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ABSTRACT

Characterization of damping forces in a vibrating structure has
long been an active area of research in structural dynamics. In
spite of a large amount of research, understanding of damp-
ing mechanisms is not well developed. A major reason for this
is that unlike inertia and stiffness forces it is not in general
clear what are the state variables that govern the damping
forces. The most common approach is to use ‘viscous damp-
ing’ where the instantaneous generalized velocities are the
only relevant state variables. However, viscous damping by
no means the only damping model within the scope of linear
analysis. Any model which makes the energy dissipation func-
tional non-negative is a possible candidate for a valid damping
model. This paper is devoted to develop methodologies for
identification of such general damping models responsible for
energy dissipation in a vibrating structure. The method uses
experimentally identified complex modes and complex natural
frequencies and does not a-priori assume any fixed damping
model (eg. , viscous damping) but seeks to determine param-
eters of a general damping model described by the so called
‘relaxation function’. The proposed method and several re-
lated issues are discussed by considering a numerical exam-
ple of a linear array of damped spring-mass oscillators.

NOMENCLATURE

M mass matrix
K stiffness matrix
G(τ) matrix of kernel functions
y(t) generalized coordinates
ωj ,xj j-th undamped frequency and mode
λj , zj j-th complex frequency and mode
ûj , v̂j real and imaginary parts of zj

µ relaxation parameter of damping
C damping coefficient matrix

<(•),=(•) real and imaginary parts of (•)
(•)∗ complex conjugation
ˆ(•) measured quantity of (•)

1 INTRODUCTION

In the context of experimental modal analysis, by far the most
common damping model is so-called ‘viscous damping’, a lin-
ear model in which the instantaneous generalized velocities
are the only relevant state variables that determine damping.

This model was first introduced by Rayleigh [1] via his famous
‘dissipation function’, a quadratic expression for the energy
dissipation rate with a symmetric matrix of coefficients, the
‘damping matrix’. Complex modes arise with viscous damping
when it is non-proportional [2]. Practical experience in modal
testing also shows that most real-life structures possess com-
plex modes − as Sestieri and Ibrahim [3] have put it ‘ ... it
is ironic that the real modes are in fact not real at all, in that
in practice they do not exist, while complex modes are those
practically identifiable from experimental tests. This implies
that real modes are pure abstraction, in contrast with complex
modes that are, therefore, the only reality!’

Although with viscous damping models, linear systems show
complex modal behaviour, it is by no means the only damping
model within the scope of linear analysis. Any causal model
which makes the energy dissipation functional non-negative
is a possible candidate for a damping model. Unfortunately,
most of the studies on damping identification reported in the
literature consider viscous damping only. Such a priori selec-
tion of viscous damping in identification procedure rules out
any possibility of detecting the need for a different damping
model. In this paper we consider identification of non-viscous
damping models in the context of general multiple degrees-of-
freedom linear systems.

A key issue in identifying non-viscous damping is− what non-
viscous damping model to consider whose parameters have
to be identified? There have been detailed studies on material
damping or specific structural components. Lazan [4], Bert [5]
and Ungar [6] have given excellent accounts of different math-
ematical methods for modeling damping in (solid) material and
their engineering applications. The book by Nashif et al [7]
presents more recent studies in this area. Currently a large
body of literature can be found on damping in composite mate-
rials where many researchers have evaluated a materials spe-
cific damping capacity (SDC). Baburaj and Matsuzaki [8] and
the references therein give an account of research in this area.
Other than material damping a major source of energy dissi-
pation in a vibrating structure is the structural joints [910910].
In many cases these damping mechanisms turn out be locally
non-linear, requiring an equivalent linearization technique for
a global analysis [11].

One way to address this problem is to use non-viscous damp-
ing models which depend on the past history of motion via
convolution integrals over kernel functions. The equations of
motion of free vibration of a linear system with this type of



damping can be expressed by

Mÿ(t) +

∫ t

−∞
G(t− τ) ẏ(τ) dτ + Ky(t) = 0. (1.1)

The kernel functions G(τ), or others closely related to them,
are described under many different names in the literature of
different subjects: for example, retardation functions, hered-
ity functions, after-effect functions, relaxation functions. This
model was originally introduced by Biot [12]. In the special
case when G(t) = Cδ(t), where δ(t) is the Dirac-delta func-
tion, equation (1.1) reduces to the case of viscous damping.
Woodhouse [13] showed that for light damping, such damping
models can be handled in a very similar way to viscous mod-
els, using a first-order perturbation method based on the un-
damped modes and natural frequencies. This motivates us in
developing procedures for identification of more general linear
damping models from standard vibration testing data. Several
mathematical expressions can be used for the kernel func-
tions G(τ) in equation (1.1). Out of several possible damping
functions the exponential function has the most obvious phys-
ical plausibility: Cremer and Heckl [14] also have emphasized
this fact ‘Of the many after-effect functions that are possible
in principle, only one − the so called relaxation function − is
physically meaningful.’ For this reason we focus our attention
to fit an exponential model to measured data.

