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1 Introduction singular linear transformations. This motivates us to utilize
Theory of linear dynamics of multiple parameter Symmetriequivalence'tra.nsformation rather than similariFy transformation
. . elnear symmetrization of asymmetric systems. It will be shown that
systems is well developed now. However, dynamical behavior fﬁuch generality can be achieved by using symmetrization of the
some systems er_lcounte_rgd in prqcnce cannot be_ expresse%égond kind compared to the first kind. Notations and definitions
terms of symmetric coefficient matrices or self-e_ldjomt linear ops¢ some terminologies frequently used in this paper are given in
erators. Some examples are gyroscopic and circulatory syste§ittion 2. Taussky's version of symmetrization and a brief review

([1)), aircraft flutter([2]), ship motion in sea wate{3]), contact f he Jiterature on its applications in structural dynamics is pre-
problems([4]), and many actively controlled systerfi§]). Few sented in Section 3. In Section 4 we formally define the symme-
authors have considered such general asymmetric dynamical y$ation of the second kind. For the sake of generality, some basic
tems. Fawzy and Bishoj] presented several relationships satisresuits on such symmetrization are presented on complex matri-
fied by the eigenvectors and “eigenrows” of a damped asymmefes. Numerical methods are outlined to carry out such a symme-
ric system and also presented a method to normalize thefization procedure. In view of the undamped and damped dy-
Caughey and M45] have derived conditions under which suchamical systems, simultaneous symmetrization of two and three
systems can be diagonalized bysianilarity transformationIn a matrices are considered in Section 5 and Section 6, respectively.
subsequent paper Ma and Caughglutilized equivalence trans- Finally, Section 7 summarizes the main results of this paper and
formation to analyze asymmetric nonconservative systems agdme suggestions towards further research required to success-
gave the condition under which they can be diagonalized. Reily apply this new approach is provided. Throughout the paper
cently Adhikari[8] proposed a method to obtaicompley eigen-  suitable numerical examples are provided to illustrate the derived
solutions of general asymmetric nonconservative systems withegsults.
converting the equations of motion into first-order form.

The above-mentioned works have certainly enhanced the power i . .
of modal analysis in dealing with asymmetric systems. Howevef, Notations, Basic Concepts, and Definitions
asymmetric systems are still not as well understood as symmetricBy RN*N we mean the space fx N real matrices andN*N

systems. For example, rightly pointed out by Klig81, stability stands for the space &fx N complex matrices. AINX N matrix
investigations become substantially easier if the system matrigagen from either real or complex number field will be denoted by
are symmetric. Without doubt, it would be preferable if asymmet:NxN A matrix A is called positive definite if all of its eigenval-
ric systems can be transformed into equivalent symmetric systegb%)\i>0 and will be denoted b >0. A unit matrixl € RN*N is

so that one can take advantage of the well-developed theories f0gjagonal matrix with all diagonal entries equal to one. Ret
symmetric systems to analyze them. This is the primary reason 1q-nx N then we denotd™, A, A~1, A-T. andA* be the trans-

study “symmetrizability” of asymmetric systems. In linear dy-pose complex conjugate, inverse, inverse transposed, and trans-
namics literature symmetrizability has been addressesirhifar- posed conjugate. A matrig is calledsymmetricf A=AT, Her-
ity transformationbased on Taussky’El0] definition. We call mitian if A=A*, and unitary if AA*=I. If A is real lthen a
Taussky's approach of symmetrization by similarity transformgsemitian matrix is equivalent to a symmetric matrix and a uni-
tion as “symmetrization Qf f|rs_t kind.” In this paper Symmetrlz'tary matrix is equivalent to a real orthogonal matrixA&T=1.
ability of a matrix is redefined in the context efjuivalence trans- -« i A by sayingA ! exists we mean none of its eigen-
Lofrgitéc;]r(lj. i,il#]%h”symmetrlzatlon will be called “symmetrization, o 65 is equal to 0 and that is nonsingular. Two matrices
: : . andB, related byB=\VTAU for some nonzertJ andV, are called
Equivalence transformations are the most general class of n%rr]{equivalence transformatiohenV=U"2, the equivalence
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matrix A is said to bediagonalizableif it is similar to a diagonal with real elements, none of which are negatilferank(A) =k,
matrix and that diagonal matrix contains all the eigenvalues of \he, \williamson [21] has shown thatD=[2 %] where A
with proper multiplicities. A matrix is diagonalizable if and only 2 03

