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Abstract

In this paper, a method to calculate derivatives of eigenvectors of damped discrete linear dynamic system with

respect to the system parameter is presented. Due to the non-proportional nature of the damping, the eigenvectors

become complex, and as a consequence, the derivatives also become complex. The derivatives are calculated using small

damping assumption, and the method avoids using the state-space approach. The results are obtained in terms of

complex modes and frequencies of the second-order system, which in turn are related to the eigensolutions of the

undamped system using perturbation method. Based on the derivatives, an expression for total change of the complex

eigenvectors is obtained for a more general case when all the elements of mass, sti�ness and damping matrices are

varying. Application and accuracy of the derived expressions are demonstrated by considering numerical exam-

ples. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Sensitivity; Complex modes; Non-proportional damping; Derivative of eigensolutions; Perturbation methods

1. Introduction

In structural design/optimization and system identi-

®cation studies, derivatives of eigenvectors provide

important information. Eigenvector derivatives also

constitute a central role in the analysis of stochastic

dynamic systems. Several papers exist on derivatives of

eigensolutions of undamped system. In one of the ear-

liest works, Fox and Kapoor [1] have given exact ex-

pressions for derivatives of eigenvalues and eigenvectors

with respect to any design variable. The eigenvector

derivatives were obtained in terms of changes in the

system property matrices and all eigenvectors of the

structure in its current state, and have been used ex-

tensively in a wide range of application areas of struc-

tural dynamics. Later, many authors have extended this

kind of sensitivity analysis to include asymmetry of the

system and to the systems with repeated eigenvalues.

Plaut and Huseyin [2] have extended Fox and Kapoors

method to the system with general mass and sti�ness

matrices. Nelson [3] proposed an e�cient method to

calculate eigenvector derivative which requires only the

eigenvalue and eigenvector under consideration. Adel-

man and Haftka [4] have given a comprehensive review

of research on sensitivity analysis of discrete structural

systems. Murthy and Haftka [5] have surveyed the

methods for sensitivity analysis of the eigenvalue prob-

lem associated with general (non-Hermitian) matrix.

The above-mentioned analytical methods are based

on the undamped free vibration of the system. For

damped systems, it is well known that unless the dam-

ping matrix of the structure is proportional to the inertia

and/or sti�ness matrices (proportional damping) or can

be represented in the series form derived by Caughey [6],

the mode shapes of the system will not coincide with the

undamped mode shapes. In the presence of general non-

proportional viscous damping, the equations of motion

in the modal coordinates will be coupled through the o�-

diagonal terms of the modal damping matrix, and the

mode shapes of the system will in general be complex.
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Apart from the mathematical reason, while conducting

experimental modal analysis also one often identi®es

complex modes (see e.g. Ref. [7]). So, for many appli-

cation areas of structural dynamics which utilize the

eigensolution derivatives, e.g. modal updating, damage

detection, design optimization and stochastic ®nite ele-

ment methods, sensitivity of complex eigensolutions

should be incorporated in the analysis in order to take

damping into consideration. Most of the available

methods to obtain the derivatives of the complex ei-

gensolutions employ ®rst-order formulation of the

equations of motion (see, e.g. Refs. [8±10]). However,

®rst-order or `Hamiltonian' methods have never been

popular to solve engineering dynamic problems. For this

reason, the expressions for derivative of the complex

modes available in the literature have not been utilized

in practice.

In this paper, we determine derivative of complex

modes with respect to some set of design variables in

non-proportionally damped discrete linear systems. The

approach taken here avoids the use of state-space for-

mulation and is consistent with the notion of traditional

modal analysis methods. Before going into the detailed

derivation of derivative of the complex eigenvectors, the

classical ®rst-order perturbation-based analysis to de-

termine complex eigensolutions under the small dam-

ping assumption is brie¯y described in Section 2. It is

indicated that a minor modi®cation of the known ex-

pression can give more accuracy. In Section 3, deriva-

tives of eigenvectors are derived approximately using a

small damping assumption. With these rates, total

changes in eigenvectors are obtained in Section 4 for a

more general case when all the elements of mass, sti�ness

and damping matrices are perturbed. In Section 5, a two

degree-of-freedom system which shows the `curve-veer-

ing' phenomenon has been considered to illustrate the

application of the expression for rates of changes of ei-

genvectors. Numerical accuracy of the approximate ex-

pression for derivative of eigenvectors is also examined

by considering a 10 degree-of-freedom linear spring±

mass system.