The results based on first-order perturbation theory give a firm
basis for further analysis, to use the details of the measured
complex modes to learn more about the underlying damping
mechanisms. There are several general questions of inter-
est:

1. From experimentally determined complex modes can
one identify the underlying damping mechanism? Is it
viscous or non-viscous? Can the correct model parame-
ters be found experimentally?

2. Is it possible to establish experimentally the spatial distri-
bution of damping?

3. Is it possible that more than one damping model with
corresponding correct sets of parameters may represent
the system response equally well, so that the identified
model becomes non-unique?

4. Does the selection of damping model matter from an en-
gineering point of view? Which aspects of behaviour are
wrongly predicted by an incorrect damping model?

This paper begin to address these questions. The analysis
is restricted to linear systems with light damping: we assume
throughout the validity of the first-order perturbation results.
The initial aim is to consider what can be learned about these
questions in principle, so procedures will be illustrated by ap-
plying them to simulated transfer functions, with no noise. The
issue of how the usefulness of any procedure might be lim-
ited in practice by measurement noise will be deferred to later
studies.

2 COMPLEX FREQUENCIES AND MODES OF NON-
VISCOUSLY DAMPED SYSTEMS

Complex modes and frequencies of system (1.1) can be ob-
tained using the first-order perturbation method. Substituting
y(t) = z exp[i λt] and rewriting equation (1.1) in the frequency
domain, the eigenvalue equation can be expressed as

−λ2
jMzj + i λjG(λj)zj + Kzj = 0, ∀ i = 1, · · ·N. (2.1)

Following the procedure outlined by Woodhouse [13] the com-
plex eigenvalues and modes are expressed as

λj ≈ ±ωj + i G′
jj(±ωj)/2 (2.2)

zj ≈ xj + i

N∑
k=1
k 6=j

ωjG
′
kj(ωj)

(ω2
j − ω2

k)
xk. (2.3)

Here G′
kl(ωj) = xT

k G(ωj)xl are the elements of the frequency
dependent damping matrix at the j-th natural frequency. Since
the inverse Fourier transform of G(ω) must be real they satisfy
the condition G(−ω) = G(ω)∗. In view of this relationship the
eigenvalues appear in pairs λ and −λ∗ (unless λ is purely
imaginary), and eigenvectors in pairs zj and z∗j .

3 IDENTIFICATION OF NON-VISCOUS DAMPING
MODELS

In this section we outline a general method to fit an exponen-
tial model to measured data. It is assumed that the system
has only one relaxation parameter, that is the damping model
is of the form

G(t) = µe−µt C (3.1)

where µ is the relaxation parameter and C is the associated
coefficient matrix. Complex natural frequencies and mode
shapes for a system with this kind of damping can be obtained
from equations (2.2) and (2.3). The term G′

kj(ωj) appearing
in these equations can be expressed as

G′
kj(ωj) =

µ

µ + i ωj
C′

kj =

[
µ2

µ2 + ω2
j

− i
µωj

µ2 + ω2
j

]
C′

kj (3.2)

where C′
kj = xT

k Cxj . Now suppose that λ̂j and ẑj for all
j = 1, 2, · · ·m are the measured complex natural frequencies
and modes. Write

ẑj = ûj + i v̂j . (3.3)

Here ẑj ∈ CN and N denotes the number of measurement
points on the structure. Suppose that the number of modes
to considered in the study is m: in general m 6= N , usually
N ≥ m. Assume that x̂j are the corresponding undamped
modes and µ̂ is the relaxation parameter to be estimated from
the experiment. From (2.2)

ω̂j ≈ <
(
λ̂j

)
. (3.4)



In view of equations (2.2)−(3.3) and considering that only m
modes are measured, separating real and imaginary parts of
ẑj one can write

ûj = x̂j +

m∑
k=1
k 6=j

Ãkj x̂k; Ãkj =
µ̂ω̂j

(µ̂2 + ω̂2
j )

Bkj

v̂j =

m∑
k=1
k 6=j

B̃kj x̂k; B̃kj =
µ̂2

(µ̂2 + ω̂2
j )

Bkj .