if it has N linearly independent eigenvectors. =diagQ\, -+ ,Ny) is a real diagonal matrix ar@;, 0,, and0; are
(k,s—Kk), (r—k,k), and ¢ —k,s—k) null matrices. Without loss
3 Symmetrizability of the First Kind of generality we select =XQ; andR=YQ, for some nonzero
1 2
The concept of symmetrizability of an asymmetric matrix wa®; e R"*" and Q, € R¥*" such thath=[gl gi] and Q2=[gz gé]
originated from an excellent result by Taussky and Zassenhaus Kk P , 23 2
here® e R ande ,1=1,2;j=1,2,3 are all real matrices of

[11] which says “for everyA e FN*N there is a non-singular sym- w i o vy
metric matrix transformingd into its transpose.” Based on this Proper orderi. Using these, one has=L 'AR=Q;X*AYQ,
general result it was shown that every real square matrix can Q@IDQZZEG A® 01] ¢ X0 whereﬁj :j=1,2,3 are all null ma-

expressed as a product of two real symmetric matrices, that is ) % O ~ . ) ) )
trices with proper orders. SA is real symmetric matrix and this

A=SS,; S=STe RV N, (3.1) completes the proof. O
always holds. Later TaussKg0] proved that if one of the factors _emark 4.1The two matrice®, andQ, utilized above can be
in this representation is positive definite théncan be trans- Selécted in such a way that the symmetric form becomes nonsin-
formed into a symmetric matrix by a similarity transformation ang!i'af and has the same rank AsObserve that becaud2 is a
vice versa. She formally definesymmetrizabilityof a matrix as diagonal matrix with non-negative real elemer(, and Q; can
the following: also be selected in a way such that the symmetric form becomes
DEFINITION 1. A matrixA is symmetrizable if and only if any onePositive definitive. The symmetric form ok is, however, not
of the following hold: unique becaus®; andQ, can be chosen in several ways.

) ‘ . ~ This result clearly demonstrates the generality of the symmetri-
1 A is the product of two symmetric matrices, one of which igation of the second kind compared to the first kind which cannot

positive definite; be applied to rectangular matrices. Of course, Theorem 4.1 is
2 A is similar to a symmetric matrix; applicable for real matrices as a special case. Whes a real
3 AT=S1AS with S=S">0; and matrix we have the following interesting special result:
4 A has real characteristic roots and a full set of characteristigieorem 4.2. Every real matrixA is real symmetrizable of the
vectors. second kind.

Huseyin and Liepholz1] were possibly first to recognize the Proof. We use a result by Peafl22], Theorem 1 This gives

importance of Taussky’s result in the context of structural dynantlk-‘e C.O”d't'on un(ljer Wh'Ch| %he unitary matr|c<|as which refduces.the
ics. However, symmetrization was not properly exploited until gmatrle to area d'aQO”a orm by an equivalence trans ormation
decade later when Inman[4.2] paper appeared. Inman’s work™ Egkrat anql Young's theoreT are real orthogonal matrices. Ac-
inspired several authors to consider the dynamics of symmetrf2rding to this rxesultfor AEUXS there are two r*eal orthogonal
able asymmetric systems. Subsequent works by Ahmadian dRatricesO;eR™™" and O, e R**® such thatD=0] AO, is a di-
Inman[13,14), Ahmadian and Cho{i15], Shahruz and M#&16], agonal matrix with real non-negative elements if and onlgA™

and Cherng and Abdelham[d7] made significant contributions and A*A are both real matricesThe theorem is proved since
and symmetrization of the first kind is much better understodttivially) this condition is always satisfied wheénis real. [
now. Next, a more general approach for symmetrization is We have described two important results on symmetrization of

proposed. the second kind. From a practical point of view the obvious ques-
tion is, for a given matrixA, how to calculate. andR so that
4 Symmetrizability of the Second Kind A=LTAR is a real symmetric matrix? In answer to this question,

we observe that the proof given by Eckrat and Yo{2g] of their

4.1 Definition. Now we will introduce a new definition of theorem described previously can be used for obtaihirmmndR.
symmetrizability by utilizing equivalence transformation. For computational purposes the following steps may be followed
DEFINITION 2. A matrixA is Symmetrizable of the second kind |fto transform a genera| Comp|ex matxe CrXS to a nonsingu|ar
and only if there exist two nonzero matricesand R such that  rea| square matrix using an equivalence transformation.
A=LTAR is a symmetric matrix.