2. Complex eigenvalues and eigenvectors

The equations of motion for free vibration of a linear

damped discrete system with N degrees of freedom can

be written as

M�y� C _y� Ky � 0; �1�

where M, C and K are N � N mass, damping and sti�-

ness matrices, respectively, and y is the N � 1 vector of

the generalized coordinates. We seek a harmonic solu-

tion of the form y � u exp�ikt�, where i � �������ÿ1
p

is the unit

complex number. Substitution of y in Eq. (1) yields

ÿk2Mu� ikCu� Ku � 0: �2�

This equation is satis®ed by the ith latent root (natural

frequency), ki, and ith latent vector (mode shape), ui, of

the k-matrix problem (see Ref. [11]), so that

ÿk2
i Mui � ikiCui � Kui � 0 8 i � 1; . . . ;N : �3�

Unless C is simultaneously diagonalizable with M and K

(conditions for which was derived by Caughey and

O'Kelly [12]), in general ki and ui will be complex. The

procedures to obtain the complex eigensolutions follow

mainly two routes: the state-space method and approx-

imate methods in `N -space'. The state-space method (see

Ref. [13]) although exact in nature requires signi®cant

numerical e�ort for obtaining the eigensolutions as the

size of the problem doubles. Moreover, this method also

lacks some of the intuitive simplicity of traditional

modal analysis. For these reasons, there has been con-

siderable research e�ort to calculate the complex eigen-

solutions of non-proportionally damped structures

in N -space. Using ®rst-order perturbation analysis,

Rayleigh [14] considered approximate methods to de-

termine ki and ui by assuming that the elements of C are

small but otherwise general. Cronin [15] has given a

power series expression of eigenvalues and eigenvectors

by using perturbation method. Recently, Woodhouse

[16] has extended Rayleigh's analysis to the case of more

general linear damping models described by convolution

integrals of the generalized coordinates over the dam-

ping kernel functions. Following a similar line of anal-

ysis, Bhaskar [17] developed a procedure to exactly

obtain ki and ui by an iterative method and has shown

that the results from the classical perturbation analysis

can be obtained as a special case. For later reference, we

brie¯y outline the procedure to obtain them.

Consider the undamped natural frequencies xi and

mode shapes xi satisfying

Kxi � x2
i Mxi 8 i � 1; . . . ;N : �4�

The mode shape vectors are normalized in a usual way

so that

xT
j Mxi � dji; xT

j Kxi � x2
i dji 8 j; i � 1; . . . ;N ; �5�

where dji is the Kroneker's delta function and ���T de-

notes matrix transpose. Since xi; 8 i � 1; . . . ;N form a

complete set of vectors, we can expand ui as a complex

combination of xi. In the case when the entries of the C

matrix are not very big, the roots of Eq. (3), ki, will be

close to those of Eq. (4), xi, and the corresponding ei-

genvectors, ui, are also expected to be close to xi. Thus,

we can try a solution of the form
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ui �
XN

j�1

a�i�j xj where a�i�i � 1 and ja�i�j j � 1 8 j 6� i:

�6�
Substituting ui in Eq. (3), premultiplying by xT

k and using

the orthogonality properties of the undamped mode

shapes described by Eq. (5), one obtains

ÿk2
i a
�i�
k � iki

XN

j�1

a�i�j C0kj � x2
ka
�i�
k � 0; �7�

where C0kj � xT
k Cxj are the elements of the damping

matrix in modal coordinates. The ith equation of this set

can be obtained by setting k � i: now neglecting the

second-order terms involving a�i�j and C0ij, 8 j 6� i, and

also noting that a�i�i � 1, Eq. (7) yields

ÿk2
i � ikiC0ii � x2

i � 0; or ki � xi � iC0ii=2; �8�
which is the approximate expression for the complex

natural frequencies. Again Eq. (7) can be rewritten as

ÿk2
i a
�i�
k � iki a�i�i C0ki

 
� a�i�k C0kk �

XN

j6�k 6�i

a�i�j C0kj

!
� x2

ka
�i�
k � 0;

