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On Symmetrizable Systems
of Second Kind
We discuss under what conditions multiple-parameter asymmetric linear dynamica
tems can be transformed into equivalent symmetric systems by nonsingular linear
formations. So far, in structural dynamics literature this problem has been address
the context of the original work by Taussky. Taussky’s approach of symmetrization
based on similarity transformation. In this paper an approach is proposed to transf
asymmetric systems into symmetric systems by equivalence transformation. W
Taussky’s approach of symmetrization by similarity transformation ‘‘first kind’’ and p
posed approach by equivalence transformation ‘‘second kind.’’ Since equivalence t
formations are most general nonsingular linear transformations, conditions of symm
zability obtained here are more ‘‘liberal’’ than the first kind and numerical calculatio
also become more straightforward. Several examples are provided to illustrate the
approach.@S0021-8936~00!00504-3#
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1 Introduction
Theory of linear dynamics of multiple parameter symmet

systems is well developed now. However, dynamical behavio
some systems encountered in practice cannot be express
terms of symmetric coefficient matrices or self-adjoint linear o
erators. Some examples are gyroscopic and circulatory sys
~@1#!, aircraft flutter~@2#!, ship motion in sea water~@3#!, contact
problems~@4#!, and many actively controlled systems~@5#!. Few
authors have considered such general asymmetric dynamical
tems. Fawzy and Bishop@6# presented several relationships sat
fied by the eigenvectors and ‘‘eigenrows’’ of a damped asymm
ric system and also presented a method to normalize th
Caughey and Ma@5# have derived conditions under which suc
systems can be diagonalized by asimilarity transformation.In a
subsequent paper Ma and Caughey@7# utilized equivalence trans-
formation to analyze asymmetric nonconservative systems
gave the condition under which they can be diagonalized.
cently Adhikari@8# proposed a method to obtain~complex! eigen-
solutions of general asymmetric nonconservative systems wit
converting the equations of motion into first-order form.

The above-mentioned works have certainly enhanced the po
of modal analysis in dealing with asymmetric systems. Howev
asymmetric systems are still not as well understood as symm
systems. For example, rightly pointed out by Kliem@9#, stability
investigations become substantially easier if the system matr
are symmetric. Without doubt, it would be preferable if asymm
ric systems can be transformed into equivalent symmetric syst
so that one can take advantage of the well-developed theorie
symmetric systems to analyze them. This is the primary reaso
study ‘‘symmetrizability’’ of asymmetric systems. In linear dy
namics literature symmetrizability has been addressed bysimilar-
ity transformationbased on Taussky’s@10# definition. We call
Taussky’s approach of symmetrization by similarity transform
tion as ‘‘symmetrization of first kind.’’ In this paper symmetriz
ability of a matrix is redefined in the context ofequivalence trans-
formation. Such symmetrization will be called ‘‘symmetrizatio
of second kind.’’

Equivalence transformations are the most general class of
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singular linear transformations. This motivates us to utili
equivalence transformation rather than similarity transformat
for symmetrization of asymmetric systems. It will be shown th
much generality can be achieved by using symmetrization of
second kind compared to the first kind. Notations and definitio
of some terminologies frequently used in this paper are given
Section 2. Taussky’s version of symmetrization and a brief rev
of the literature on its applications in structural dynamics is p
sented in Section 3. In Section 4 we formally define the symm
trization of the second kind. For the sake of generality, some b
results on such symmetrization are presented on complex m
ces. Numerical methods are outlined to carry out such a sym
trization procedure. In view of the undamped and damped
namical systems, simultaneous symmetrization of two and th
matrices are considered in Section 5 and Section 6, respecti
Finally, Section 7 summarizes the main results of this paper
some suggestions towards further research required to suc
fully apply this new approach is provided. Throughout the pa
suitable numerical examples are provided to illustrate the deri
results.