This definition of symmetrizability is quite general and valid 1 Calculate the matrit{=AA* e C"*". Solve the eigenvalue
for both real and complex matrices. It also holds Taussky’s defwoblem Mx;=A2x;, Yi=1,---r. Since M is a non-negative
nition as a special case whéd=R"1=R~ . In the above defi- Hermitian its eigenvector matrix can be normalized to a unitary
nition, evenA is realL andR might be complex in order to make matrix. Suppose rank() =k, arrange the numbering of the eigen-
A symmetric. For anyA, whenL andR are real matrices we call Values so that;=\,=:--=N\>0; N,y =---=\,=0. Denote
suchA real symmetrizabland complex symmetrizablhenL ~ X=[X1,Xz, *- %] € C"*¥ as the ordered collection of the eigen-
and R are complex. Tausskyl8] and Pommer and Klierh19] vectors.
have discussed complex symmetrizable matrices in the context oR Evaluatey,=A*x;/\;, Vi=1,---k. SetY=[y1Ys, """, V]

a similarity transformation. Applications of such complex symmee CS*K,
trizability in linear dynamical systems were given by Klig8j. 3 Consider any nonzer@ e R**¥ and obtainL=YQe (rxk
ndR=YQ e C>**. Finally check thaA=LTAR is a (kxk) real

4.2 Basic Results. Some basic results on symmetrizability?"¢ " : .
nsingular symmetric matrix.

of the second kind and a numerical method to carry out such"8
symmetrization procedure will be developed. In order to achieve For the sake of generality the method is proposed for rectangu-
more generality, one of our main results is presented f§ complex matrices. This procedure is obviously applicable to
nonsquare complex matrices in the following theorem: real square matrices we normally encounter in the equations of
THEOREM 4.1. Every rectangular complex matrik e C'** can be motion of linear systems. WheA is real, M becomes a real
transformed to a real symmetric (square) matrix by an equiv&ymmetric matrix and consequent, Y, L, andR all become
lence transformation. real matrices. For a further special case, wheis a symmetriz-

Proof. We use a result by Eckrat and Youfi@0], Theorem 1 able matrix of first kind, this procedure provides an alternative
which states thefor everyA e C'*® there are two unitary matrices and easy way to find symmetric forms as the calculation of
Xe (" andY e C5*° such thatD=X*AY is a diagonal matrix Taussky’s factorization can be avoided.
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Example 4.1. The procedure outlined above can be illustrate8 Simultaneous Symmetrization of Two Matrices

by the following rectangular complex matrix: Equations of motion of a linear undampg@tngyroscopitsys-
1.0+30 —2.0+1.0 1.5-20 tem can be expressed by

A= —-2.0-3.0 6.0+2.0 7.0+2.0/ (4.1) AX(t)+Bx(t)=0, t>0, (5.1)

: _apk_r 2125 -1450-1000; whereAe RN*N andBe RN*N andx(t) e RN is the vector of the
s ?tgp 1t.hWe -calculalue’\/l AS ny\[/l—:.M:.S;)\ElO..OO g 10600 - generalized coordinatesVere A and B symmetric and positive
°"'“9, € eigenvalue gro EMVIXi=AiX; and arranging gefinjte matrices they would, respectively, represent the mass and
accordingly one has \{={109.5150, 17.7330 and X giffness matrices. Here, however, no such restrictions are im-
=[50y o1erioaal- Note that rank)=2. posed onA and B. Huseyin[23] has shown that the traditional
Step 2: Calculating one obtains modal analysis, originally developed for symmetric systems, can
be extended to solve E@5.1). There existright eigenvectorsor
—0.2347-0.3167  0.2355-0.5311 normal modesand left eigenvectoror adjoint modeswhich un-
Y=| 0.5824-0.1508 —0.2890-0.4677 | . couple the equations of motion infd single-degree-of-freedom
oscillators. Although systen(5.1) can always be solved using
0.6541-0.2341 0.5643+0.2045 normal modes and adjoint modes, it would be more useful if it can
1021 o.zeogI so be transformed to a symmetric system. We consider the following

