when dv; > dpn.x. For numerical calculations it is assumed that
dmax = 0-095.

Numerical results obtained by using the proposed methods are shown in table 4. The
Monte Carlo simulation (MCS) is performed with 30000 samples. The methods in table 4
are arranged in the order of increasing computational cost. It is clear that the all the proposed
methods produce satisfactory agreement with usual FORM and the Monte Carlo simulation
(considered as benchmark).

7.2 Multistoried portal frame

We consider a multistoried portal frame with 20 members. The details of the structure is
shown in figure 9 with element numbering and node numbering.

It is assumed that the axial stiffness (EA) and the bending stiffness (EI) of each member are
Gaussian random variables so that there are in total 40 random variables, x € R*°. Like the
previous example itis also assumed that EA and EI of different members are uncorrelated. The
joint probability density function (pdf) of the random variables is completely characterized
by the mean and the standard deviation of EA and EI of each member. There are three types of
elements and the numerical values of the properties of each element type is shown in table 5.

Table 5. Element types and associated elements numbers of the random multistoried portal
frame asin figure 9. The standard deviations are expressed as a percentage of the corresponding
mean values.

EA (KN) EI (KNm?)
Standard Standard
Element type Mean deviation Mean deviation Element numbers

—

5.0 x 10° 7-0% 6-0 x 10* 5-0% 1,3,5,7,9,11,13,15,17,19
2 3.0 x 10° 3.0% 4.0 x 10* 10-0% 2,6,10,14,18
3 1.0 x 10° 10:0%  2-0 x 10* 9-0% 4,8,12,16,20
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Figure 9. Multistoried portal
with random element properties,
P, = 40 x 10°KN and P, =
5:0 x 10°KN.

It is considered that the column members are of type 1, the beam members are of type 2 and
the bracing members are of type 3.

Two horizontal forces P; = 4-0x 10° KN and P, = 5-0 x 10°> KN are applied at nodes 9 and
11 respectively. The failure condition is given by specifying a maximum allowable horizontal
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Table 6. Comparison of reliability index and failure probability of the random multistoried
portal frame as in figure 9.

Method B Py

Gradient Iteration Method (one iteration) 3399  0-338 x 1073
Dominant Gradient Method with n; = 5 (one iteration) 3397 0-340 x 1073
Relative Importance Variable Method with n; = 5 (one iteration) ~ 3-397  0-340 x 1073
Conventional FORM with full set of 40 variables 3397 0-340 x 1073
MCS with 11600 samples — 0-345 x 1073

displacement at node 11, say dpax. We construct the failure surface

g(X) = dmax — [8h11(X)], (38)

where the random variable §%;; is the horizontal displacement at node 11. The structure is
unsafe when g(x) < 0 thatis, when 6/ (X) > dp.x. For numerical calculations it is assumed
that dpa = 1-84 x 1073 m. Numerical results obtained using the proposed methods are
shown in table 6. The Monte Carlo simulation (MCS) is performed with 11600 samples. The
methods in table 6 are arranged in the order of increasing computational cost. It is clear that
the all the proposed methods using reduced number of random variables produce same result
obtained by conventional FORM with full set of 40 variables. Further, also note that all the
approximate reliability estimate methods show satisfactory agreement with the Monte Carlo
simulation (MCS) (considered as benchmark).

8. Conclusions

New methods have been proposed to reduce the number of random variables in structural
reliability problems involving a large number of random variables. In total three iterative
methods, namely (a) gradient iteration method, (b) dominant gradient method, and (c) relative
importance variable method, have been proposed. All the three methods are simple, intuitive
and based on the sensitivity vector of the failure surface. Once the design point and the relia-
bility index are obtained using one of the proposed approaches, several methods are available
to obtain the failure probability accurately. Initial numerical results show that there may be a
possibility to put these methods into real-life problems involving a large number of random
variables. Further studies will involve analysing the efficiency of the proposed methods when
applied to problems with highly nonlinear failure surfaces, such as in dynamic problems.

The author acknowledges the support of the UK Engineering and Physical Sciences Research
Council (EPSRC) for the award of an Advanced Research Fellowship.
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