2 Notations, Basic Concepts, and Definitions

By RN3N we mean the space ofN3N real matrices andCN3N

stands for the space ofN3N complex matrices. AnN3N matrix
taken from either real or complex number field will be denoted
FN3N. A matrix A is called positive definite if all of its eigenval
uesl i.0 and will be denoted byA.0. A unit matrixIPRN3N is
a diagonal matrix with all diagonal entries equal to one. LetA
PCN3N, then we denoteAT, Ā, A21, A2T, andA* be the trans-
pose, complex conjugate, inverse, inverse transposed, and t
posed conjugate. A matrixA is calledsymmetricif A5AT, Her-
mitian if A5A* , and unitary if AA*5I . If A is real then a
Hermitian matrix is equivalent to a symmetric matrix and a u
tary matrix is equivalent to a real orthogonal matrix asAAT5I .
For a matrixA, by sayingA21 exists we mean none of its eigen
values is equal to 0 and thatA is nonsingular. Two matrices,A
andB, related byB5VTAU for some nonzeroU andV, are called
an equivalence transformation.WhenVT5U21, the equivalence
transformation is called thesimilarity transformationand we call
A andB similar. In the eventV5U the equivalence transforma
tion is acongruence transformation.Classical modal transforma
tion in symmetric systems is an example of congruence trans
mation. WhenVT5U215UT, we call such transformation the
orthogonal transformation.Further, if VT5V21 and UT5U21,
such transformation is called thebiorthogonal transformation.A
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matrix A is said to bediagonalizableif it is similar to a diagonal
matrix and that diagonal matrix contains all the eigenvalues oA
with proper multiplicities. A matrix is diagonalizable if and onl
if it has N linearly independent eigenvectors.

3 Symmetrizability of the First Kind
The concept of symmetrizability of an asymmetric matrix w

originated from an excellent result by Taussky and Zassenh
@11# which says ‘‘for everyAPFN3N there is a non-singular sym
metric matrix transformingA into its transpose.’’ Based on thi
general result it was shown that every real square matrix can
expressed as a product of two real symmetric matrices, that

A5S1S2 ; Si5Si
TPRN3N, (3.1)

always holds. Later Taussky@10# proved that if one of the factors
in this representation is positive definite thenA can be trans-
formed into a symmetric matrix by a similarity transformation a
vice versa. She formally definedsymmetrizabilityof a matrix as
the following:
DEFINITION 1. A matrixA is symmetrizable if and only if any on
of the following hold:

1 A is the product of two symmetric matrices, one of which
positive definite;

2 A is similar to a symmetric matrix;
3 AT5S21AS with S5ST.0; and
4 A has real characteristic roots and a full set of characteri

vectors.

Huseyin and Liepholz@1# were possibly first to recognize th
importance of Taussky’s result in the context of structural dyna
ics. However, symmetrization was not properly exploited unti
decade later when Inman’s@12# paper appeared. Inman’s wor
inspired several authors to consider the dynamics of symme
able asymmetric systems. Subsequent works by Ahmadian
Inman @13,14#, Ahmadian and Chou@15#, Shahruz and Ma@16#,
and Cherng and Abdelhamid@17# made significant contributions
and symmetrization of the first kind is much better understo
now. Next, a more general approach for symmetrization
proposed.

4 Symmetrizability of the Second Kind

4.1 Definition. Now we will introduce a new definition of
symmetrizability by utilizing equivalence transformation.
DEFINITION 2. A matrixA is symmetrizable of the second kind
and only if there exist two nonzero matricesL and R such that
Ã5LTAR is a symmetric matrix.

This definition of symmetrizability is quite general and val
for both real and complex matrices. It also holds Taussky’s d
nition as a special case whenLT5R215R2T. In the above defi-
nition, evenA is realL andR might be complex in order to mak
Ã symmetric. For anyA, whenL andR are real matrices we cal
suchA real symmetrizableand complex symmetrizablewhen L
and R are complex. Taussky@18# and Pommer and Kliem@19#
have discussed complex symmetrizable matrices in the conte
a similarity transformation. Applications of such complex symm
trizability in linear dynamical systems were given by Kliem@9#.

4.2 Basic Results. Some basic results on symmetrizabili
of the second kind and a numerical method to carry out suc
symmetrization procedure will be developed. In order to achi
more generality, one of our main results is presented
nonsquare complex matrices in the following theorem:
THEOREM 4.1.Every rectangular complex matrixAPCr 3s can be
transformed to a real symmetric (square) matrix by an equi
lence transformation.

