
A Non-parametric Approach for Uncertainty Quantification in Structural Dynamics
Sondipon Adhikari

Department of Aerospace Engineering, University of Bristol
http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

Uncertainties are unavoidable in the description of real-life engineering systems. The quantification of uncertainties plays a crucial role in establishing the credibility of a numerical model.
Uncertainties can be broadly divided into two categories. The first type is due to the inherent variability in the system parameters, for example, different cars manufactured from a single
production line are not exactly the same. This type of uncertainty is often referred to as aleatoric uncertainty. If enough samples are present, it is possible to characterize the variability using
well established statistical methods and consequently the probably density functions (pdf) of the parameters can be obtained. The second type of uncertainty is due to the lack of knowledge
regarding a system, often referred to as epistemic uncertainty. This kind of uncertainty generally arise in the modelling of complex systems, for example, in the modeling of cabin noise in
helicopters. Due to its very nature, it is comparatively difficult to quantify or model this type of uncertainties. In this work a new method based on the random matrix theory and the maximum
entropy approach is developed to quantify this type of uncertainties.

Uncertainty Quantification

There are two broad approaches to quantify uncertainties in a
model. The first is the parametric approach and the second
is the non-parametric approach. In the parametric approach
the uncertainties associates with the system parameters, such as
Young’s modulus, mass density, Poisson’s ratio, damping coef-
ficient and geometric parameters are quantified using statistical
methods and propagated, for example, using the stochastic finite
element method. This type of approach is suitable to quantify
aleatoric uncertainties. Epistemic uncertainty on the other hand
do not explicitly depend on the systems parameters. For exam-
ple, there can be unquantified errors associated with the equation
of motion (linear on non-linear), in the damping model (viscous
or non-viscous), in the model of structural joints, and also in the
numerical methods (e.g, discretisation of displacement fields, trun-
cation and roundoff errors, tolerances in the optimization and it-
erative algorithms, step-sizes in the time-integration methods). It
is evident that the parametric approach is not suitable to quan-
tify this type of uncertainties and a non-parametric approach is
needed for this purpose. The aim of this work is to develop a gen-
eral non-parametric uncertainty quantification tool for structural
dynamic systems. The proposed approach is based on the random
matrix theory and the maximum entropy method. The equation
of motion of a damped n-degree-of-freedom linear dynamic system
can be expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices
respectively. In order to completely quantify the uncertainties as-
sociated with system (1), we need to obtain the probability density
functions of the random matrices M, C and K.

Random Matrix Theory

The probability density function of a random matrix1–4 can be
defined in a manner similar to that of a random variable. If A

is an n × m real random matrix, the matrix variate probability
density function of A ∈ Rn,m, denoted as pA(A), is a mapping
from the space of n×m real matrices to the real line, i.e., pA(A) :
Rn,m → R. We define three types of random matrices which are
relevant to this study.

Definition 1. Gaussian Random Matrix : The random matrix
X ∈ Rn,p is said to have a matrix variate Gaussian distribution
with mean matrix M ∈ Rn,p and covariance matrix Σ ⊗ Ψ,
where Σ ∈ R

+
n and Ψ ∈ R

+
p provided the pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2 ×
etr

{
−1

2
Σ−1(X − M)Ψ−1(X − M)T

}
(2)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).

Here etr {•} ≡ exp {Tr (•)} and | • | ≡ determinant of a matrix.

Definition 2. Wishart matrix : An n × n random symmetric
positive definite matrix S is said to have a Wishart distribu-
tion with parameters p ≥ n and Σ ∈ R

+
n , if its pdf is given

by

pS (S) =
{

2
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2
np Γn
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p
)
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}−1

|S|12(p−n−1)etr
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Σ−1S

}
(3)

This distribution is usually denoted as S ∼ Wn(p,Σ).

Definition 3. Matrix Variate Gamma Distribution : An n × n
random symmetric positive definite matrix W is said to have
a matrix variate gamma distribution with parameters a and
Ψ ∈ R

+
n , if its pdf is given by

pW (W) =
{
Γn (a) |Ψ|−a

}−1 |W|a−
1

2
(n+1) etr {−ΨW} ;

ℜ(a) >
1

2
(n − 1) (4)

This distribution is usually denoted as W ∼ Gn(a,Ψ).