. ; : 0.
thaS;tLe E %QI\I_OENL ;’g‘%’:gﬂl"! 5°_' ?Jfﬁ%_},gfg]maa:;@ (14105 0351 two cases to investigate symmetrizability of systé).
- —L0.3274+0.1568 0.3121+0.0391

0.3083-0.7170  0.0218-0.1044 5.1 Case 1: A and B Have Real Roots and A is Nonsingu-

R=YQ=| —0.3483-0.6752 0.0500-0.2039 | . lar.  This is the most common case we encounter in practice. If
system(5.1) is “truly” undamped thenA or B does not possess

0.8630+0.2647  0.3690+0.0110 any complex roots because, otherwise a stable system will not

have periodic motion for an infinitely long time but vibrati¢in
some degrees-of-freedgnwill decay due to the complex nature
of the eigenvalues. A4 is nonsingular, rewriting Eq(5.1) one

Using thisL andR one hasA=LTAR=[54223 23592 which is a
real nonsingular symmetric matrix.

Example 4.2. Consider a real asymmetric matrix has
A=| 120 60 7.d. 4.2) whereE=A""Be RN*N has real roots as both andB have real
roots. Because this matrix satisfies Condition 4 of Taussky’s defi-
-20 40 9 nition of symmetrizability, systent5.2) can be transformed to a

symmetric system by a similarity transformation. From this dis-

Observe that rank{) =3. Selecting the matrix cussion we have the following interesting result:

0.0645 —0.1647 0.143 THEOREM 5.1. All asymmetric undamped systems are similar to
symmetric undamped systems.
Q=| —0.8923 02226 0.61 (4.3) Practical implementation of Taussky’s factorizati@l) is not
0.1611 0.2298 0.37 straightforward(see Ahmadian and Cho{45], Shahruz and Ma

[16], and Cherng and Abdelhamfd7]). For this reason it is re-
and following the procedure described previously we obtain  quired to develop efficient numerical methods for finding associ-
_ _ ated symmetric forits) of system(5.1). Recall that as system

0.1735 0.2198 0.3701 (5.1 is symmetrizable of the first kind it is also symmetrizable of
L=| 0.3901 -0.2469 —0.1170 the second kind. We use the latter approach to avoid the calcula-
tion of Taussky’s factorization.
[ —0.8026  0.1421 0.6213 It has been mentioned that there always exist two mattites

and @4.24) € RN*N (normal modal matrixandV e RN*N (adjoint modal ma-
trix) such thatvTAU andVTBU are both real diagonal matrices.
[ 0.7299 —0.2298 —0.2947| Numerical methods for obtainind andV are well developegsee
Huseyin[23] and Ma and Caughe}7] for further discussions
R=| —0.2638 —0.2377 -0.1620 SelectL =VQ andR=UQ for some nonzer® e RN*N. Clearly
| —0.4733 0.1419  0.6513 LTAR and LTBR are both symmetric matrices now. This ap-
. proach is much easier for finding symmetric forms than the ap-
and both are real matrices. From these one has proach via Taussky’s factorization. Also note that symmetric

forms are nonunique since one can select the m&rin many

70392 —1.7960 —4.4600 ways. The following example demonstrates this procedure.

A=LTAR=| —1.7960 1.0004  1.031 . _
Example 5.1. Suppose the coefficient matrices of an un-
—4.4600 1.0316  3.972 damped system of the fori%.1) are given by

a real nonsingular symmetric matrix. Interestingly, note that [0.5740 1.3858 1.385

eig(A)={12.8914, 1.55435.0507, 1.5543-5.0507}, i.e., A B _

does not satisfy Taussky’s condition of symmetrizabi(iBefini- A=|0.7070 ~ 0.7070 0.7070

tion 1). ThusA in (4.2 is a real symmetrizable matrix of the | 0.4620 —0.1914 -0.1914

second kind but not a real symmetrizable of the first kind. Thi

illustrates generality of the proposed approach of symmetrization

compared to the conventional approach. [1.3748 10.9440  25.297
Because the coefficient matrices in the equations of motion _

of linear vibrations are real we next consider only real square B=| 1.2625 2.8770 17.4195. (5:3)

matrices. | 0.7455 —4.1244 0.8625
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Numerical values oA andB are taken from Ma and CaughEg. 1.2044 —5.4425 2.701

It may be verified tha\, B and consequentlg=A"'B are sym-

metrizable matrices of first kind. B=| 2.1007 0.5393  0.189 6.7
Solving the right and left eigenvalue problefdas)=AAU and —1.8393 0.8953 2.508