�9�

which leads to

a�i�k � ÿ
ikiC0ki

x2
k ÿ k2

i � ikiC0kk

: �10�

By replacing xk from Eq. (8) for the kth set, the de-

nominator appearing in the above expression can be

factorized as

x2
k ÿ k2

i � ikiC0kk � ÿ�ki ÿ kk��ki ÿ k�k�; �11�
where ���� denotes complex conjugation. With the help

of this factorization, Eq. (10) can be expressed as

a�i�k �
ikiC0ki

�ki ÿ kk��ki ÿ k�k�
; �12�

and consequently, from the series sum of Eq. (6), the

approximate expression for the complex modes reads

ui � xi �
XN

k�1

ikiC0kixk

�ki ÿ kk��ki ÿ k�k�
: �13�

The approach taken here is very similar to the classical

perturbation analysis [14,16], but the a�i�k expressed by

Eq. (12) appear to be slightly di�erent. The classical

expression for this is, a�i�k � ixiC0ki=�x2
i ÿ x2

k�, which is

equivalent to replacing the complex natural frequencies

by undamped natural frequencies in Eq. (12). Numerical

calculations using the a�i�k described by Eq. (12) yield

more accurate results than those of the classical analysis.

To illustrate this, consider the simple example of the two

degree-of-freedom system shown in Fig. 1. For the pa-

rameter values selected here (see ®gure caption), the

damping is quite high: when k2 � 1:1k1, the Q-factors for

the two modes are Q1 � 152:601 and Q2 � 9:3754. Using

Eq. (13), the approximate complex mode shapes can be

calculated as

u1 �
0:7870ÿ 0:0661i

0:6287� 0:1070i

� �
;

u2 �
ÿ0:6406ÿ 0:1179i

0:7797ÿ 0:0729i

� �
:

The corresponding exact mode shapes from the state-

space formulation can be obtained as

ue
1 �

0:7870ÿ 0:0661i

0:6443� 0:1018i

� �
;

ue
2 �

ÿ0:6406ÿ 0:1179i

0:7631ÿ 0:0603i

� �
;

while the classical perturbation method gives

uc
1 �

0:7870ÿ 0:0661i

0:4658� 0:2362i

� �
;

uc
2 �

ÿ0:6406ÿ 0:1179i

0:8866ÿ 0:3989i

� �
:

For comparison, the modes are normalized to have the

same numerical value in the ®rst element, so that only

the second element di�ers. It is clear that the results

obtained from the expression suggested here are closer

to the exact values than the classical analysis. Beside

this, the expression in Eq. (13) also indicates a concep-

tual di�erence from the classical analysis: unlike there,

the `correction terms' no longer remain purely imagi-

nary. This in turn means that the real part of the com-

plex mode shapes are not the undamped mode shapes.

This fact is indeed true and can be veri®ed from the

exact analysis.

3. Rates of change of eigenvectors

Suppose the structural system de®ned in Eq. (1) can

be described by a set of m parameters (design variables),

g � fg1; g2; . . . ; gmgT
, so that the mass, damping and

sti�ness matrices become functions of g, that is,

M �M�g�, C � C�g� and K � K�g�. Assume further

that the design variables undergo a small change of the

form Dg � fDg1;Dg2; . . . ;DgmgT
. For this small change,

neglecting higher order terms in the Taylor series, ith
complex eigenvector can be expressed as

u
�c�
i � ui � �rui�Dg; �14�

where u
�c�
i denotes the changed complex eigenvector

and the N � m matrix �rui� � �ui;1; ui;2; . . . ; ui;m� with
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ui;j � oui=ogj. In general, ui;j is a complex vector and can

be expanded in terms of the undamped eigenvectors xk ,

8k � 1; . . . ;N , which form a complete set of basis vec-

tors. Thus, we write

ui;j �
XN

k�1

aijkxk ; �15�

where aijk , 8k � 1; . . . ;N , are set of complex constants

to be determined.