(3.5)

Here the unknown constants Bkj =
ω̂jC′

kj

ω̂2
j−ω̂2

k
. Note that in ad-

dition to Bkj , the relaxation constant µ̂ and the undamped
modes x̂k are also unknown. Combining these equations,

ûj = x̂j +
ω̂j

µ̂
v̂j . (3.6)

Because the undamped modes are orthonormal with re-
spect to the mass matrix, from equation (3.6) it may be ob-
served that the imaginary part of the complex mode v̂j is
M-orthogonal to its corresponding undamped mode so that
v̂T

j Mx̂j = 0. Premultiplying equation (3.6) by v̂T
j M and sum-

ming ∀j = 1, · · · , m one can write

m∑
j=1

v̂T
j Mûj =

m∑
j=1

{
v̂T

j Mx̂j +
ω̂j

µ̂
v̂T

j Mv̂j

}
(3.7)

Use of the orthogonality property of v̂j and x̂j leads to

µ̂ =

∑m
j=1 ω̂jv̂

T
j Mv̂j∑m

j=1 v̂T
j Mûj

. (3.8)

This µ̂ can be substituted in (3.6) to obtain the undamped
modes. Now, ∀j = 1, · · · , m the second equation of (3.5)
can be arranged in a matrix form and the B̃kj can be cal-
culated using the Moore-Penrose pseudoinverse. From these
constants C′

kj and consequently, using the undamped modes,
the coefficient matrix C can be obtained. This coefficient ma-
trix together with the relaxation parameter µ̂ completely de-
fines the damping mechanism in the structure. In summary,
this procedure can be described by the following steps:

1. Measure a set of transfer functions Hij(ω̂). Fix the num-
ber of modes to be retained in the study, say m. De-
termine the complex natural frequencies λ̂j and com-
plex mode shapes ẑj from the transfer function, for all
j = 1, · · ·m. Denote Ẑ = [ẑ1, ẑ2, · · · ẑm] ∈ CN×m the
complex mode shape matrix.

2. Evaluate the ‘undamped natural frequencies’ as ω̂j =
<(λ̂j).

3. Set Û = <
[
Ẑ

]
= [û1, û2, · · · ûm] and V̂ = =

[
Ẑ

]
=

[v1, v̂2, · · · v̂m].

4. Obtain the relaxation parameter µ̂ =

∑m
j=1 ω̂jv̂

T
j Mv̂j∑m

j=1 v̂T
j Mûj

.

5. For all j = 1, · · · , m calculate the ‘undamped mode

shapes’ x̂j =

{
ûj −

ω̂j

µ̂
v̂j

}
. Set X̂ = [x̂1, x̂2, · · · x̂m] ∈

RN×m.

6. Evaluate the matrix B̃ =
[
X̂T X̂

]−1

X̂T V̂.

7. From the B̃ matrix get C′
kj =

(ω̂2
j − ω̂2

k)

ω̂j

(µ̂2 + ω̂2
j )

µ̂2
B̃kj

for k, j = 1, 2 · · ·m; k 6= j and C′
jj = 2=(λ̂j)

(µ̂2 + ω̂2
j )

µ̂2
.

8. Use C =

[(
X̂T X

)−1

X̂T

]T

C′
[(

X̂T X̂
)−1

X̂T

]
to get

the coefficient matrix in physical coordinates.

Using this procedure we need only the complex natural fre-
quencies, mode shapes and mass matrix to identify the best
exponential damping model associated with the measure-
ments. The method is very simple and does not require much
computational time. Another advantage is that a complete set
of modal data is not necessary to estimate the relaxation pa-
rameter as well as the full coefficient matrix. It may be ob-
served that even if the measured transfer functions are recip-
rocal, from the above mentioned procedure there is no reason
why the fitted coefficient matrix C will always be symmetric. If
we indeed detect a non-symmetric C then it may be guessed
that the physical law behind the damping mechanism in the
structure can not be described by an exponential model. This
fact will be discussed later by considering a example in Sec-
tion 4.