In equations (3) and (4), the function Γn (a) is the multivariate
gamma function, which can be expressed as

Γn (a) = π
1

4
n(n−1)

n∏

k=1

Γ
[
a − 1

2
(k − 1)

]
; forℜ(a) >

1

2
(n − 1)

Matrix Variate Distribution Using the Maximum En-

tropy Method

An information theoretic approach is taken5 to obtain the matrix
variate distributions of the random system matrices M, C and
K. Suppose that the mean values of M, C and K are given by
M̂, Ĉ and K̂ respectively. This information is likely to be avail-
able, for example, using the deterministic finite element method.
However, there are uncertainties associated with our modelling so
that M, C and K are actually random matrices. The distribution
of these random matrices should be such that they are symmet-
ric, positive-definite and the probability density functions of their
inverse matrices should exist. Because the matrices M, C and
K have similar probabilistic characteristics, for notational conve-
nience we will use the notation G which stands for any one the
system matrices. Suppose the matrix variate density function of
G ∈ R

+
n is given by pG (G) : R

+
n → R. We have the following

information and constrains to obtain pG (G):
∫

G>0
pG (G) dG = 1 (normalization) (5)

and
∫

G>0
G pG (G) dG = Ĝ (the mean matrix) (6)

The mean matrix Ĝ is symmetric and positive definite and the
integrals appearing in the above two equations are n(n + 1)/2
dimensional. To apply the maximum entropy method, first note
that the entropy associated with the matrix variate probability
density function pG (G) can be expressed as

S
(
pG

)
= −

∫

G>0
pG (G) ln

{
pG (G)

}
dG (7)

Using this, together with the constrains (5) and (6) we construct
the Lagrangian

L
(
pG

)
= −

∫

G>0
pG (G) ln

{
pG (G)

}
dG + (λ0 − 1)×

(∫

G>0
pG (G) dG − 1

)
+Tr

(
Λ1

[∫

G>0
G pG (G) dG − Ĝ

])

Here λ0 ∈ R and Λ1 ∈ Rn,n are the unknown Lagrange multiplies
which need to be determined. Using the variational calculus it can
be shown that the optimal condition is given by

∂L
(
pG

)

∂pG
= 0 or pG (G) = exp {−λ0} etr {−Λ1G} (8)

Using the matrix calculus6, the Lagrange multiplies λ0 and Λ1

can be obtained exactly from equations (5), (6) and (8) to obtain
pG (G). After some algebra it can be shown that

pG (G) = rnr {Γn(r)}−1
∣∣∣Ĝ

∣∣∣
−r

etr
{
−rĜ

−1
G

}
(9)

where r = 1
2(n + 1). Comparing equation (9) with the Wishart

distribution in equation (3) it can be observed that G has the
Wishart distribution with parameters p = n+1 and Σ = Ĝ/(n+
1). Therefore, we have the following fundamental result regarding
the non-parametric uncertainty modeling of structural dynamic
systems:

Theorem 1. If only the mean of a system matrix G ≡
{M,C,K} is available, say Ĝ, then the matrix has a Wishart
distribution with parameters (n + 1) and Ĝ/(n + 1), that is

G ∼ Wn

(
n + 1, Ĝ/(n + 1)

)
.

The pdf of each of the system matrices given by equation (9)
depends only on the dimension of the matrix and its mean value.
The discovery of the Wishart distribution in this context turns out
to be very useful because it has been studied extensively in the
literatures of different subjects.

A Simple Example
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We consider a simple two-degrees-of-freedom system to illustrate
the matrix variate distributions. The mean of the mass, damping
and stiffness matrices are given by

M̂ =

[
m1 0
0 m2

]
, Ĉ =

[
c1 + c2 −c2

−c2 c2

]
, K̂ =

[
k1 + k2 −k2

−k2 k2 + k3

]

For this system n = 2 so that r = 1
2(n + 1) = 3/2 and Γn(r) =

Γ2 (3/2) = π/2. Suppose Z ∈ R
+
2 is a symmetric positive definite

matrix such that Z =

[
z11 z12

z12 z22

]
. The positive definite condition

requires that |Z| > 0, that is the variables z11, z12 and z22 should
vary such that z11z22− z2

12 > 0. Using equation (9), the pdf of the
mass matrix can be obtained as

pM(Z) =
(3/2)3

π/2
|M̂|−3/2etr

{
−3

2
M̂

−1
Z

}

=
27

4πm1m2
√

m1m2
exp

{
−3

2

z11m2 + z22m1

m1m2

}
; z11z22 > 0

Similarly, the pdfs of the damping and stiffness matrices can be
expressed as

pC(Z) =
27

4πc1c2
√

c1c2
exp

{
−3

2

z11c2 + 2z12c2 + z22(c1 + c2)

c2c1

}

and

pK(Z) =
27

4π (k1k2 + k1k3 + k2k3)
3/2

×

exp

{
−3

2

z11(k2 + k3) + 2z12k2 + z22(k1 + k2)

k1k2 + k1k3 + k2k3

}
; z11z22−z2

12 > 0

Once the pdf of the system matrices are known, one can
propagate uncertainties using standard simulation methods.

Conclusions

A new non-parametric method for uncertainty quantification in
linear dynamic systems has been proposed. The method is based
on the maximum entropy principle and random matrix theory. It
is assumed that only the mean of the system matrices are known.
The derived probability density function of the random system
matrices are completely characterized by the dimension of the ma-
trices and their mean values. The main outcome of this study is
that, if only the mean value of a system matrix is known then
the matrix follows a Wishart distribution with proper parameters.
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