Proof. We use a result by Eckrat and Young~@20#, Theorem 1!
which states thatfor everyAPCr 3s there are two unitary matrices
XPCr 3r and YPCs3s such thatD5X* AY is a diagonal matrix
798 Õ Vol. 67, DECEMBER 2000
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with real elements, none of which are negative.If rank(A)5k,
then Williamson @21# has shown thatD5@02

L
03

01# where L

5diag(l1,¯ ,lk) is a real diagonal matrix and01 , 02 , and03 are
(k,s2k), (r 2k,k), and (r 2k,s2k) null matrices. Without loss
of generality we selectL5X̄Q1 and R5YQ2 for some nonzero

Q1PRr 3n andQ2PRs3n such thatQ15@Q
2
1

Q

Q
3
1

Q1
1

# andQ25@Q
2
2

Q

Q
3
2

Q1
2

#

whereQPRk3k andQj
i , i 51,2; j 51,2,3 are all real matrices o

proper orders. Using these, one hasÃ5LTAR5Q1
TX* AYQ2

5Q1
TDQ25@ 0̃2

QTLQ

03

0̃1#PRn3n where0̃j ; j 51,2,3 are all null ma-

trices with proper orders. SoÃ is real symmetric matrix and this
completes the proof. h

Remark 4.1.The two matricesQ1 andQ2 utilized above can be
selected in such a way that the symmetric form becomes non
gular and has the same rank asA. Observe that becauseD is a
diagonal matrix with non-negative real elements,Q1 andQ2 can
also be selected in a way such that the symmetric form beco
positive definitive. The symmetric form ofA is, however, not
unique becauseQ1 andQ2 can be chosen in several ways.

This result clearly demonstrates the generality of the symme
zation of the second kind compared to the first kind which can
be applied to rectangular matrices. Of course, Theorem 4.
applicable for real matrices as a special case. WhenA is a real
matrix we have the following interesting special result:
THEOREM 4.2. Every real matrixA is real symmetrizable of the
second kind.

Proof. We use a result by Pearl~@22#, Theorem 1!. This gives
the condition under which the unitary matrices which reduces
matrix A to a real diagonal form by an equivalence transformat
in Eckrat and Young’s theorem are real orthogonal matrices.
cording to this result,for APCr 3s there are two real orthogonal
matricesO1PRr 3r and O2PRs3s such thatD5O1* AO2 is a di-
agonal matrix with real non-negative elements if and only ifAA*
and A* A are both real matrices.The theorem is proved sinc
~trivially ! this condition is always satisfied whenA is real. h

We have described two important results on symmetrization
the second kind. From a practical point of view the obvious qu
tion is, for a given matrixA, how to calculateL and R so that
Ã5LTAR is a real symmetric matrix? In answer to this questio
we observe that the proof given by Eckrat and Young@20# of their
theorem described previously can be used for obtainingL andR.
For computational purposes the following steps may be follow
to transform a general complex matrixAPCr 3s to a nonsingular
real square matrix using an equivalence transformation.

1 Calculate the matrixM5AA* PCr 3r . Solve the eigenvalue
problem Mxi5l i

2xi , ; i 51,¯r . Since M is a non-negative
Hermitian its eigenvector matrix can be normalized to a unit
matrix. Suppose rank(A)5k, arrange the numbering of the eigen
values so thatl1>l2>¯>lk.0; lk115¯5l r50. Denote
X5@x1 ,x2 , ¯ ,xk#PCr 3k as the ordered collection of the eigen
vectors.

2 Evaluateyi5A* xi /l i , ; i 51,¯k. Set Y5@y1y2 , ¯ ,yk#
PCs3k.

3 Consider any nonzeroQPRk3k and obtainL5X̄QPCr 3k

andR5YQPCs3k. Finally check thatÃ5LTAR is a (k3k) real
nonsingular symmetric matrix.

For the sake of generality the method is proposed for rectan
lar complex matrices. This procedure is obviously applicable
real square matrices we normally encounter in the equation
motion of linear systems. WhenA is real, M becomes a rea
symmetric matrix and consequentlyX, Y, L , and R all become
real matrices. For a further special case, whenA is a symmetriz-
able matrix of first kind, this procedure provides an alternat
and easy way to find symmetric forms as the calculation
Taussky’s factorization can be avoided.
Transactions of the ASME
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Example 4.1. The procedure outlined above can be illustrat
by the following rectangular complex matrix:

A5F 1.013.0i 22.011.0i 1.522.0i

22.023.0i 6.012.0i 7.012.0i G . (4.1)

Step 1: We calculateM5AA* 5@214.50110.00i
21.25

106.00
214.50210.00i #.

