Response statistics of linear stochastic systems: A joint diagonalisation approach

C. F. Li* and S. Adhikari†
Swansea University, Swansea, United Kingdom

In stochastic finite element problems the solution of a system of coupled linear random algebraic equations is needed. This problem in turn requires the calculation of the inverse of a random matrix. Over the past four decades several approximate analytical methods and simulation methods have been proposed for the solution of this problem in the context of probabilistic structural mechanics. In this paper we present a new solution method for stochastic linear equations. The proposed method is based on Neumann expansion and the recently developed joint diagonalisation solution strategy. Numerical examples are given to illustrate the use of the expressions derived in the paper.

I. Introduction

In many stochastic mechanics problems we need to solve a system of linear stochastic equations

\[ Ku = f. \] (1)

Here \( K \in \mathbb{R}^{n \times n} \) is a \( n \times n \) real non-negative definite random matrix, \( f \in \mathbb{R}^{n} \) is a \( n \)-dimensional real deterministic input vector and \( u \in \mathbb{R}^{n} \) is a \( n \)-dimensional real uncertain output vector which we want to determine. Equation (1) typically arises due to the discretisation of stochastic partial differential equations using the stochastic finite element method.\(^{1-23}\) In the context of linear structural mechanics, \( K \) is known as the stiffness matrix, \( f \) is the force vector and \( u \) is the vector of structural displacements. The central aim of a stochastic structural analysis is to determine the probability density function (pdf) and consequently the cumulative distribution function (cdf) of \( u \). This will allow one to calculate the reliability of the system. It is often difficult to obtain the probability density function (pdf) of the response. As a consequence, engineers often intend to obtain only the first few moments of the response quantity.

In this paper we propose a new solution method for stochastic linear systems. The proposed method is based on Neumann expansion and the recently developed joint diagonalisation solution strategy.\(^{23}\) The expressions derived in the paper are illustrated by numerical examples in Section V.

*Lecturer, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
†Professor of Aerospace Engineering, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK, AIAA Senior Member.

Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.
II. Discretisation of stochastic material parameters

For heterogeneous materials such as rocks, soils and composite materials with random inclusions, their material properties vary irregularly through the medium and they are often termed random media in engineering. In a practical problem with the presence of heterogeneous materials, the random material properties are usually modeled by stochastic fields. In most cases, the stochastic material parameters are initially defined by lower order statistical moments, e.g. expectation and covariance functions. However, in a stochastic finite element formulation, an explicit discretisation of the stochastic material parameters is required.

In the past few decades, different numerical techniques have been developed for this task and they include the middle point method, the local averaging method, the shape function method, the least-squares discretisation method and the trigonometric series approximation method. However, some of these are either inefficient (measured by the total number of random variables required) or inaccurate (measured by the error between the interpolated stochastic field and the real one) for an advanced SFEM formulation. To date, the most significant step forward for the discretisation of stochastic fields of material parameters is the application of Karhunen-Loève (K-L) expansions, which was first introduced into SFEM research by Spanos and Ghanem, and since then has been widely used in various SFEM formulations to discretise random material properties.

For stationary random media, the classic K-L expansion method using background mesh is recently extended by Li, Feng and Owen and a Fourier-Karhunen-Loève (F-K-L) representation method is proposed. Briefly speaking, a stationary stochastic field representing material parameter (e.g. Young’s module or Poisson’s ratio) can be explicitly expressed as

$$H(x, \omega) = H_0(x) + \sum_{j=1}^{\infty} \sqrt{\lambda_j} \xi_j(\omega) \phi_j(x)$$

where $H_0(x)$ is the expectation function of $H(x, \omega)$, $\xi_j(\omega)$ are uncorrelated random variables and $\lambda_j$ and $\phi_j(x)$ are the eigen-values and eigen-functions of the stochastic field. In particular, due to the stationarity of the stochastic field, the eigen-pairs $\lambda_j$ and $\phi_j(x)$ in the F-K-L expansion scheme can be explicitly obtained via fast Fourier transform (FFT) without solving any equation. Numerical examples have shown that comparing to the K-L expansion method using a background mesh, both the eigen-values and the eigen-functions can be obtained to a very high accuracy in the F-K-L expansion scheme. However, this advantage is compromised by the limit use of the later scheme, i.e. only applicable to stationary stochastic fields, while the former one is applicable to any stochastic field with finite second-order statistics. An important issue in the discretisation is how to determine the probability distribution of random variables $\xi_j(\omega)$. For Gaussian stochastic fields, these random variables are orthonormal Gaussian random variables, but for non-Gaussian stochastic fields, the determination of these random variables usually requires the information of higher-order statistical moments.