For notational convenience, we rewrite Eq. (3) as

Fiui � 0; �16�
where the regular matrix pencil

Fi � F�ki; g� � ÿk2
i M� ikiC� K: �17�

Di�erentiating Eq. (16), one obtains

Fiui;j � ÿFi;jui; �18�
which in view of Eq. (15) can be written asXN

k�1

Fiaijkxk � ÿFi;jui: �19�

Now, without loss of generality, we can de®ne a set of

complex variables bijk�z�, 8k � 1; . . . ;N , such thatXN

l�1

F�z�bijl�z�xl � ÿFi;jui �20�

when z � ki. The term F�z� appearing in the above

equation is the regular matrix pencil de®ned by

F�z� � ÿz2M� izC� K. The relationship between Eqs.

(19) and (20) is that

F�z� j�z�ki� � Fi; and bijl�z� j�z�ki� � aijl: �21�

Thus, Eq. (20) allows a more general treatment of Eq.

(19) because it is valid at all complex frequency points z,

and Eq. (19) appears as the special case when z � ki.

De®ne also the sum

Su�z� �
XN

k�1

bijk�z�xk �22�

so that from Eq. (15), ui;j � Su�z� j�z�ki�. A confusion may

arise from the term on the right-hand side appearing in

the Eqs. (19) and (20): strictly speaking, it should also be

described in terms of the general (complex) frequency

variable z, so that instead of Fi;j, it should be written as

F�z�;j. However, since in the end we will substitute back

z � ki to obtain aijk, the use of Fi;j is just a matter of

notation and we keep track of it by writing bijl�z� on the

right-hand side of Eq. (20).

Now, premultiplying Eq. (20) by xT
k and using the

orthogonal properties of the undamped mode shapes

described by Eq. (5), one obtains the scalar equation

�x2
k ÿ z2 � izC0kk�bijk � iz

XN

l6�k

C0klbijl � ÿ�xT
k Fi;jui�: �23�

For all k � 1; 2; . . . ;N , the above equation can be cast in

to a matrix form

�P� izQ�b � R; �24�

where P � diag�x2
k ÿ z2 � izC0kk � and Q is the matrix C0

with all diagonal terms omitted. The vector R �
ÿfxT

1 Fi;jui; x
T
2 Fi;jui; . . . ; xT

i Fi;juigT
is known and the vec-

tor b � fbij1�z�; bij2�z�; . . . ; bijN �z�gT
is to be determined.

One can, in principle, carry out the associated matrix

inversion and subsequently calculate aijk to obtain ui;j.

However, this would be a somewhat expensive numeri-

cal exercise and may not o�er much physical insight to

the analyst. Instead, we seek for an approximate solu-

tion by making use of a small damping assumption.

Recently, Woodhouse [16] has used this kind of ap-

proximate analysis in order to determine transfer func-

tions of systems with general linear damping models.

After neglecting the higher order terms in Q, from

Eq. (24), one obtains

b � �Pÿ1 ÿ izPÿ1QPÿ1�R: �25�

The kth row of this equation leads to

bijk�z� � ÿxT
k Fi;jui

x2
k ÿ z2 � izC0kk

ÿ iz
XN

l 6�k

C0kl�ÿxT
l Fi;jui�

�x2
k ÿ z2 � izC0kk��x2

l ÿ z2 � izC0ll�
: �26�

The substitution of bijk�z� in Eq. (22) and the use of the

factorization scheme described by Eq. (11) yields

Su�z� �
XN

k�1

�ÿxT
k Fi;jui�xk

ÿ�zÿ kk��z� k�k�

ÿ iz
XN

k�1

XN

l 6�k

C0kl�ÿxT
l Fi;jui�xk

�zÿ kk��z� k�k��zÿ kl��z� k�l �
: �27�

This expression has simple poles at z � kk and z �
ÿk�k ; 8k � 1; 2; . . . ;N . The residue of the pole at z �
kk can be written as

Res�z � kk � � �ÿxT
k Fi;jui�xk

ÿ�kk � k�k�

ÿ ikk

XN

l6�k

C0kl�ÿxT
l Fi;jui�xk � C0lk�ÿxT

k Fi;jui�xl

�kk � k�k��kk ÿ kl��kk � k�l �
:

�28�

Having in mind that kk � k�k � 2xk and taking advan-

tage of the symmetry of C0kl, this equation gives
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Res�z � kk �

� 1

2xk
�xT

k Fi;jui�xk

"

�
XN

l 6�k

ikkC0kl �ÿxT
l Fi;jui�xk � �xT

k Fi;jui�xl

� 	
�kk ÿ kl��kk � k�l �

#
:

�29�
Since we neglect the second-order terms involving

C0kl; 8k 6� l, the above equation can be cast in the form

Res�z � kk � � 1

2xk
xT

k

("
�
XN

l6�k

ikkC0klx
T
l

�kk ÿ kl��kk � k�l �

)
1�N

� fFi;juigN�1 xk

(
�
XN

l 6�k

ikkC0klxl

�kk ÿ kl��kk � k�l �

)#
:

�30�
Now, the use of Eq. (13) for the approximate complex

mode shapes reduces this equation to

Res�z � kk � � 1

2xk
�uT

k Fi;jui�uk : �31�

Similarly, the residue of the pole at z � ÿk�k can be ob-

tained as

Res�z � ÿk�k � � ÿ
1

2xk
�u�T

k Fi;jui�u�k : �32�

From the residue at these two poles, the series sum in

Eq. (27) can be written

Su�z� �
XN

k�1

Res�z � kk �
zÿ kk

�Res�z � ÿk�k �
z� k�k

�
XN

k�1

1

2xk

�uT
k Fi;jui�uk

zÿ kk

"
ÿ �u

�T

k Fi;jui�u�k
z� k�k

#
: �33�

Again from Eq. (22), equating term by term, it can be

said that

bijk�z�xk � 1

2xk

�uT
k Fi;jui�uk

zÿ kk

"
ÿ �u

�T

k Fi;jui�u�k
z� k�k

#
: �34�

Substitution of z � ki and use of Eq. (21) leads to

aijkxk � 1

2xk

�uT
k Fi;jui�uk

ki ÿ kk

"
ÿ �u

�T

k Fi;jui�u�k
ki � k�k

#
: �35�

It is clear that this expression involving aijk is not valid for

k � i. This special case will be considered separately later

in this section. After some algebraic operation, the terms

appearing within the brackets can further be simpli®ed

uT
k Fi;jui � �1ÿ cki�uT

k
~Fi;jui and

u�
T

k Fi;jui � �1ÿ �cki�u�
T

k
~Fi;jui:

�36�

Here, the ratios

cki �
uT

k �k2
i M� K�ui

uT
i �k2

i M� K�ui

and

�cki �
u�

T

k �k2
i M� K�ui

uT
i �k2

i M� K�ui

�37�

with

~Fi;j � �K;j ÿ k2
i M;j � ikiC;j� �38�

is the matrix which arises only due to the change of the

system property matrices with respect to the design pa-

rameters. This simpli®cation turns out to be useful, as

will be seen in Section 4. Now, by taking the transpose

of Eq. (35) and then post-multiplying it by Mxk , and

also from the expansion of the complex modes in Eq.

(13) noting the fact that u
T

k Mxk � u�
T

k Mxk � 1, we ®nally

obtain

aijk � 1

2xk

�1ÿ cki�uT
k

~Fi;jui

ki ÿ kk

"
ÿ �1ÿ �cki�u�T

k
~Fi;jui

ki � k�k

#
;

for k 6� i: �39�

In passing, we note that for the undamped case

cki; �cki ! 0, and this equation reduces exactly to its

corresponding equation (see Eq. (20) in Ref. [6]) for the

undamped case.

To obtain aiji, we begin with the expansion of the

complex modes in Eq. (6) and obtain the relationship

uT
i Mui � 1�

X
l6�i

a�i�l a�i�l � 1: �40�

Di�erentiation of the above equation with respect to gj

together with the symmetry property of M results in a

scalar equation

uT
i Mui;j � ÿ1

2
�uT

i M;jui�: �41�

Now, substitution of ui;j from Eq. (15) yields

aiji � ÿ 1

2
�uT

i M;jui� ÿ
X
k 6�i

a�i�k aijk: �42�

Finally, from the above equation together with Eqs. (15)

and (39), we obtain

ui;j �ÿ 1

2
�uT

i M;jui�xi �
XN

k 6�i

1

2xk

�1ÿ cki�uT
k

~Fi;jui

ki ÿ kk

"