Solving the eigenvalue problemMxi5l i
2xi and arranging

accordingly one has l i
25$109.5150, 17.7350% and X

5@ 0.9807
20.161120.1111i

0.161120.1111i
0.9807 #. Note that rank(A)52.

Step 2: Calculating one obtains

Y5F 20.234710.3167i 0.235520.5311i

0.582420.1508i 20.289020.4677i

0.654120.2341i 0.564310.2045i
G .

Step 3: Now arbitrarily select the matrixQ5@1.4109
0.1021

0.3519
0.2605# so

that L5X̄Q5@0.327410.1568i
1.367210.0113i

0.312110.0391i
0.303110.0289i # and

R5YQ5F 0.308320.7170i 0.021820.1044i

20.348320.6752i 0.050020.2039i

0.863010.2647i 0.369010.0110i
G .

Using thisL andR one hasÃ5LTAR5@2.3692
8.4923

1.2315
2.3692#, which is a

real nonsingular symmetric matrix.

Example 4.2. Consider a real asymmetric matrix

A5F 1.0 22.0 1.5

12.0 6.0 7.0

22.0 4.0 9.0
G . (4.2)

Observe that rank(A)53. Selecting the matrix

Q5F 0.0645 20.1647 0.1436

20.8923 0.2226 0.6155

0.1611 0.2298 0.3708
G (4.3)

and following the procedure described previously we obtain

L5F 0.1735 0.2198 0.3701

0.3901 20.2469 20.1170

20.8026 0.1421 0.6215
G

and (4.4)

R5F 0.7299 20.2298 20.2942

20.2638 20.2377 20.1620

20.4733 0.1419 0.6513
G

and both are real matrices. From these one has

Ã5LTAR5F 7.0392 21.7960 24.4600

21.7960 1.0004 1.0316

24.4600 1.0316 3.9722
G

a real nonsingular symmetric matrix. Interestingly, note t
eig(A)5$12.8914, 1.554315.0507i , 1.554325.0507i %, i.e., A
does not satisfy Taussky’s condition of symmetrizability~Defini-
tion 1!. Thus A in ~4.2! is a real symmetrizable matrix of th
second kind but not a real symmetrizable of the first kind. T
illustrates generality of the proposed approach of symmetriza
compared to the conventional approach.

Because the coefficient matrices in the equations of mo
of linear vibrations are real we next consider only real squ
matrices.
Journal of Applied Mechanics
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5 Simultaneous Symmetrization of Two Matrices
Equations of motion of a linear undamped~nongyroscopic! sys-

tem can be expressed by

Aẍ~ t !1Bx~ t !50, t.0, (5.1)

whereAPRN3N andBPRN3N andx(t)PRN is the vector of the
generalized coordinates.Were A and B symmetric and positive
definite matrices they would, respectively, represent the mass
stiffness matrices. Here, however, no such restrictions are
posed onA and B. Huseyin @23# has shown that the traditiona
modal analysis, originally developed for symmetric systems,
be extended to solve Eq.~5.1!. There existright eigenvectorsor
normal modesand left eigenvectorsor adjoint modeswhich un-
couple the equations of motion intoN single-degree-of-freedom
oscillators. Although system~5.1! can always be solved usin
normal modes and adjoint modes, it would be more useful if it c
be transformed to a symmetric system. We consider the follow
two cases to investigate symmetrizability of system~5.1!.

5.1 Case 1: A and B Have Real Roots and A is Nonsingu
lar. This is the most common case we encounter in practice
system~5.1! is ‘‘truly’’ undamped thenA or B does not posses
any complex roots because, otherwise a stable system will
have periodic motion for an infinitely long time but vibration~in
some degrees-of-freedom! will decay due to the complex natur
of the eigenvalues. AsA is nonsingular, rewriting Eq.~5.1! one
has

Iẍ1Ex50 (5.2)

whereE5A21BPRN3N has real roots as bothA andB have real
roots. Because this matrix satisfies Condition 4 of Taussky’s d
nition of symmetrizability, system~5.2! can be transformed to a
symmetric system by a similarity transformation. From this d
cussion we have the following interesting result:
THEOREM 5.1. All asymmetric undamped systems are similar
symmetric undamped systems.

