Random Matrix Models for Structural Dynamics

S Adhikari

Department of Aerospace Engineering, University of Bristol, Bristol, U.K.

Email: S.Adhikari@bristol.ac.uk

URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html
Stochastic structural dynamics

- The equation of motion:
 \[M\ddot{x}(t) + C\dot{x}(t) + Kx(t) = p(t) \]

- Due to the presence of uncertainty \(M, C \) and \(K \) become random matrices.

- The main objectives are:
 - to quantify uncertainties in the system matrices
 - to predict the variability in the response vector \(x \)
Current Methods

Three different approaches are currently available

- **Low frequency**: Stochastic Finite Element Method (SFEM) - considers parametric uncertainties in details
- **High frequency**: Statistical Energy Analysis (SEA) - do not consider parametric uncertainties in details
- **Mid-frequency**: Hybrid method - ‘combination’ of the above two
Random Matrix Method (RMM)

- **The objective**: To have an unified method which will work across the frequency range.

- **The methodology**:
 - Derive the matrix variate probability density functions of M, C and K
 - Propagate the uncertainty (using Monte Carlo simulation or analytical methods) to obtain the response statistics (or pdf)
Outline of the presentation

In what follows next, I will discuss:

- Introduction to Matrix variate distributions
- Maximum entropy distribution
- Optimal Wishart distribution
- Numerical examples
- Open problems & discussions
Matrix variate distributions

- The probability density function of a random matrix can be defined in a manner similar to that of a random variable.

- If \(A \) is an \(n \times m \) real random matrix, the matrix variate probability density function of \(A \in \mathbb{R}^{n,m} \), denoted as \(p_A(A) \), is a mapping from the space of \(n \times m \) real matrices to the real line, i.e., \(p_A(A) : \mathbb{R}^{n,m} \rightarrow \mathbb{R} \).
Gaussian random matrix

The random matrix \(X \in \mathbb{R}_{n,p} \) is said to have a matrix variate Gaussian distribution with mean matrix \(M \in \mathbb{R}_{n,p} \) and covariance matrix \(\Sigma \otimes \Psi \), where \(\Sigma \in \mathbb{R}_{n}^{+} \) and \(\Psi \in \mathbb{R}_{p}^{+} \) provided the pdf of \(X \) is given by

\[
p_X (X) = (2\pi)^{-np/2} |\Sigma|^{-p/2} |\Psi|^{-n/2} \exp \left\{ -\frac{1}{2} \Sigma^{-1} (X - M) \Psi^{-1} (X - M)^T \right\}
\]

This distribution is usually denoted as \(X \sim N_{n,p} (M, \Sigma \otimes \Psi) \).
Gaussian orthogonal ensembles

A random matrix $\mathbf{H} \in \mathbb{R}_{n,n}$ belongs to the Gaussian orthogonal ensemble (GOE) provided its pdf of is given by

$$p_{\mathbf{H}}(\mathbf{H}) = \exp\left(-\theta_2 \text{Trace} (\mathbf{H}^2) + \theta_1 \text{Trace} (\mathbf{H}) + \theta_0\right)$$

where θ_2 is real and positive and θ_1 and θ_0 are real. This is a good model for high-frequency vibration problems.
Wishart matrix

An $n \times n$ random symmetric positive definite matrix S is said to have a Wishart distribution with parameters $p \geq n$ and $\Sigma \in \mathbb{R}_+^n$, if its pdf is given by

$$p_S(S) = \left\{ 2^{\frac{1}{2} np} \Gamma_n \left(\frac{1}{2} p\right) |\Sigma|^{\frac{1}{2} p} \right\}^{-1} |S|^{\frac{1}{2} (p-n-1)} \text{etr} \left\{ -\frac{1}{2} \Sigma^{-1} S \right\}$$

This distribution is usually denoted as $S \sim W_n(p, \Sigma)$.