TR— AT i ;
V'B=AV'A we obtain the undamped modal matrices One may verify thatA and B are not symmetrizable of the first

[ 0.9996 —0.5434 0.3951 kind. Observe that the matrices
U=| —0.0271 0.8391 -—0.4850 30.0910 2.8380 —0.0427
| —0.0044 —0.0253 0.7802 ATB=| 2.8380 19.5018 5.768
and —0.0427 5.7688  27.956
[0.2868 0.4247  0.461 and
v=| 0.4677 0.2613 —0.7124 (5.4) 16.1414 0.7063 0.133
| 0.8361 —0.8668 0.5285 BAT=| 0.7063 31.5697 0.860
0.1331 0.8607 29.8380

and the natural frequencies squared digg¢{1.8241, 9.5561,

23.5486. Selecting the matrix) given by (4.3 one obtains are both symmetric. Since the system matrices satisfy the condi-

tion of Lemma 5.2 the transforming matricesandR (computed

—0.2860  0.1534 0.4731 before in Eq.(4.4)) which symmetrieA also symmetrie8 as
L=vQ=| ~0.3177 —0.1826 —0.0362 2.8766 —0.4670 —1.4786
- 09126 —02092 —02170 LTBR=| —0.4670 0.5501  0.946
and —1.4786 0.9468  2.181
[ 06131 —0.1948 —0.0445) is @ symmetric matrix.
R=UQ=| ~0.8286 0.0798 0.3328. (5.5) Example 5.3. Consider another undamped system wAthin
L 0.1480 0.1744 0.273] the above example and
Using these matrices we have 0.1955 1.8857 —3.2199
[ 0.6282 —0.1303 —0.3608 B=| —2.1312 -0.2236 0.3609|. (5.8)
A=LTAR=| —0.1303 0.1032 0.151 1.0378 1.9501 -—1.5606
| —0.3608 0.1514 0.415 Observe that the matrices
and [ —27.4545 —4.6975  4.2325]
T 6.2653 —0.7600 —2.8429 ATB=| —9.0269 2.6874 2.3629
B=LTBR=| —0.7600 1.3947 2557 (5.6) | —5.2845 18.8142 —16.3493
| —2.8429 25574  5.363 and
Above is a symmetric form of the asymmetric systésrB). Note [ —8.4058 —8.8789 —21.8278
that symmetric form of this system can also be obtained alterna- BAT=| —1.1426 —24.3894 6.6164
tively by calculating Taussky’s factorization & | _52033 132300 -8.3212)

5.2 Case 2: A and B Are General Matrices. We have
shown that whemA and B have real roots, systeltb.1) has an
equivalent symmetric form via real linear transformations. Ho
ever, if these matrices have complex roots, the mdirim Eq.
(5.2 in general does not satisfy Taussky’'s definition of symme-
trizability. In that case, can syste(B.1) be transformed to a real
symmetric system using a real linear transformation? Our answer
is the following:

LEMMA 5.2. Linear undamped syste®.1) is real symmetriz-
able if ATB and BAT are symmetric matrices.

Proof. According to Thompsof24] “there exist two real or-
thogonal matricesD; e RN*N and 0, RN*N such that square
matricesO]AO,= A, and O]BO,= A, are diagonal matrices if

structL =0,Q andR=0,Q for some nonzer® e RN*N. Using
these we have. TAR=Q'A,Q and LTBR=Q"A,Q are both
symmetric matrices. This completes the proof. |

This result provides only aufficientcondition for simultaneous
real symmetrizability of the general matricAsandB. Lack of it
does not necessarily preclude existence of a real symmetric fo
of system(5.1). The following examples illustrates this fact.

L™BR=

0.8082
1.2380

0.8082
—0.4868
—0.9953

is a symmetric matrix. So the condition outlined in Lemma 5.2 is
only sufficient.