Practical implementation of Taussky’s factorization~3.1! is not
straightforward~see Ahmadian and Chou,@15#, Shahruz and Ma
@16#, and Cherng and Abdelhamid@17#!. For this reason it is re-
quired to develop efficient numerical methods for finding asso
ated symmetric form~s! of system~5.1!. Recall that as system
~5.1! is symmetrizable of the first kind it is also symmetrizable
the second kind. We use the latter approach to avoid the calc
tion of Taussky’s factorization.

It has been mentioned that there always exist two matriceU
PRN3N ~normal modal matrix! andVPRN3N ~adjoint modal ma-
trix! such thatVTAU andVTBU are both real diagonal matrices
Numerical methods for obtainingU andV are well developed~see
Huseyin @23# and Ma and Caughey@7# for further discussions!.
SelectL5VQ andR5UQ for some nonzeroQPRN3N. Clearly
LTAR and LTBR are both symmetric matrices now. This a
proach is much easier for finding symmetric forms than the
proach via Taussky’s factorization. Also note that symmet
forms are nonunique since one can select the matrixQ in many
ways. The following example demonstrates this procedure.

Example 5.1. Suppose the coefficient matrices of an u
damped system of the form~5.1! are given by

A5F 0.5740 1.3858 1.3858

0.7070 0.7070 20.7070

0.4620 20.1914 20.1914
G

and

B5F 1.3748 10.9440 25.2975

1.2625 2.8770 217.4195

0.7455 24.1244 0.8625
G . (5.3)
DECEMBER 2000, Vol. 67 Õ 799
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Numerical values ofA andB are taken from Ma and Caughey@7#.
It may be verified thatA, B and consequentlyE5A21B are sym-
metrizable matrices of first kind.

Solving the right and left eigenvalue problemsBU5LAU and
VTB5LVTA we obtain the undamped modal matrices

U5F 0.9996 20.5434 0.3951

20.0271 0.8391 20.4850

20.0044 20.0253 0.7802
G

and

V5F 0.2868 0.4247 0.4617

0.4677 0.2613 20.7124

0.8361 20.8668 0.5285
G (5.4)

and the natural frequencies squared diag(L)5$1.8241, 9.5561,
23.5486%. Selecting the matrixQ given by ~4.3! one obtains

L5VQ5F 20.2860 0.1534 0.4737

20.3177 20.1826 20.0362

0.9126 20.2092 20.2176
G

and

R5UQ5F 0.6131 20.1948 20.0445

20.8286 0.0798 0.3328

0.1480 0.1744 0.2731
G . (5.5)

Using these matrices we have

Ã5LTAR5F 0.6282 20.1303 20.3608

20.1303 0.1032 0.1514

20.3608 0.1514 0.4150
G

and

B̃5LTBR5F 6.2653 20.7600 22.8429

20.7600 1.3947 2.5574

22.8429 2.5574 5.3631
G . (5.6)

Above is a symmetric form of the asymmetric system~5.3!. Note
that symmetric form of this system can also be obtained alte
tively by calculating Taussky’s factorization ofE.

5.2 Case 2: A and B Are General Matrices. We have
shown that whenA and B have real roots, system~5.1! has an
equivalent symmetric form via real linear transformations. Ho
ever, if these matrices have complex roots, the matrixE in Eq.
~5.2! in general does not satisfy Taussky’s definition of symm
trizability. In that case, can system~5.1! be transformed to a rea
symmetric system using a real linear transformation? Our ans
is the following:
LEMMA 5.2. Linear undamped system~5.1! is real symmetriz-
able if ATB and BAT are symmetric matrices.

Proof. According to Thompson@24# ‘‘there exist two real or-
thogonal matricesO1PRN3N and O2PRN3N such that square
matricesO1

TAO25La and O1
TBO25Lb are diagonal matrices i

and only if ATB and BAT are symmetric matrices.’’ Now con
structL5O1Q andR5O2Q for some nonzeroQPRN3N. Using
these we haveLTAR5QTLaQ and LTBR5QTLbQ are both
symmetric matrices. This completes the proof. h

This result provides only asufficientcondition for simultaneous
real symmetrizability of the general matricesA andB. Lack of it
does not necessarily preclude existence of a real symmetric
of system~5.1!. The following examples illustrates this fact.