Note: If $p = n + 1$, then the matrix is non-negative definite.
An $n \times n$ random symmetric positive definite matrix W is said to have a matrix variate gamma distribution with parameters a and $\Psi \in \mathbb{R}_n^+$, if its pdf is given by

$$p_W(W) = \left\{ \Gamma_n(a) |\Psi|^{-a} \right\}^{-1} |W|^{a-\frac{1}{2}(n+1)} \text{etr} \{-\Psi W\}; \quad \Re(a) > (n - 1)/2 \quad (3)$$

This distribution is usually denoted as $W \sim G_n(a, \Psi)$. Here the multivariate gamma function:

$$\Gamma_n(a) = \pi^{\frac{1}{4}n(n-1)} \prod_{k=1}^{n} \Gamma \left[a - \frac{1}{2}(k - 1) \right]; \quad \text{for } \Re(a) > (n - 1)/2 \quad (4)$$
The distribution of the random system matrices M, C and K should be such that they are

- symmetric
- positive-definite, and
- the moments (at least first two) of the inverse of the dynamic stiffness matrix

$$D(\omega) = -\omega^2 M + i\omega C + K$$

should exist $\forall \omega$
Distribution of the system matrices

- The exact application of the last constraint requires the derivation of the joint probability density function of M, C and K, which is quite difficult to obtain.

- We consider a simpler problem where it is required that the inverse moments of each of the system matrices M, C and K must exist.

- Provided the system is damped, this will guarantee the existence of the moments of the frequency response function matrix.
Maximum Entropy Distribution

Suppose that the mean values of M, C and K are given by \overline{M}, \overline{C} and \overline{K} respectively. Using the notation G (which stands for any one the system matrices) the matrix variate density function of $G \in \mathbb{R}_n^+$ is given by $p_G(G): \mathbb{R}_n^+ \rightarrow \mathbb{R}$. We have the following constrains to obtain $p_G(G)$:

\[
\int_{G>0} p_G(G) \, dG = 1 \quad \text{(normalization)} \quad (5)
\]

and

\[
\int_{G>0} G \, p_G(G) \, dG = \overline{G} \quad \text{(the mean matrix)} \quad (6)
\]
Suppose the inverse moments (say up to order ν) of the system matrix exist. This implies that $E \left[\| G^{-1} \|_F^\nu \right]$ should be finite. Here the Frobenius norm of matrix A is given by

$$\| A \|_F = \left(\text{Trace} (A A^T) \right)^{1/2}.$$

Taking the logarithm for convenience, the condition for the existence of the inverse moments can be expresses by

$$E \left[\ln | G |^{-\nu} \right] < \infty$$
The Lagrangian becomes:

\[\mathcal{L} (p_G) = - \int_{G > 0} p_G (G) \ln \left\{ p_G (G) \right\} \, dG + \]

\[(\lambda_0 - 1) \left(\int_{G > 0} p_G (G) \, dG - 1 \right) - \nu \int_{G > 0} \ln |G| \, p_G \, dG \]

\[+ \text{Trace} \left(\Lambda_1 \left[\int_{G > 0} G \, p_G (G) \, dG - \bar{G} \right] \right) \quad (7) \]

Note: \(\nu \) cannot be obtained uniquely!
Using the calculus of variation

\[\frac{\partial \mathcal{L}(p_G)}{\partial p_G} = 0 \]

or

\[- \ln \{p_G(G)\} = \lambda_0 + \text{Trace}(\Lambda_1 G) - \ln |G|^\nu \]

or

\[p_G(G) = \exp\{-\lambda_0\} |G|^\nu \text{etr}\{-\Lambda_1 G\} \]
Using the matrix variate Laplace transform
\((T \in \mathbb{R}_{n,n}, S \in \mathbb{C}_{n,n}, a > (n + 1)/2)\)

\[
\int_{T > 0} \text{etr} \left\{ -ST \right\} |T|^{a-(n+1)/2} dT = \Gamma_n(a) |S|^{-a}
\]

and substituting \(p_G(G)\) into the constraint equations it can be shown that

\[
p_G(G) = r^{-nr} \left\{ \Gamma_n(r) \right\}^{-1} |G|^{-r} |G|^\nu \text{etr} \left\{ -rG^{-1} \right\}
\]

where \(r = \nu + (n + 1)/2.\)
Comparing it with the Wishart distribution we have:

Theorem 1. If ν-th order inverse-moment of a system matrix $G \equiv \{M, C, K\}$ exists and only the mean of G is available, say \overline{G}, then the maximum-entropy pdf of G follows the Wishart distribution with parameters $p = (2\nu + n + 1)$ and $\Sigma = \overline{G}/(2\nu + n + 1)$, that is

$$G \sim W_n \left(2\nu + n + 1, \overline{G}/(2\nu + n + 1)\right).$$
Properties of the Distribution