III. Current methods for response-statistics calculation

After explicitly representing the random material parameters with discretised stochastic fields and discretising the unknown functions (e.g. the displacement field $u$) with a finite element mesh, the stochastic linear system can be readily constructed following a standard procedure of finite
element formulation.\textsuperscript{2,21} The solution of the random linear algebraic system (1) is fundamental to stochastic mechanics problems. As a result, a number of papers were written on this topic over the past four decades. The purpose of this section is to give a brief overview on some of the existing methods in order to put the proposed method into proper perspective. Readers are referred to the review papers\textsuperscript{4,19–21,32,33} for further details. In a SFEM formulation, the stiffness matrix can always be represented as

\[
K = K^0 + \Delta K
\]

where \(K^0 \in \mathbb{R}^{n \times n}\) is the deterministic part and \(\Delta K \in \mathbb{R}^{n \times n}\) is the random part. The random part is often expressed as

\[
\Delta K = \sum_{j=1}^{m} \xi_j K^I_j + \sum_{j=1}^{m} \sum_{l=1}^{j} \xi_j \xi_l K^{II}_{jl} + \cdots
\]

where \(m\) is the number of random variables, \(K^I_j, K^{II}_{jl} \in \mathbb{R}^{n \times n}\), \(\forall j, l\) are deterministic matrices and \(\xi_j, \forall j\) are real random variables. These random variables may be Gaussian and othonormalized in many problems. Under these settings, the following approaches have been employed to obtain the probabilistic descriptions of the response vector \(u\).

A. Perturbation based approach

The perturbation method can be applied in various forms. Here we consider the expansion of the response vector as

\[
u = u^0 + \sum_{j=1}^{m} \xi_j u^I_j + \sum_{j=1}^{m} \sum_{l=1}^{j} \xi_j \xi_l u^{II}_{jl} + \cdots
\]

The vectors \(u^0, u^I_j, u^{II}_{jl} \in \mathbb{R}^n\) need to be determined. In an alternative formulation, \(u\) can be viewed as a function of the vector \(\xi = (\xi_1, \xi_2, \cdots, \xi_m)^T\) and can be expanded in a Taylor series about the mean of \(\xi\) or some other suitable point. The mathematical details to be outlined will be similar for both approaches. Substituting \(K\) and \(u\) from Eqs. (3) and (5) into the governing equation (1) and equating the corresponding coefficients associated with the random variables we have

\[
K^0 u^0 = f
\]

\[
K^I_j u^0 + K^0 u^I_j = 0
\]

and

\[
K^{II}_{jl} u^0 + K^I_j u^I_l + K^0 u^{II}_{jl} = 0.
\]

Solving these equations one has

\[
u^0 = K^{-1} f
\]

\[
u^I_j = -K^{-1} K^I_j u^0, \quad \forall j
\]

and

\[
u^{II}_{jl} = -K^{-1} [K^I_j u^0 + K^I_l u^I_j + K^I_j u^I_l], \quad \forall j, l.
\]

The above equations completely define the unknown vectors appearing in the perturbation expansion (5).

Another variant of the perturbation type approach is the so called Neumann expansion method.\textsuperscript{15} Provided \(\left\| K^{-1} \Delta K \right\|_F < 1\), the inverse of the random matrix can be expanded in a binomial type
The first and second-order statistics of \( u \) can be calculated from Eq. (5) or (13). The following general points may be noted for all perturbation based approaches:

- If the random variations are large, the higher-order terms may not be negligibly small.
- The calculation of response statistics become difficult if the elements of \( \Delta K \) are non-Gaussian random variables.
- Even if the elements of \( \Delta K \) are Gaussian random variables, the inclusion of higher-order terms (more than second-order) results in very messy calculations.

For the above reasons, other methods have been proposed in literature.