Example 5.2. Consider an undamped system withA same as
Example 4.2 and
800 Õ Vol. 67, DECEMBER 2000
na-

w-

e-
l
wer

orm

B5F 1.2044 25.4425 2.7013

2.1007 0.8393 0.1894

21.8393 0.8953 2.5087
G . (5.7)

One may verify thatA and B are not symmetrizable of the firs
kind. Observe that the matrices

ATB5F 30.0910 2.8380 20.0427

2.8380 19.5018 5.7688

20.0427 5.7688 27.9563
G

and

BAT5F 16.1414 0.7063 0.1331

0.7063 31.5697 0.8607

0.1331 0.8607 29.8380
G

are both symmetric. Since the system matrices satisfy the co
tion of Lemma 5.2 the transforming matricesL andR ~computed
before in Eq.~4.4!! which symmetriesA also symmetriesB as

LTBR5F 2.8766 20.4670 21.4786

20.4670 0.5501 0.9468

21.4786 0.9468 2.1818
G

is a symmetric matrix.

Example 5.3. Consider another undamped system withA in
the above example and

B5F 0.1955 1.8857 23.2199

22.1312 20.2236 0.3609

1.0378 1.9501 21.5606
G . (5.8)

Observe that the matrices

ATB5F 227.4545 24.6975 4.2325

29.0269 2.6874 2.3629

25.2845 18.8142 216.3493
G

and

BAT5F 28.4058 28.8789 221.8278

21.1426 224.3894 6.6164

25.2033 13.2300 28.3212
G

are not symmetric. However, the transforming matricesL andR
obtained in Eq.~4.2! and also the symmetriesB as

LTBR5F 21.2355 0.8082 1.2380

0.8082 20.4868 20.9953

1.2380 20.9953 22.0335
G

is a symmetric matrix. So the condition outlined in Lemma 5.2
only sufficient.

6 Simultaneous Symmetrization of Three Matrices
The equations of motion describing free vibration of a v

cously damped linear system can be expressed by

Aẍ~ t !1Cẍ~ t !1Bx~ t !50, t.0. (6.1)

We assumeA, B, andC areN3N arrays of real numbers but ar
otherwise general. Were these matrices symmetric and pos
definite,A, B, andC would, respectively, be the mass, stiffnes
and viscous damping matrices. The equations of motion are
characterized bythree real matrices and this brings an addition
complication in the system dynamics. It is required to find a no
singular linear transformation which simultaneously symmetr
A, B, andC. Unlike the undamped case, where in the absence
Transactions of the ASME
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the C matrix conditions for obtaining such a transformation we
easy to meet~Theorem 5.1!, admissible forms of these matrice
gets restricted here. We will investigate what forms of restrictio
should be imposed on the system matrices so that the equatio
motion can be transformed into a symmetric form. The followi
two cases are considered here.

6.1 Case 1: A is Nonsingular and All the Matrices Have
Real Roots. WhenA is nonsingular, Eq.~6.1! can be rewritten
as

Iẍ ~ t !1Fẋ~ t !1Ex~ t !50. (6.2)

whereE5A21BPRN3N andF5A21CPRN3N. SinceA, B, and
C have real rootsE andF also have real roots. ThusE andF are
individually symmetrizable of the first kind. But this does n
imply that system~6.2! is also symmetrizable, unlessI , E, andF
are simultaneously symmetrizable. A basic result in this regar
the following:
THEOREM 6.1. All diagonalizable damped asymmetric syste
are similar to symmetric systems.
It is well known that system~6.2! is diagonalizable by a similarity
transformation if and only ifE andF commutes in multiplication,
i.e., EF5FE. When this condition is satisfied the system is sy
metrizable of the first kind and hence also symmetrizable of
second kind. Following the approach outlined before in Sect
5.1, symmetric form~s! may be obtained by utilizing equivalenc
transformation to avoid the calculation of Taussky’s factorizati
A result similar to Theorem 6.1 was also established by Inm
~@12#, Theorem 1! and Shahruz and Ma~@16#, Theorem 3.1!. Note
that the opposite statement of the above theorem, i.e., ‘‘a dam
asymmetric system similar to a symmetric system is diagona
able’’ is in general not true. Thus, diagonalizability of a system
only a sufficient condition for symmetrizability and rather restr
tive. The following is a more stronger and liberal result:
THEOREM 6.2. ~Inman @12#, Theorem2! system~6.2! is symme-
trizable if and only ifE andF have a common symmetric positiv
definite factor.