- Covariance tensor of G:

$$\text{cov}(G_{ij}, G_{kl}) = \frac{1}{2\nu + n + 1} (\overline{G}_{ik}\overline{G}_{jl} + \overline{G}_{il}\overline{G}_{jk})$$

- Normalized standard deviation matrix

$$\delta^2_G = \frac{\mathbb{E} \left[\| G - \mathbb{E}[G] \|_F^2 \right]}{\| \mathbb{E}[G] \|_F^2} = \frac{1}{2\nu + n + 1} \left\{ 1 + \frac{\{\text{Trace}(\overline{G})\}^2}{\text{Trace}(\overline{G}^2)} \right\}$$

- $\delta^2_G \leq \frac{1 + n}{2\nu + n + 1}$ and $\nu \uparrow \Rightarrow \delta^2_G \downarrow$.
If G is $W_n(p, \Sigma)$ then $V = G^{-1}$ has the inverted Wishart distribution:

$$P_V(V) = \frac{2^{m-n-1}n/2 |\Psi|^{m-n-1}/2}{\Gamma_n[(m - n - 1)/2]} |V|^{m/2} \text{etr} \left\{-\frac{1}{2} V^{-1}\Psi\right\}$$

where $m = n + p + 1$ and $\Psi = \Sigma^{-1}$ (recall that $p = 2\nu + n + 1$ and $\Sigma = \bar{G}/p$)
Mean: $\mathbb{E} \left[G^{-1} \right] = \frac{pG^{-1}}{p - n - 1}$

cov $\left(G_{ij}^{-1}, G_{kl}^{-1} \right) = \frac{\left(2\nu + n + 1\right)\left(\nu^{-1}G_{ij}^{-1}G_{kl}^{-1} + G_{ik}^{-1}G_{jl}^{-1} + G_{il}^{-1}G_{kj}^{-1}\right)}{2\nu(2\nu + 1)(2\nu - 2)}$
Suppose $n = 101$ & $\nu = 2$. So $p = 2\nu + n + 1 = 106$ and $p - n - 1 = 4$. Therefore, $E[G] = \overline{G}$ and

$$E[G^{-1}] = \frac{106}{4}\overline{G}^{-1} = 26.5\overline{G}^{-1} \text{ !!!!!!!!!!!}$$

From a practical point of view we do not expect them to be so far apart!

One way to reduce the gap is to increase p. But this implies the reduction of variance.
My argument: The distribution of G must be such that $E[G]$ and $E[G^{-1}]$ should be closest to \overline{G} and \overline{G}^{-1} respectively.

Suppose $G \sim W_n \left(n + 1 + \theta, \overline{G}/\alpha\right)$. We need to find α such that the above condition is satisfied.

Therefore, define (and subsequently minimize) ‘normalized errors’:

\[
\varepsilon_1 = \frac{\|\overline{G} - E[G]\|_F}{\|\overline{G}\|_F} \\
\varepsilon_2 = \frac{\|\overline{G}^{-1} - E[G^{-1}]\|_F}{\|\overline{G}^{-1}\|_F}
\]
Because $G \sim W_n (n + 1 + \theta, \bar{G}/\alpha)$ we have

$$E [G] = \frac{n + 1 + \theta}{\alpha} \bar{G}$$

and

$$E [G^{-1}] = \frac{\alpha}{\theta} \bar{G}^{-1}$$

We define the objective function to be minimized as

$$\chi^2 = \varepsilon_1^2 + \varepsilon_2^2 = \left(1 - \frac{n+1+\theta}{\alpha}\right)^2 + \left(1 - \frac{\alpha}{\theta}\right)^2$$
The optimal value of α can be obtained as by setting $\frac{\partial \chi^2}{\partial \alpha} = 0$ or

$$\alpha^4 - \alpha^3 \theta - \theta^4 + (-2n + \alpha - 2) \theta^3 + ((n + 1) \alpha - n^2 - 2n - 1) \theta^2 = 0.$$

The only feasible value of α is

$$\alpha = \sqrt{\theta(n + 1 + \theta)}.$$
From this discussion we have the following:

Theorem 2. If ν-th order inverse-moment of a system matrix $G \equiv \{M, C, K\}$ exists and only the mean of G is available, say \overline{G}, then the unbiased distribution of G follows the Wishart distribution with parameters $p = (2\nu + n + 1)$ and

$$
\Sigma = \overline{G} / \sqrt{2\nu(2\nu + n + 1)},
$$

that is

$$
G \sim W_n \left(2\nu + n + 1, \overline{G} / \sqrt{2\nu(2\nu + n + 1)}\right).
$$
Again consider $n = 100$ and $\nu = 2$, so that $\theta = 2\nu = 4$.