ÿ �1ÿ �cki�u�T

k
~Fi;jui

ki � k�k

#
xk

�
ÿ a�i�k xi

�
: �43�

This is the generalization of the known expression of

rates of change of eigenvectors for an undamped system

to that of a damped system. Since in Eqs. (8) and (13)

the complex eigensolutions are approximately expressed

in terms of the undamped eigensolutions, ui;j derived
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above in turn can be calculated form the undamped ei-

gensolutions only. This o�ers signi®cant computational

bene®t as well as ample physical insight since we have

avoided the state-space method and utilized the familiar

undamped modes.

4. Total change of eigenvalues and eigenvectors

We envisage a situation when all the elements of

sti�ness, mass and damping matrices undergo small

changes. This kind of situation may arise when one

applies numerical methods to study the sensitivity of the

problem. For example, by using the ®nite element

method, any change in some design variable will result

in some changes in the sti�ness, mass and damping

matrices. It may be noted that this kind of numerical

study becomes unavoidable when we consider a general

problem in which an explicit relationship between some

design variable of interest and the system property ma-

trices cannot be obtained easily. Moreover, due to recent

developments in stochastic ®nite element methods and

reliability based analysis, the need for random pertur-

bation of the system property matrices also arises. In

this section, we generalize the results obtained in the

earlier sections to handle wide range of such di�erent

problems.

Unlike the previous section, instead of incorporating

some speci®c variables, here all the elements of sti�ness,

mass and damping matrices become independent vari-

ables; thus, we have

ui � ui�K11;K12; . . . ;KNN ; M11;M12; . . . ;MNN ;

C11;C12; . . . ;CNN �: �44�

From the above equation, after neglecting the higher

order terms in the Taylor series the total change in the

jth element of the ith eigenvector can be written as

dUji �
XN

r�1

XN

s�1

oUji

oKrs
dKrs �

XN

r�1

XN

s�1

oUji

oMrs
dMrs

�
XN

r�1

XN

s�1

oUji

oCrs
dCrs: �45�

Substituting ~Fi;j from Eq. (38) into Eq. (43), the partial

derivatives oUji=oKrs, oUji=oMrs and oUji=oCrs can be

obtained by setting gj to one of the elements at a time.

Doing so, and using the standard notation of matrices,

that is Uji denoting jth element of the ith complex ei-

genvector ui, it can be shown that

oUji

oKrs
�
X
k 6�i

1

2xk

�1ÿ cki�UrkUsi

ki ÿ kk

"
ÿ �1ÿ �cki�U �rkUsi

ki � k�k

#
� Xjk

�
ÿ a�i�k Xji

�
;

oUji

oMrs
� ÿ 1

2
�UriUsi�Uji ÿ k2

i

oUji

oKrs
;

oUji

oCrs
� iki

oUji

oKrs
:

�46�

The above set of equations are easily amenable for

computer programming. For the undamped case, similar

expressions were introduced by Collins and Thomson

[18] based on the results of Fox and Kapoor [1] and are

now in extensive use. Another useful fact emerges from

this order of approximate analysis: from Eqs. (8) and

(13), complex eigenvalues and eigenvectors, and conse-

quently, from Eq. (45), the change of eigenvectors, can

be obtained from the undamped eigenvalues and eigen-

vectors. The undamped eigensolutions are now readily

available from commercial software packages (for ex-

ample FE-packages), and thus using existing resources,

it is possible to study the change of eigenvectors for non-

proportionally damped structures in an integrated way

by varying mass, sti�ness and damping matrices all

together at a time.