From Taussky’s factorization~3.1! one can writeE5S1S2 , S1

5S1
T.0, S25S2

T andF5T1T2 , T15T1
T.0, T25T2

T . According
to the above theorem system~6.2! is symmetrizable if and only if
S15T1 . If this condition is satisfied Eq.~6.2! can be brought into
symmetric form using a similarity transformation involving asym-
metric matrix. For practical purposes this condition is difficult
check. A more convenient result is the following:
THEOREM 6.3. ~Kliem @9#, Theorem 1! system~6.2! is real sym-
metrizable if and only if there exist modal matricesUEPRN3N

and UFPRN3N ~consisting of full eigenvector sets ofE and F!
such thatUF

21UE is orthogonal, or equivalentlyUFUF
T5UEUE

T .
Further discussions on this theorem can found in Pommer

Kliem @19#. When the condition of the above theorem is satisfi
Eq. ~6.2! can be brought into symmetric form by a similari
transformation. In this case the symmetrizing matrix may be
nonzero matrix, unlike a symmetric matrix utilized in Theore
6.2. For this reason Kliem’s@9# condition is more liberal and
holds Inman’s@12# condition as a special case when the symm
trizing similarity transformation itself is a symmetric matrix. Thu
Theorem 6.2, and consequently results obtained by Ahmadian
Chou~@15#, Theorem 2! and Shahruz and Ma~@16#, Theorem 4.1!
based on this theorem are onlysufficientconditions for symmetri-
zation of the first kind of system~6.1!.

Now, symmetrizability of system~6.1! by means of the equiva
lence transformation will be introduced. Our main result is t
following:
THEOREM 6.4. System~6.1! is real symmetrizable of the secon
kind if and only if there existUPRN3N andVPRN3N, the matri-
ces of undamped right and left eigenvectors, such thatVTCU is
symmetric.

Proof. BecauseUPRN3N and VPRN3N are the matrices of
right and left eigenvectors of the generalized eigenvalue prob
Journal of Applied Mechanics
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involving A and B, VTAU5La and VTBU5Lb are both real
diagonal matrices. SelectL5VQ andR5UQ, whereQPRN3N is
nonzero. ClearlyLTAR5QTLaQ and LTBR5QTLbQ are both
real symmetric matrices. Using this transformation, the sec
term of Eq.~6.1! is now LTCR5QT(VTCU)Q. Thus the trans-
formed system is symmetric if and only ifVTCU is a symmetric
matrix. h

Since the equivalence transformations are more general
similarity transformations it is expected that the condition of sy
metrizability given by this theorem is less restrictive than the th
previously established results discussed before. The following
ample illustrates this fact:
Example 6.1. Suppose, for a damped dynamic system,A andB
are as in Example 5.1 and

C5F 4.1429 9.4510 9.0014

4.6465 3.8206 23.2816

1.2006 0.5460 21.5001
G . (6.3)

Transforming the system in the form of Eq.~6.2! one may
verify that bothE and F are individually symmetrizable of the
first kind. However, none of the conditions of simultaneous sy
metrizability outlined in Theorems 6.1–6.3 is satisfied byE and
F. Now, using the modal matricesU and V calculated before in
Eq. ~5.4! we have

VTCU5F 4.2300 1.7900 20.8400

1.7900 26500 1.8900

20.8400 1.8900 3.2100
G

is a symmetric matrix, i.e., the condition of Theorem 6.4 is sa
fied. The transformation matricesL and R given by Eq. ~5.5!
which symmetriesA andB also symmetriesC as

LTCR5F 1.4439 20.4735 21.8602

20.4735 0.5412 0.8591

21.8602 0.8591 2.6222
G

is a symmetric matrix. Thus, the system under consideratio
real symmetrizable of the second kind but not the first kind.