In the previous approach $\alpha = 2\nu + n + 1 = 105$. For the optimal distribution, $\alpha = \sqrt{\theta(\theta + n + 1)} = 2\sqrt{105} = 20.49$.

We have $E[G] = \frac{105}{2\sqrt{105}} \overline{G} = 5.12\overline{G}$ and $E[G^{-1}] = \frac{2\sqrt{105}}{4} \overline{G}^{-1} = 5.12\overline{G}^{-1}$.

The overall normalized difference for the previous case is $\chi^2 = 0 + (1 - 105/4)^2 = 637.56$. The same for the optimal distribution is $\chi^2 = 2(1 - \sqrt{105}/2)^2 = 34.01$, which is considerably smaller compared to the non-optimal distribution.
Simulation Algorithm

- Obtain $\theta = \frac{1}{\delta^2 G} \left\{ 1 + \frac{\{\text{Trace}(\bar{G})\}^2}{\text{Trace}(\bar{G}^2)} \right\} - (n + 1)$

- If $\theta < 4$, then select $\theta = 4$.

- Calculate $\alpha = \sqrt{\theta(n + 1 + \theta)}$

- Generate samples of $G \sim W_n(n + 1 + \theta, \bar{G}/\alpha)$
 (MATLAB® command wishrnd can be used to generate the samples)

- Repeat the above steps for all system matrices and solve for every samples
Example: A cantilever Plate

Cantilever plate with a slot: $\mu = 0.3$, $\rho = 8000$ kg/m3, $t = 5$ mm,

$L_x = 2.27$m, $L_y = 1.47$m
Plate Mode 4

Mode 4, freq. = 9.2119 Hz

Fourth Mode shape
Plate Mode 5

Mode 5, freq. = 11.6696 Hz

Fifth Mode shape
Deterministic FRF

FRF of the deterministic plate
Frequency Spacing

Number of modes: 486

Natural frequency spacing distribution (without slot)

Simulation
Rayleigh (Wigner surmise)
exponential

Spacing density $p(s)$

Natural frequency spacing (s), rad/s
Frequency Spacing

Number of modes: 486

Natural frequency spacing distribution (with slot)
Direct finite-element MCS of the amplitude of the cross-FRF of the plate with randomly placed masses; 30 masses, each weighting 0.5% of the total mass of the plate are simulated.
Direct finite-element MCS of the amplitude of the driving-point FRF of the plate with randomly placed masses; 30 masses, each weighting 0.5% of the total mass of the plate are simulated.
MCS of the amplitude of the cross-FRF of the plate using optimal Wishart mass matrix,

\[n = 429, \delta_M = 2.0449. \]
MCS of the amplitude of the driving-point-FRF of the plate using optimal Wishart mass matrix, $n = 429$, $\delta_M = 2.0449$.
Comparison of the mean values of the amplitude of the cross-FRF.
Comparison of the mean values of the amplitude of the driving-point-FRF.

Comparison of Mean - 2
Comparison of Variation - 1

Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.
Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.
Summary & conclusions

- **Wishart matrices** can be used as the distribution for the system matrices in structural dynamics.
- The parameters of the distribution can be obtained by solving an optimisation problem.
Next steps

- Numerical works (validation against??)
- Eigenvalues, eigenvector statistics and calculation of dynamic response.
- Distribution of the dynamic stiffness matrix (complex Wishart matrix?)
- Inversion of the dynamic stiffness matrix (FRFs)
- Distribution of \(\mathbf{Y}(\omega) = \left[\mathbf{RD}(\omega)^{-1} \mathbf{P} \right] \) where \(\mathbf{P} \in \mathbb{C}_{n,r} \) and \(\mathbf{R} \in \mathbb{R}_{p,n} \)
- Cumulative distribution function of the response (reliability problem)
Open problems & discussions

- Is MEnT appropriate here?
- \bar{G} is just one ‘observation’ - not an ensemble mean.
- What happens if we know the covariance tensor of G (e.g., using Stochastic Finite element Method)?
- What if the zeros in G are not preserved?
Structure of the Matrices

Nonzero elements of the system matrices