5. Examples

5.1. Rates of change of eigenvalues in a curve veering

problem

A simple two degree-of-freedom system has been

considered to illustrate a possible use of the expressions

developed so far. Fig. 1 shows the example taken

together with the numerical values. When eigenvalues

are plotted versus a system parameter they create family

of `root loci'. When two loci approach together they

may cross or rapidly diverge. The later case is called

`curve veering'. It is known that during veering, rapid

changes take place in the eigensolutions and can be an

interesting problem for applying the general results de-

rived in this paper. The system matrices for the example

taken can be expressed by

Fig. 1. Two degrees of system show veering, m � 1 kg, k1 �
1000 N/m, s � 100 N/m, c � 3:0 N s/m.
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M � m 0

0 m

� �
; C � c ÿc

ÿc c

� �
;

K � k1 � s ÿs

ÿs k2 � s

� �
:

We have focused our attention to calculate the rates of

change of eigenvectors with respect to the parameter s
which can be obtained from Eq. (43). Complex modes

and frequencies appearing in this equation are obtained

from the procedure outlined in Section 2. The term ~Fi;j

in this context turns out to be d~Fi=ds and can be ob-

tained as

d~Fi

ds
� dKi

ds
ÿ k2

i

dM

ds
� iki

dC

ds
� 1 ÿ 1
ÿ1 1

� �
since dM=ds � dC=ds � 0. The real part of the deriva-

tive of ®rst eigenvector with respect to s for both the

coordinates is shown in Fig. 2. The real part has been

chosen to be plotted here because a change in sti�ness is

expected to contribute a signi®cant change in the real

part. Derivative of the corresponding real eigenvector

for the undamped system (i.e., removing the damper)

calculated from the expression derived by Fox and

Kapoor [1] is also shown in the same ®gure (see the

®gure legend for details). Similar plots for the second

eigenvector are shown in Fig. 3. The higher value of the

derivatives around the veering range (k2=k1 � 1) indicates

that eigenvectors become more sensitive to the para-

meter changes in this region. It is interesting to note that

the derivative of the undamped modes and that of the

real part of the complex modes almost trace each other

except around the veering range, i.e., 0:5 < k2=k1 < 1:5,

where the derivative of the undamped modes show

higher values. To get more insight into the results, it is

helpful to look at the variation of the modal Q-factors

for the two modes shown in Fig. 4. For the ®rst mode,

Q-factor is quite high (in the order of �103) near the

veering range but still the derivative of the undamped

mode and that of the real part of the complex mode for

both the coordinates are quite di�erent. Again, away

from the veering range, k2=k1 > 2, the Q-factor is low

but the derivative of the undamped mode and that of

real part of the complex mode are quite similar. This is

opposite to what we normally expect, as the common

belief is that, when the Q-factors are high, that is modal

dampings are less, the undamped modes and real part of

complex modes should behave similarly and vice versa.

For the second mode, the Q-factor does not change very

much due to a parameter variation of k2 except that it

becomes bit lower around the veering range. But the

di�erence between the sensitivities of the undamped

Fig. 2. Real part of the derivative of both the coordinates of the

®rst mode with respect to the sti�ness parameter s.

Fig. 3. Real part of the derivative of both the coordinates of the

second mode with respect to the sti�ness parameter s.

Fig. 4. Q-factors for both the modes.
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mode and that of real part of the complex mode for both

the coordinates changes much more signi®cantly than

the Q-factor. This shows that even when the Q-factors

are similar, the sensitivity of the undamped modes and

that the of real part of the complex modes can be sig-

ni®cantly di�erent. Thus use of the expression for

derivatives of undamped mode shapes can lead to a

signi®cant error even when the damping is very low, and

for any kind of study involving such a sensitivity anal-

ysis the expressions derived in this paper should be used.

5.2. Numerical accuracy of rates of change of eigenvectors

The rates of change of eigenvectors are derived by

using the small damping assumption and the accuracy

associated with it must be judged. However, presently

there is no `exact' method available to determine the

rates of change of complex eigenvectors in `N'-space by

which one can verify the accuracy of the expression

given by Eq. (43). So, we compare the total change of

the eigenvectors when the elements of the system prop-

erty matrices are given a small perturbation. This in turn

can be obtained from Eqs. (45) and (46). It may be noted

that the error obtained from this analysis will be more

than that given by Eq. (43), since the e�ect of neglecting

the higher order terms of the Taylor series will also be

added up. In this way, we can obtain an idea for the

upper bound of the error associated with Eq. (43).