6.2 Case 2: A, B, and C are General Real Matrices.
When the system matrices are general, some or all of them
have complex roots so that they do not satisfy Tausskkey’s c
dition of symmetrizability. For such systems, in general Kliem
result ~Theorem 6.3! gives the condition ofcomplex symmetriz-
ability of the first kind and Theorem 6.4 gives the condition
complex symmetrizability of the second kind. Asufficientcondi-
tion for real symmetrizability of such systems is the following:
LEMMA 6.5. System~6.1! is real symmetrizable of second kind
there existU and V, the matrices of undamped right and le
eigenvectors, such thatATB, BAT and VTCU are all symmetric
matrices.

This lemma can be proved easily following the results
Lemma 5.2 and Theorem 6.4. The example considered below
lustrates this result:

Example 6.2. Suppose, for a damped linear system,A andB
are given by Example 5.2 and

C5F 4.3160 22.5771 21.4626

2.7122 1.8365 20.1999

1.3827 22.5631 4.3419
G . (6.4)

One may easily verify that none of the system matrices are in
vidually real symmetrizable of the first kind. We compute t
undamped modal matrices
DECEMBER 2000, Vol. 67 Õ 801
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U5F 0.6498 0.7383 0.1807

0.4364 20.1676 20.8840

0.6224 20.6533 0.4311
G

and

V5F 0.0445 20.0108 0.990

0.9245 20.3784 20.0453

0.3785 0.9256 20.0068
G

and notice that

VTCU5F 3.2290 1.3664 0.6412

1.3664 22.0229 4.4962

0.6412 4.4962 2.5404
G

is a symmetric matrix. So all the conditions outlined in Lemm
6.5 are satisfied. Using the matrixQ given by ~4.3! one has

L5VQ5F 0.1735 0.2198 0.3701

0.3901 20.2469 20.1170

20.8026 0.1421 0.6215
G

and

R5UQ5F 20.5878 0.0988 0.6148

0.0353 20.3123 20.3683

0.6926 20.1489 20.1529
G .

These real matrices transform the system to a real symm
form.

7 Concluding Discussions and Further Research
A method of symmetrization of asymmetric linear dynamic

systems by means of equivalence transformation is introdu
This new method of symmetrization is called ‘‘symmetrization
the second kind’’ and the existing symmetrization method ba
on the similarity transformation is called ‘‘symmetrization of fir
kind.’’ Because the equivalence transformations are most gen
linear transformations, symmetrization of the second kind ho
that of the first kind as a special case and offers a general
method to obtain symmetric forms of finite dimensional asymm
ric linear systems.

Several results are provided on symmetrization of the sec
kind. We have discussed real and complex symmetrizability ba
on the nature of the symmetrizing matrices. It was proved t
every rectangular complex matrix is complex symmetrizable
the second kind to a real square matrix. It is possible to perfo
the symmetrization in such a way that the resulting symme
form becomes positive definite. As a special case it was sh
that all real matrices are real symmetrizable of the second k
These results are more general than symmetrizability of the
kind which cannot be applied to rectangular matrices. An e
numerical method is presented to calculate symmetric forms
general matrices. This method is much easier than calculating
symmetric form of the first kind using Taussky’s factorization.

In view of the undamped and damped dynamical systems,
have discussed simultaneous symmetrizability of two and th
real square matrices. It was shown that~truly! undamped asym-
metric systems are always real symmetrizable. The condition
real symmetrizability of general undamped systems is deriv
We also have given a condition for real symmetrizability of t
second kind for damped systems. Our result is more liberal t
the existing results and also much easier to check from a num
cal point view.
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Further research is required to successfully apply the concep
symmetrizability of the second kind in asymmetric linear dynam
cal systems. By an example it was shown that the condition
symmetrizability of a damped system given by Theorem 6.4
less restrictive than the existing results. A mathematical proo
establish this fact will be useful. Moreover, this condition is spe
tral ~i.e., an eigensolution calculation is required!, a nonspectral
condition which is more easy to check needs to be develop
Some of our results~Lemma 5.2 and Lemma 6.5! provide only
sufficient conditions for real symmetrizability of systems wi
general coefficient matrices. More stronger results are require
these directions. Further studies regarding stability of the sym
trizing transformations and the robustness of them with respec
perturbations in the entries of the coefficient matrices are a
worth pursuing.
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