The procedure described above can also be used to identify
the familiar viscous damping matrix as a special case by forc-
ing µ̂ → ∞. In this case it is easy to see that ûj → x̂j i.e.,
the real part of the complex modes approach the undamped
modes and all the steps described above remain valid. Inter-
estingly, as step 4 is avoided, knowledge of the mass matrix
is also not essential. Thus only complex natural frequencies
and mode shapes are sufficient to identify the ‘best’ full (non-
proportional) viscous damping matrix.

4 NUMERICAL EXAMPLES

There is a major difference in emphasis between this study
and other related studies on damping identification reported
in the literature. Most of the methods assume from the outset
that the system is viscously damped (see the review paper
by Pilkey and Inman [15]) and then formulate the theory to
identify a viscous damping matrix. Here, we wish to investi-
gate how much one can learn by fitting viscous and exponen-
tial damping models when the actual system is non-viscously
damped, as one must expect to be the case for most practi-
cal systems. We study by simulation a system which has a
known non-viscous damping model. Two different physically
realistic non-viscous damping models are considered in this
study. They are applied to a system consisting of a linear ar-
ray of spring-mass oscillators and dampers shown in Figure 1.
For the numerical values considered the resulting undamped
natural frequencies range from near zero to approximately 200
Hz. Certain of the masses of the system shown in Figure 1(a)
have dissipative elements connecting them to the ground. In
this case the damping force depends only on the absolute mo-
tion of the individual masses. Such damping will be described



as ‘locally reacting’. For the system shown in Figure 1(b), by
contrast, dissipative elements are connected between certain
adjacent pairs of masses. In this case the damping force de-
pends on the relative motion of the two adjacent masses, and
will be called ‘non-locally reacting’.

(a)

(b)

m

. . .

. . .

uk uk um
uk um uk um uk

um
ukum

ukum
ukuk

g(t)

g(t)

g(t)

um uk

u

Figure 1: Linear array of N spring-mass oscillators, N = 30,
mu = 1 Kg, ku = 4××103N/m.

The dissipative elements shown in Figure 1 are taken to be lin-
ear non-viscous dampers so that the equations of motion are
described by (1.1). Complex natural frequencies and modes
can be calculated for the model system using equations (2.2)
and (2.3), then treated like experimental data obtained from
a modal testing procedure. Note that in a true experimen-
tal environment the measured complex natural frequencies
and mode shapes will be contaminated by noise. Since the
simulated data are noise-free the results obtained using them
are ‘ideal’, the best one can hope using this approach. Once
promising algorithms have been identified in this way, the in-
fluence of noise in degrading the performance will have to be
addressed.

Two specific damping models will be considered, defined by
two different forms of g(t):

Model 1 (exponential): g(1)(t) = µ1e
−µ1t (4.1)

Model 2 (Gaussian): g(2)(t) = 2

√
µ2

π
e−µ2t2 (4.2)

where µ1 and µ2 are constants. It is convenient to normalize
the functions to make comparisons between models meaning-
ful. Both functions have been scaled so as to have unit area
when integrated to infinity. This makes them directly compara-
ble with the viscous model, in which the corresponding damp-
ing function would be a unit delta function, g(t) = δ(t), and
the coefficient matrix C would be the usual dissipation matrix.

It is also convenient to define a characteristic time constant,
θj for each damping function, via the first moment of g(j)(t):

θj =

∫ ∞

0

t g(j)(t) dt (4.3)

For the two damping models considered here, evaluating the
above integral gives θ1 = 1

µ1
and θ2 = 1√

πµ2
. For viscous

damping θj = 0. The characteristic time constant of a damp-
ing function gives a convenient measure of ‘width’: if it is close

to zero the damping behaviour will be near-viscous, and vice
versa. To establish an equivalence between the two damping
models we can choose that they have the same time constant.

For both the systems shown in Figure 1, the dampers are as-
sociated only between the s-th and (s + l)-th masses. For
the numerical calculations considered here, we have taken
N = 30, s = 8 and (s+l) = 17. Various values of the time con-
stant θ have been tested for both the damping models. These
are conveniently expressed as a fraction of the period of the
highest undamped natural frequency:

θ = γTmin (4.4)

When γ is small compared with unity the damping behaviour
can be expected to be essentially viscous, but when γ is of
order unity non-viscous effects should become significant.