We consider a sample problem of a linear array of 10

spring-mass elements (see Fig. 5) with dampers attached

from the third to the seventh masses (with the same

damping value for all, say c) and connected to the

ground. All the 10 masses and 11 sti�ness values are

assumed to be unity while we vary the value of the

damping c. As the dampers are attached only from the

third to the seventh masses, the modal matrix becomes

non-diagonal resulting in complex modes. We consider a

positive change of 2% for all the values of mass, sti�ness

and damping, and the exact solutions are obtained by

calculating the complex eigenvectors using the state-

space method for the changed values of the parameters.

For the 2% change of the system property matrices, the

same are again calculated by obtaining the changes from

Eqs. (45) and (46) and then adding it with the unper-

turbed values. Doing so, we also have used the expres-

sion for the approximate complex modes derived earlier

in Section 2 and, thus, have made use of all the ap-

proximations incorporated in this paper. Finally, sub-

tracting the vectors obtained by these two methods, the

error vector can be obtained. In Fig. 6, the norm of this

error vector as a percentage of the norm of undamped

modes shapes (i.e., for the ith mode, �kuexact
i ÿ

u
approx
i k=kxik� � 100) is plotted for all the 10 modes. The

value of c is being varied here from 0.03 to 0.15 in steps

of 0.03 to see the behaviour of the error as the damping

increases. Corresponding associated Q-factors for all the

modes for the unperturbed system at each values of c are

shown in Table 1. This table together with Fig. 6 gives

an idea of the error results from the approximate anal-

ysis of rate of change of the mode shapes. It may be

observed that results are fairly accurate (maximum error

2%) for value of c up to 0:09 (see the table for the cor-

responding Q-factors). For c � 0:15 (the maximum

considered here), when the Q-factors are quite low, we

get a maximum error of about 13% which is probably

not acceptable. By considering such high damping val-

ues, we want to see the limit of acceptability of the ap-

proximate analysis developed here, in practice, if ever,

we encounter such a high value of damping in engi-

neering applications. This analysis indicates that the

approximate theory developed here can be used over a

wide range of engineering applications, and, as a rule of

thumb, results in acceptable accuracy when Q-factors

are above 10 or so. This conclusion is based on the

sample problem being studied here: there might be

special cases when anomalies may be observed, which

however needs further investigation.

6. Conclusion

Derivatives of complex eigenvectors of non-propor-

tionally damped discrete linear system with respect toFig. 5. Linear array of 10 spring-mass oscillators, m � 1, k � 1.

Fig. 6. Norm of % error in total change of mode shape vectors

for a linear array of 10 spring-mass system.
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the system parameters have been derived using small

damping assumption. The analytical method developed

avoids the use of the state-space formulation and is

more consistent with the notion of traditional modal

analysis. Based on the classical ®rst-order perturbation

theory, an expression for the complex eigenvectors is

suggested, and it was shown that a minor correction can

result in more accuracy. Derivatives of complex eigen-

vectors were expressed in terms of complex eigensolu-

tions derived earlier in terms of the real undamped

modes. Based on this formulation, the total change in

eigenvalues and eigenvectors was obtained for a more

general case when all the elements of mass, sti�ness and

damping matrices are varying. The small damping ap-

proximation used to derive rates of change of the

complex eigenvectors gives an acceptable accuracy

within the range of most engineering applications. The

expressions derived here generalize the earlier results for

undamped systems to the damped systems, and will al-

low sensitivity studies of eigensolutions by involving

mass, sti�ness and damping properties to be undertaken

in an uni®ed manner using familiar classical normal

modes only.
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Table 1

Q-factors for the 10 modes at ®ve di�erent values of c

Mode no. c � 0:03 c � 0:06 c � 0:09 c � 0:12 c � 0:15

1 24.9106 12.4191 8.2391 6.1369 4.8655

2 90.5875 45.2995 30.2060 22.6610 18.1352

3 144.6858 72.3829 48.2995 36.2708 29.0638

4 151.1147 75.5415 50.3437 37.7399 30.1741

5 188.0051 94.0001 62.6635 46.9937 37.5901

6 216.9776 108.4985 72.3435 54.2701 43.4299

7 235.0960 117.4584 78.2057 58.5487 46.7294

8 316.9661 158.7913 106.1986 79.9947 64.3362

9 309.1315 155.5264 104.7780 79.7679 65.0720

10 173.1975 86.2598 57.1333 42.4657 33.5917
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