Stochastic Finite Element Analysis of Uncertain Structural Systems

S Adhikari

1Swansea University, UK

University of Edinburgh, Edinburgh
Outline of the talk

1. Introduction
 - Uncertainty in computational mechanics
 - Stochastic elliptic PDEs

2. Spectral decomposition in a vector space
 - Projection in a finite dimensional vector-space
 - Properties of the spectral functions

3. Error minimization in the Hilbert space
 - The Galerkin approach
 - Computational method

4. Numerical illustration
 - ZnO nanowires
 - Results for larger correlation length
 - Results for smaller correlation length

5. Conclusions

6. Acknowledgements
A general overview

Real System
Input Uncertainty
- uncertainty in time history
- uncertainty in location

System Uncertainty
- parametric uncertainty
- model inadequacy
- model uncertainty
- calibration uncertainty

Input (e.g., earthquake, turbulence)

Physics based model
\[L(u) = f \]
(e.g., ODE/PDE/SDE/SPDE)

Calibration/Updating
Verification

Measured output
(e.g., velocity, acceleration, stress)

Uncertain experimental error

Simulated Input
(time or frequency domain)

Computational Uncertainty
- machine precision
- error tolerance
- \(h \) and \(p \) refinements

Total Uncertainty = input + system + computational uncertainty

Model output
(e.g., velocity, acceleration, stress)

Computation
(e.g., FEM/BEM/Finite difference/SFEM/MCS)
Sources of uncertainty

(a) **parametric uncertainty** - e.g., uncertainty in geometric parameters, friction coefficient, strength of the materials involved;
(b) **model inadequacy** - arising from the lack of scientific knowledge about the model which is a-priori unknown;
(c) **experimental error** - uncertain and unknown error percolate into the model when they are calibrated against experimental results;
(d) **computational uncertainty** - e.g, machine precession, error tolerance and the so called ‘h’ and ‘p’ refinements in finite element analysis, and
(e) **model uncertainty** - genuine randomness in the model such as uncertainty in the position and velocity in quantum mechanics, deterministic chaos.
Problem-types in structural mechanics

<table>
<thead>
<tr>
<th>Input</th>
<th>System</th>
<th>Output</th>
<th>Problem name</th>
<th>Main techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known (deterministic)</td>
<td>Known (deterministic)</td>
<td>Unknown</td>
<td>Analysis (forward problem)</td>
<td>FEM/BEM/Finite difference</td>
</tr>
<tr>
<td>Known (deterministic)</td>
<td>Incorrect (deterministic)</td>
<td>Known (deterministic)</td>
<td>Updating/calibration</td>
<td>Modal updating</td>
</tr>
<tr>
<td>Known (deterministic)</td>
<td>Unknown</td>
<td>Known (deterministic)</td>
<td>System identification</td>
<td>Kalman filter</td>
</tr>
<tr>
<td>Assumed (deterministic)</td>
<td>Unknown (deterministic)</td>
<td>Prescribed</td>
<td>Design</td>
<td>Design optimisation</td>
</tr>
<tr>
<td>Unknown</td>
<td>Partially Known</td>
<td>Known</td>
<td>Structural Health Monitoring (SHM)</td>
<td>SHM methods</td>
</tr>
<tr>
<td>Known (deterministic)</td>
<td>Known (deterministic)</td>
<td>Prescribed</td>
<td>Control</td>
<td>Modal control</td>
</tr>
<tr>
<td>Known (random)</td>
<td>Known (deterministic)</td>
<td>Unknown</td>
<td>Random vibration</td>
<td>Random vibration methods</td>
</tr>
</tbody>
</table>
Problem-types in structural mechanics

<table>
<thead>
<tr>
<th>Input</th>
<th>System</th>
<th>Output</th>
<th>Problem name</th>
<th>Main techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known (deterministic)</td>
<td>Known (random)</td>
<td>Unknown</td>
<td>Stochastic analysis (forward problem)</td>
<td>SFEM/SEA/RMT</td>
</tr>
<tr>
<td>Known (random)</td>
<td>Incorrect (random)</td>
<td>Known (random)</td>
<td>Probabilistic updating/calibration</td>
<td>Bayesian calibration</td>
</tr>
<tr>
<td>Assumed (random/deterministic)</td>
<td>Unknown (random)</td>
<td>Prescribed (random)</td>
<td>Probabilistic design</td>
<td>RBOD</td>
</tr>
<tr>
<td>Known (random/deterministic)</td>
<td>Partially known (random)</td>
<td>Partially known (random)</td>
<td>Joint state and parameter estimation</td>
<td>Particle Kalman Filter/Ensemble Kalman Filter</td>
</tr>
<tr>
<td>Known (random/deterministic)</td>
<td>Known (random)</td>
<td>Known from experiment and model (random)</td>
<td>Model validation</td>
<td>Validation methods</td>
</tr>
<tr>
<td>Known (random/deterministic)</td>
<td>Known (random)</td>
<td>Known from different computations (random)</td>
<td>Model verification</td>
<td>verification methods</td>
</tr>
</tbody>
</table>
We consider the stochastic elliptic partial differential equation (PDE)

\[-\nabla \left[a(r, \omega) \nabla u(r, \omega) \right] = p(r); \quad r \text{ in } \mathcal{D} \tag{1}\]

with the associated boundary condition

\[u(r, \omega) = 0; \quad r \text{ on } \partial \mathcal{D} \tag{2}\]

Here \(a: \mathbb{R}^d \times \Omega \rightarrow \mathbb{R}\) is a random field, which can be viewed as a set of random variables indexed by \(r \in \mathbb{R}^d\).