Results For Small θ
When γ = 0.02 both damping models should show near-
viscous behaviour. First consider the system shown in Figure
1(a) with locally reacting damping. Figure 2 shows the fitted
viscous damping matrix for damping model 2, calculated using
the complete set of 30 modes. The fitted matrix identifies the
damping in the system very well. The high portion of the plot
corresponds to the spatial location of the dampers. The off-
diagonal terms of the identified damping matrix are very small
compared to the diagonal terms, indicating correctly that the
damping is locally reacting.
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Figure 2: Fitted viscous damping matrix for local case,
γ = 0.02, damping model 2

It is useful to understand the effect of modal truncation on the
damping identification procedure. In practice, one might ex-
pect to be able to use only the first few modes of the system
to identify the damping matrix. Figure 3 shows the fitted vis-
cous damping matrix using the first 10 modes only. The qual-
ity of the fitted damping matrix deteriorated as the number of
modes used to fit the damping matrix is reduced, but still the
identified damping matrix shows a reasonable approximation
to the true behaviour. The spatial resolution of the identified



damping is limited by that of the set of modes used, and some
off-diagonal activity is seen in the fitted matrix. Since for this
system the mode shapes are approximately sinusoidal, we
can recognize the effects of modal truncation as analogous
to Gibbs phenomenon in a truncated Fourier series.
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Figure 3: Fitted viscous damping matrix using first 10
modes, γ = 0.02, damping model 2
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Figure 4: Fitted coefficient matrix of exponential model for
non-local case, γ = 0.02, damping model 2

Now consider the system shown in Figure 1(b) with non-locally
reacting damping. So far we have shown the results for fitting
of viscous damping model. Figure 4 shows the fitted coeffi-
cient matrix of exponential model for damping model 2, us-
ing the full set of modes. The high portion of the plot cor-
responds to the spatial location of the dampers. The neg-
ative off-diagonal terms in the identified damping matrix in-
dicate that the damping is non-locally reacting. We also ob-
served that the fitted characteristic time constant θ̂ is small, so
that γ̂ = 0.0201. This implies that the identified (exponential)
model is near to viscous. Thus the proposed method identi-
fies the correct damping model quite well and gives a good
estimate of the correct characteristic time constant.

When the fitting procedure is repeated using any other damp-
ing model with a similarly short characteristic time constant,
the result are very similar. The detailed difference in their func-
tional behaviour does not influence the results significantly.
In summary, we can say that when the time constant for a
damping model is small the proposed identification method
works quite well regardless of the functional form of the damp-
ing mechanism. The spatial location of damping is revealed
clearly and associated relaxation parameter shows high value
whether it is locally or non-locally reacting. Modal truncation
blurs the results, but does not invalidate the identification pro-
cess.

Results For Larger θ
When γ is larger the two non-viscous damping models depart
from the viscous damping model, each in its own way. For
the value γ = 0.5, Figure 5(a) shows the result of fitting a
viscous damping matrix for damping model 1 (equation (4.1))
with locally-reacting damping and the full set of modes. It may
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Figure 5(a): Fitted viscous damping matrix for local case,
γ = 0.5, damping model 1

be noted that although we have started with a locally react-
ing damping model, which means the matrix is non-zero only
along the diagonal, the non-zero values in the off-diagonal
terms show that the fitted viscous damping is, in a sense,
not locally reacting. Nevertheless, the spatial distribution of
the damping is well identified, and perhaps one might be able
to guess that the underlying mechanism was locally-reacting
from the fact that the significantly non-zero elements all have
positive values, with a clear peak centred on the diagonal of
the matrix. Figure 5(b) shows the result of fitting the expo-
nential model for this problem. Since the model is ‘identified’
correctly in this case, the correct value of the relaxation pa-
rameter is obtained, and the coefficient matrix corresponds to
the exact coefficient matrix for the problem.

Figure 6(a) shows the corresponding fitted viscous damping
matrix for damping model 2 (equation (4.2)). Features of the
fitting are similar to those of Figure 5(a). The result of fitting
the exponential model for this problem is shown in Figure 6(b).
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Figure 5(b): Fitted coefficient matrix of exponential model
for local case, γ = 0.5, damping model 1
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Figure 6(a): Fitted viscous damping matrix for local case,
γ = 0.5, damping model 2
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Figure 6(b): Fitted coefficient matrix of exponential model
for local case, γ = 0.5, damping model 2

For the characteristic time constant of the fitted exponential
model, γ̂ = 0.6415 which is not very different from the exact γ

of the simulated model. However, since the ‘identified’ model
is not correct, because the original model is Gaussian while
the fitted model is exponential, the coefficient matrix does not
correspond to the exact coefficient matrix for the problem. In
fact the result of fitting of the exponential model is not very dif-
ferent from fitting a viscous model (Figure 6(a)). From this re-
sult we conclude that when the characteristic time constant of
a damping model is long an incorrect damping model may not
accurately indicate the actual damping behaviour of a struc-
ture.