B. Projection methods

The perturbation based solutions can be viewed as a local approximation around the deterministic solution. The subspace projection schemes for stochastic finite element analysis on the other hand achieve global representation. The basic idea is simple, powerful and is based on solid theoretical foundations.\(^{20,21}\) Here one ‘projects’ the solution vector onto a complete stochastic basis. Depending on how the basis is selected, several methods are proposed. Using the Polynomial Chaos (PC) projection scheme\(^2\) one can express the solution vector as

\[
u = \sum_{j=0}^{P-1} u_j \Psi_j(\xi)
\]

where \( u_j \in \mathbb{R}^n, \forall j \) are unknown vectors and the polynomial chaoses \( \Psi_j(\xi) \) are multidimensional Hermite polynomials with respect to \( \xi \). Instead of choosing Hermite polynomials, Xiu and Karniadakis\(^{22,35}\) used a generalized orthogonal basis which utilizes functions from the Askey family of hypergeometric polynomials. In the context of dynamic problems, Adhikari and Manohar\(^7\) proposed the random eigenfunction expansion method where the random basis is selected to be the complete set of eigenfunctions of the undamped dynamic stiffness matrix. The number of terms in expansion (14) is given by\(^2,23\)

\[
P = \frac{(m + r)!}{m!r!}
\]
where \( r \) is the order of the PC expansion. Substituting \( u \) from Eq. (14) into Eq. (1) and imposing the Galerkin condition, the unknown \( u_j \) vectors can be obtained by solving a set of \( nP \) dimensional deterministic linear algebraic equations. To reduce the computational effort, Nair and Keane\textsuperscript{11} proposed the stochastic reduced basis method. Here the solution vector is represented using basis vectors spanning the preconditioned stochastic Krylov subspace and consequently the application of the Galerkin scheme leads to a reduced-order deterministic system of equations. A comparison of different PC projection schemes for stochastic finite element analysis is given by Sachdeva et. al.\textsuperscript{13} Recently Sarkar et. al\textsuperscript{36,37} have proposed a domain decomposition approach to obtain \( u_j \) which utilizes PC expansion and can be implemented in parallel to solve large scale problems. Once all \( u_j \) are known, the statistics of \( u \) can be obtained from Eq. (14) in a relatively straight-forward manner.

C. Monte Carlo simulation and other methods

Table 1. A partial summary of the solution techniques for coupled linear algebraic equations arising in stochastic mechanics problems.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sub-methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perturbation based methods</td>
<td>First and second order perturbation,\textsuperscript{1,3,16}</td>
</tr>
<tr>
<td></td>
<td>Neumann expansion,\textsuperscript{7,15}</td>
</tr>
<tr>
<td></td>
<td>Improved perturbation method.\textsuperscript{34}</td>
</tr>
<tr>
<td>2. Projection methods</td>
<td>Polynomial chaos expansion,\textsuperscript{2}</td>
</tr>
<tr>
<td></td>
<td>Random eigenfunction expansion,\textsuperscript{7}</td>
</tr>
<tr>
<td></td>
<td>Stochastic reduced basis method,\textsuperscript{11,13,14}</td>
</tr>
<tr>
<td></td>
<td>Wiener—Askey chaos expansion,\textsuperscript{22,35,38}</td>
</tr>
<tr>
<td></td>
<td>Domain decomposition method,\textsuperscript{36,37}</td>
</tr>
<tr>
<td>3. Monte carlo simulation and other methods</td>
<td>Simulation methods,\textsuperscript{39,40}</td>
</tr>
<tr>
<td></td>
<td>Analytical method in references,\textsuperscript{41–45}</td>
</tr>
<tr>
<td></td>
<td>Exact solutions for beams,\textsuperscript{12,46}</td>
</tr>
</tbody>
</table>

Once the statistical properties of the random matrix \( K \) is known, the samples can be generated using Monte Carlo simulation and the moments and pdf of \( u \) can be obtained by standard statistical methods. Several authors have also proposed other methods to obtain statistical properties of \( u \) and a partial summary of the solution techniques for coupled linear algebraic equations arising in stochastic mechanics problems is given in Table 1.