1.238
—0.9953
—2.0335

AX(1) + CX(t) + Bx(1)=0, t>0.

are not symmetric. However, the transforming matriceand R
V\;gbtained in Eq(4.2) and also the symmetrié® as

—1.2355

6 Simultaneous Symmetrization of Three Matrices
The equations of motion describing free vibration of a vis-
and only if ATB and BAT are symmetric matrices.” Now con- COUSly damped linear system can be expressed by

(6.1)

We assumd\, B, andC areNX N arrays of real numbers but are
otherwise general. Were these matrices symmetric and positive
definite, A, B, andC would, respectively, be the mass, stiffness,
d viscous damping matrices. The equations of motion are now
characterized byhreereal matrices and this brings an additional
complication in the system dynamics. It is required to find a non-

Example 5.2. Consider an undamped system w#hsame as singular linear transformation which simultaneously symmetries

Example 4.2 and
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the C matrix conditions for obtaining such a transformation wergvolving A and B, VTAU=A, and VTBU=A, are both real
easy to meefTheorem 5.}, admissible forms of these matrices : _ _ NXN ;
gets restricted here. We will investigate what forms of restric’[ior‘%agonal matrlces.TSeIet:thVQ andR—TUQ, wh$reQe R 1S
should be imposed on the system matrices so that the equation§@zero. Clearll. '/AR=Q A,Q andL 'BR=Q A,Q are both
motion can be transformed into a symmetric form. The followingeal symmetric matrices. Using this transformation, the second
two cases are considered here. term of Eq.(6.1) is now LTCR=Q"(V'CU)Q. Thus the trans-

formed system is symmetric if and only "CU is a symmetric

6.1 Case 1: A is Nonsingular and All the Matrices Have Matrix. 0

Real Roots. WhenA is nonsingular, Eq(6.1) can be rewritten Since the equivalence transformations are more general than
as ' ’ ' similarity transformations it is expected that the condition of sym-

metrizability given by this theorem is less restrictive than the three
IX(t)+Fx(t)+Ex(t)=0. (6.2) previously established results discussed before. The following ex-

_ _ . le illustrates this fact:
whereE=A"1Be RN*N andF=A"1Ce RN*N. SinceA, B, and amp .
C have real root& andF also have real roots. This andF are Example 6.1. Suppose, for a damped dynamic systérandB

individually symmetrizable of the first kind. But this does nof'jlre as in Example 5.1 and

imply that systen(6.2) is also symmetrizable, unle$sg, andF 4.1429 9.4510 9.001

are simultaneously symmetrizable. A basic result in this regard is

the following: C=| 4.6465 3.8206 —3.2816|. (6.3)
THEOREM 6.1. All diagonalizable damped asymmetric systems 1.2006 0.5460 —1.5001

are similar to symmetric systems.
It is well known that systen6.2) is diagonalizable by a similarity ~ Transforming the system in the form of E¢.2) one may
transformation if and only iE andF commutes in multiplication, verify that bothE and F are individually symmetrizable of the
i.e., EF=FE. When this condition is satisfied the system is synfirst kind. However, none of the conditions of simultaneous sym-
metrizable of the first kind and hence also symmetrizable of tteetrizability outlined in Theorems 6.1-6.3 is satisfiedBbyand
second kind. Following the approach outlined before in Sectidn Now, using the modal matriced andV calculated before in
5.1, symmetric forrts) may be obtained by utilizing equivalenceEdq. (5.4) we have

transformation to avoid the calculation of Taussky’s factorization.

A result similar to Theorem 6.1 was also established by Inman 4.2300  1.7900 —0.8400

([22], Theorem 1 and Shahruz and M&16], Theorem 3.1 Note vTcu=| 1.7900 26500 1.890

that the opposite statement of the above theorem, i.e., “a damped

asymmetrri)cp system similar to a symmetric system is diagonaIFi)z- —0.8400 1.8900 3.210

able” is in general not true. Thus, diagonalizability of a system ig 5 symmetric matrix, i.e., the condition of Theorem 6.4 is satis-
only a sufficient condition for symmetrizability and rather restricfieq. The transformation matricds and R given by Eq.(5.5

tive. The following is a more stronger and liberal result: which symmetriesA andB also symmetrie€ as
THEOREM 6.2. (Inman[12], Theorem2) system(6.2) is symme-
trizable if and only ifE and F have a common symmetric positive 1.4439 —0.4735 —1.8602

definite factor.