A useful check on the accuracy of these procedures is to
compare the ‘measured’ and reconstructed transfer functions.
For the examples considered here it was observed (results
not shown) that the reconstructed transfer function agreed re-
markably well with the original one. This is to be expected:
the fitting procedure outlined in the previous section is exact,
within the approximations of the small-damping perturbation
theory, provided the full set of modes is used. The full set
of poles and their residues are correctly reproduced — this is
the essential contrast between this approach and one which
fits only proportional damping, for which the poles can be cor-
rect but the residues cannot (because they will be real, not
complex). This result has a far-reaching implication: an incor-
rect damping model (eg. , the fitted viscous damping) with a
different spatial distribution from the true damping model can
reproduce accurately the full set of transfer functions. This
means that by measuring transfer functions it is not possible
to identify uniquely the governing mechanism.

However, it should be noted that in cases like Figures 5(a),
6(a) and 6(b) the fitted coefficient matrix is not symmetric.
This is, in some sense, a non-physical result. In view of this
non-symmetry, the reciprocity of the transfer functions was
checked and it was observed that they are indeed recipro-
cal within an acceptable accuracy. Thus the non-symmetry of
the fitted coefficient matrix in the spatial coordinate does not
necessarily affect the reciprocity of the transfer functions. In-
stead, we should regard non-symmetry of a fitted coefficient
matrix as evidence that the true damping model is not the one
which is fitted . To obtain a correct physical description of the
damping, a symmetry preserving non-viscous model should
be fitted instead.

From equation (2.3) we can deduce that, within the approxi-
mation of small damping, each frequency function G′

kj(ω) can
be observed at only two frequencies, ωj and ωk. When the
fitted coefficient matrix turns out to be non-symmetric, this in-
dicates that it was not possible to fit the assumed function
through both ‘measured’ frequency points, and two different
coefficients were needed. To correct this problem, it is neces-
sary to fit a different damping model with sufficient free param-
eters to pass through both measured points while retaining
symmetric coefficients. The function cannot be uniquely de-
termined by this requirement, of course. Research is currently
in progress to explore models of this kind, and their associated
fitting algorithms.



5 CONCLUSIONS

In this paper a method has been proposed to identify a non-
proportional non-viscous damping model in vibrating systems.
It is assumed that damping is light so that the first order per-
turbation method is applicable. The method is simple, direct,
and compatible with conventional modal testing procedures.
The complex modes and natural frequencies are used, but the
method does not require the full set of modal data. Identifica-
tion of the familiar viscous damping model is a special case of
the general method proposed here. In that case, knowledge of
the mass and stiffness matrices are also not necessary. The
validity of the proposed method has been explored by applying
it to simulated data from a simple test problem, in which a lin-
ear array of spring-mass oscillators is damped by non-viscous
elements over part of its length.

Numerical experiments have been carried out with a wide
range of parameter values and different damping models. The
main features of the results have been illustrated by two par-
ticular damping models and representative parameter values.
It has been shown that the method generally predicts the spa-
tial location of the damping with good accuracy, and also gives
a good indication of whether the damping is locally-reacting
or not. Whatever the nature of the fitted coefficient matrix,
the transfer functions obtained using the fitted damping agree
well with the exact transfer functions of the simulated system.
Reciprocity of the transfer functions remains preserved within
an acceptable accuracy although in some cases the fitted co-
efficient matrix is not symmetric.

Symmetry breaking of the fitted coefficient matrix depends on
the value of the characteristic time constant θ of the damping
model, defined by equation (4.3). When θ is short compared
with the natural periods of the vibration, the damping is ef-
fectively viscous and the fitting procedure gives a physically-
sensible symmetric matrix. When θ is larger, though, the
memory of the damping function influences the detailed be-
haviour. In this case, if the fitted damping model is wrong,
the procedure yields a non-physical result by fitting a non-
symmetric coefficient matrix. That is, the procedure gives an
indication that a wrong model is selected for fitting. Investiga-
tions are under way to fit symmetry-preserving models under
such conditions.
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