IV. Joint diagonalisation approach

For the solution of the stochastic linear system, a novel solution strategy, namely the joint diagonalisation method, was recently proposed by Li, Feng and Owen.\textsuperscript{23} In this approach, Eq. (1)
is first reorganized as follows

\[(K_0 + \xi_1(\omega)K_1 + \xi_2(\omega)K_2 + \cdots + \xi_m(\omega)K_m)u = f, \quad (16)\]

where \(K_j, \forall j\) are real symmetric deterministic matrices and \(\xi_j(\omega), \forall j\) are real random variables. The above stochastic linear system is commonly obtained in a SFEM formulation after discretising the random material parameters with the K-L (or F-K-L) expansion method.

It is shown by Li et al.\(^2\) that by using a sequence of Givens transformations, stiffness matrices \(K_j\) in Eq. (16) can be simultaneously diagonalised such that

\[Q^{-1}K_jQ = \Lambda_j + \Delta_j \approx \Lambda_j, \quad j = 1, 2, \cdots, m \quad (17)\]

where \(\Lambda_j, \forall j\) are diagonal matrices and \(\Delta_j, \forall j\) are matrices with zero diagonal entries and small off-diagonal entries. The transform matrix \(Q\) is explicitly obtained as the product of the Givens rotation matrices

\[Q = G_1^T G_2^T \cdots G_k^T \quad (18)\]

where \(k\) is the total number of Givens transformations and the Givens rotation matrices \(G_j, \forall j\) take the following form

\[
G_j = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & 1
\end{pmatrix} + \begin{pmatrix}
p & q & & \\
& \ddots & & \\
& & 1 & \\
& & & 1
\end{pmatrix}
\]

\[
G = G(p, q, \theta) \triangleq \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & 1
\end{pmatrix} + \begin{pmatrix}
p & q & & \\
& \ddots & & \\
& & 1 & \\
& & & 1
\end{pmatrix}
\]

The joint diagonalisation works in an iteration manner as shown in Eq. (18) and the algorithm is implemented to scan in turn all the off-diagonal entries \((p, q), p \neq q\) in the matrix system. In each iteration, a set of matrix elements \((K_j)_{pq}, j = 1, \cdots, m\) are selected and to minimize the corresponding off-diagonal entries the Givens rotation matrix (19) is constructed. As matrices \(K_j, \forall j\) are real symmetric, the optimal Givens rotation angle \(\theta_{opt}\) that in the current iteration maximizes the diagonal entries and minimizes the off-diagonal entries can be accurately obtained by solving the following characteristic equation

\[(cos 2\theta_{opt} \quad sin 2\theta_{opt})^T J = \lambda_j (cos 2\theta_{opt} \quad sin 2\theta_{opt})^T \quad (20)\]

where \(J\) is a two by two matrix given by

\[
J = \sum_{j=1}^{m} \begin{pmatrix}
2 (K_j)_{pq}^2 & (K_j)_{pq} \left((K_j)_{qq} - (K_j)_{pp}\right) \\
(K_j)_{pq} \left((K_j)_{qq} - (K_j)_{pp}\right) & \frac{1}{2} \left((K_j)_{qq} - (K_j)_{pp}\right)^2
\end{pmatrix}
\]

The joint diagonalisation works in an iteration manner as shown in Eq. (18) and the algorithm is implemented to scan in turn all the off-diagonal entries \((p, q), p \neq q\) in the matrix system. In each iteration, a set of matrix elements \((K_j)_{pq}, j = 1, \cdots, m\) are selected and to minimize the corresponding off-diagonal entries the Givens rotation matrix (19) is constructed. As matrices \(K_j, \forall j\) are real symmetric, the optimal Givens rotation angle \(\theta_{opt}\) that in the current iteration maximizes the diagonal entries and minimizes the off-diagonal entries can be accurately obtained by solving the following characteristic equation

\[(cos 2\theta_{opt} \quad sin 2\theta_{opt})^T J = \lambda_j (cos 2\theta_{opt} \quad sin 2\theta_{opt})^T \quad (20)\]

where \(J\) is a two by two matrix given by

\[
J = \sum_{j=1}^{m} \begin{pmatrix}
2 (K_j)_{pq}^2 & (K_j)_{pq} \left((K_j)_{qq} - (K_j)_{pp}\right) \\
(K_j)_{pq} \left((K_j)_{qq} - (K_j)_{pp}\right) & \frac{1}{2} \left((K_j)_{qq} - (K_j)_{pp}\right)^2
\end{pmatrix}
\]
and $\lambda_j$ is the smallest eigen-value of $J$.