From Taussky’s factorizatiofB8.1) one can writetE=S;S,, S; L'CR=| —0.4735  0.5412 0.859
=S1>0, S,=S} andF=T,T,, T;=T}>0, T,=T,. According —-1.8602 0.8591  2.622
to the above theorem systeiBL2) is symmetrizable if and only if . . . . S
S,=T,. If this condition is satisfied Eq6.2) can be brought into S & Symmetric matrix. Thus, the system under consideration is
symmetric form using a similarity transformation involvingym- real symmetrizable of the second kind but not the first kind.
metric matrix. For practical purposes this condition is difficult to

check. A more convenient result is the following: 62 Case 2 A B. and C are General Real Matrices

THEOREM 6.3 (Kliem [9], Theorem ] system(6.2) is reali);n’\?- When the system matrices are general, some or all of them may
metrlzabIeNn; S”d only if there exist modal matriceg < R have complex roots so that they do not satisfy Tausskkey’s con-
and Uge R™"7 (consisting of full eigenvector sets Bfand F)  gjtion of symmetrizability. For such systems, in general Kliem’s
such thatUr *Ug is orthogonal, or equivalentideUf=UgUL.  result (Theorem 6.8 gives the condition otomplex symmetriz-
Further discussions on this theorem can found in Pommer aafility of the first kind and Theorem 6.4 gives the condition of
Kliem [19]. When the condition of the above theorem is satisfiedomplex symmetrizability of the second kind. sAifficientcondi-
Eqg. (6.2 can be brought into symmetric form by a similaritytion for real symmetrizability of such systems is the following:
transformation. In this case the symmetrizing matrix may be amgmma 6.5. Systen(6.1) is real symmetrizable of second kind if
nonzero matrix, unlike a symmetric matrix utilized in Theorenthere existU and V, the matrices of undamped right and left
6.2. For this reason Kliem'$9] condition is more liberal and eigenvectors, such th&™B, BAT andVTCU are all symmetric
holds Inman’q/12] condition as a special case when the symmenatrices.
trizing similarity transformation itself is a symmetric matrix. Thus This lemma can be proved easily following the results of
Theorem 6.2, and consequently results obtained by Ahmadian alnma 5.2 and Theorem 6.4. The example considered below il-
Chou([15], Theorem 2 and Shahruz and M@16], Theorem 4.1 |ystrates this result:
based on this theorem are orsyfficientconditions for symmetri- .
zation of the first kind of syster.1). Example 6.2. Suppose, for a damped linear systefnandB
Now, symmetrizability of systert6.1) by means of the equiva- are given by Example 5.2 and
Ifgng\?\/i:]rg:nsformatlon will be introduced. Our main result is the 43160 —25771 — 1.4626
THEOREM 6.4, System(6.1) is real symmetrizable of the second C=| 2.7122 1.8365 —0.1999|. (6.4)
kind if and only if there exist) e RN*N andV e RN*N, the matri- 13827 25631 4.3419
ces of undamped right and left eigenvectors, such YHaEU is ' ' '
symmetric. One may easily verify that none of the system matrices are indi-
Proof. BecauseU e RN*N andV e RN*N are the matrices of vidually real symmetrizable of the first kind. We compute the
right and left eigenvectors of the generalized eigenvalue problamdamped modal matrices
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[0.6498 0.7383 0.1807 Further research is required to successfully apply the concept of
symmetrizability of the second kind in asymmetric linear dynami-

U=| 0.4364 —0.1676 —0.8840 cal systems. By an example it was shown that the condition of
| 0.6224 —0.6533 0.4311] symmetrizability of a damped system given by Theorem 6.4 is
less restrictive than the existing results. A mathematical proof to

and establish this fact will be useful. Moreover, this condition is spec-
[0.0445 —0.0108 0.990 ] tral (i.e., an eigensolution calculation is requiyed nonspectral
condition which is more easy to check needs to be developed.
v=|0.9245 —0.3784 —0.0453 Some of our result§Lemma 5.2 and Lemma 6.%rovide only
| 0.3785 0.9256 —0.0068 sufficient conditions for real symmetrizability of systems with
. general coefficient matrices. More stronger results are required in
and notice that these directions. Further studies regarding stability of the symme-
3.2200 1.3664 0.641 trizing transformations and the robustness of them with respect to
T perturbations in the entries of the coefficient matrices are also
vTcu=| 1.3664 —2.0229 4.496 worth pursuing.

0.6412 44962 2.54

is a symmetric matrix. So all the conditions outlined in Lemmacknowledgments

6.5 are satisfied. Using the mati@X given by(4.3) one has ) . .
Funding provided by the Nehru Memorial Trust, London and
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L=VvVQ=| 0.3901 —0.2469 —0.1170
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