In the original joint diagonalisation solution, the off-diagonal entries $\Delta_j$, $\forall j$ in Eq. (17) are completely ignored and this significantly simplifies the random equation system which in turn leads to an explicit solution

$$u \approx Q(\Lambda_0 + \xi_1(\omega)\Lambda_1 + \cdots + \xi_m(\omega)\Lambda_m)^{-1}Q^{-1}f. \quad (22)$$

The above solution relies on the assumption that the off-diagonal matrices $\Delta_j$, $\forall j$ are negligible comparing to the diagonal matrices $\Lambda_j$, $\forall j$. However, for larger matrices $K_j$, $\forall j$, to reduce matrices $\Delta_j$, $\forall j$ to a negligible level is extremely time consuming and with limited computational power available, the accuracy of the solution (22) decreases as the dimension of matrices increases. In order to reduce the computational load of joint diagonalisation and overcome the problem of inefficiency, the contribution from the off-diagonal matrices $\Delta_j$, $\forall j$ must be taken into account in the solution. Substituting Eq. (17) into Eq. (16) yields

$$Q \left[ (\Lambda_0 + \sum_{j=1}^{m} \xi_j(\omega)\Lambda_j) + (\Delta_0 + \sum_{j=1}^{m} \xi_j(\omega)\Delta_j) \right] Q^{-1}u = f. \quad (23)$$

Let

$$V = \Lambda_0 + \sum_{j=1}^{m} \xi_j(\omega)\Lambda_j$$

$$A = \Delta_0 + \sum_{j=1}^{m} \xi_j(\omega)\Delta_j,$$

the solution of (23) can be expressed as

$$u = Q \left[ V(I_n + V^{-1}A) \right]^{-1}Q^{-1}f. \quad (25)$$

Noting that matrix $V$ is a diagonal matrix whose inverse can be explicitly obtained, the above expression can be further simplified by using the Neumann expansion as

$$u = Q \left[ V^{-1} - (V^{-1}A)V^{-1} + (V^{-1}A)^2V^{-1} - \cdots \right] Q^{-1}f. \quad (26)$$

Comparing to the original joint diagonalisation solution (22), the above solution can be obtained more efficiently and without comprising the accuracy.

V. Numerical examples

A simple elastic plain-stress problem is computed to demonstrate the performance of the proposed solution method. It is assumed that the Young’s modulus is modeled by a Gaussian stochastic field and Passion’s ratio takes a deterministic value. The Gaussian stochastic field is discretised by using the F-K-L representation scheme. Figure 1 shows two examples of the eigen-functions obtained in the F-K-L scheme and Figure 2 shows a specific realization of the Gaussian field reconstructed from the F-K-L scheme.

After the discretisation of the random material property, a stochastic finite element formulation can be readily constructed and the resulting equation system is a stochastic linear system. The proposed joint diagonalisation method is then used to solve the stochastic system. The result of the principal stresses are shown in Figure 3.
VI. Conclusion

For the solution of static and steady-state problems of random media, this paper presents an improved joint diagonalisation solution framework. Firstly, the random medial properties are discretised by using the Fourier-Karhunen-Loève expansion scheme. Then the resulting stochastic linear system is solved by using the improved joint diagonalization method. A demo numerical example is also included to show the performance of the proposed method.

Acknowledgments

SA gratefully acknowledges the support of UK Engineering and Physical Sciences Research Council (EPSRC) through the award of an Advanced Research Fellowship and The Leverhulme...
Figure 3. A specific realization of principal stresses

Trust for the award of the Philip Leverhulme Prize.

References


23 Li, C. F., Feng, Y. T., and Owen, D. R. J., “Explicit solution to the stochastic system of linear algebraic equations \((\alpha_1A_1 + \alpha_2A_2 + \ldots + \alpha_mA_m)x = b\),” Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 44-47, 2006, pp. 6560–6576.