We assume the random field \(a(r, \omega)\) to be stationary and square integrable. Based on the physical problem the random field \(a(r, \omega)\) can be used to model different physical quantities.
The random process $a(r, \omega)$ can be expressed in a generalized fourier type of series known as the Karhunen-Loève expansion

$$a(r, \omega) = a_0(r) + \sum_{i=1}^{\infty} \sqrt{\nu_i} \xi_i(\omega) \varphi_i(r)$$ \hspace{1cm} (3)

Here $a_0(r)$ is the mean function, $\xi_i(\omega)$ are uncorrelated standard Gaussian random variables, ν_i and $\varphi_i(r)$ are eigenvalues and eigenfunctions satisfying the integral equation

$$\int_{D} C_a(r_1, r_2) \varphi_j(r_1) dr_1 = \nu_j \varphi_j(r_2), \quad \forall \ j = 1, 2, \ldots$$ \hspace{1cm} (4)
Exponential autocorrelation function

The autocorrelation function:

\[C(x_1, x_2) = e^{-|x_1 - x_2|/b} \] \hspace{1cm} (5)

The underlying random process \(H(x, \theta) \) can be expanded using the Karhunen-Loève expansion in the interval \(-a \leq x \leq a\) as

\[H(x, \theta) = \sum_{j=1}^{\infty} \xi_j(\theta) \sqrt{\lambda_j} \varphi_j(x) \] \hspace{1cm} (6)

Using the notation \(c = 1/b \), the corresponding eigenvalues and eigenfunctions for odd \(j \) are given by

\[\lambda_j = \frac{2c}{\omega_j^2 + c^2}, \quad \varphi_j(x) = \frac{\cos(\omega_j x)}{\sqrt{a + \frac{\sin(2\omega_j a)}{2\omega_j}}}, \quad \text{where} \quad \tan(\omega_j a) = \frac{c}{\omega_j}, \] \hspace{1cm} (7)

and for even \(j \) are given by

\[\lambda_j = \frac{2c}{\omega_j^2 + c^2}, \quad \varphi_j(x) = \frac{\sin(\omega_j x)}{\sqrt{a - \frac{\sin(2\omega_j a)}{2\omega_j}}}, \quad \text{where} \quad \tan(\omega_j a) = \frac{\omega_j}{-c}. \] \hspace{1cm} (8)
Example: A beam with random properties

The equation of motion of an undamped Euler-Bernoulli beam of length L with random bending stiffness and mass distribution:

$$\frac{\partial^2}{\partial x^2} \left[EI(x, \theta) \frac{\partial^2 Y(x, t)}{\partial x^2} \right] + \rho A(x, \theta) \frac{\partial^2 Y(x, t)}{\partial t^2} = p(x, t). \quad (9)$$

$Y(x, t)$: transverse flexural displacement, $EI(x)$: flexural rigidity, $\rho A(x)$: mass per unit length, and $p(x, t)$: applied forcing. Consider

$$EI(x, \theta) = EI_0 \left(1 + \epsilon_1 F_1(x, \theta)\right) \quad (10)$$

and

$$\rho A(x, \theta) = \rho A_0 \left(1 + \epsilon_2 F_2(x, \theta)\right) \quad (11)$$

The subscript 0 indicates the mean values, $0 < \epsilon_i << 1$ ($i=1,2$) are deterministic constants and the random fields $F_i(x, \theta)$ are taken to have zero mean, unit standard deviation and covariance $R_{ij}(\xi)$.
Example: A beam with random properties

We express the shape functions for the finite element analysis of Euler-Bernoulli beams as

\[\mathbf{N}(x) = \mathbf{R} \mathbf{s}(x) \] \hspace{1cm} (12)

where

\[
\mathbf{R} = \begin{bmatrix}
1 & 0 & -3\ell_e^2 & 2\ell_e^3 \\
0 & 1 & -2\ell_e^2 & 1\ell_e^3 \\
0 & 0 & 3\ell_e^2 & -2\ell_e^3 \\
0 & 0 & -1\ell_e^2 & 1\ell_e^2 \\
\end{bmatrix}
\]

and \(\mathbf{s}(x) = [1, x, x^2, x^3]^T \).

The element stiffness matrix:

\[
\mathbf{K}_e(\theta) = \int_0^{\ell_e} \mathbf{N}''(x)EI(x, \theta)\mathbf{N}''^T(x) \, dx = \int_0^{\ell_e} EI_0 \left(1 + \epsilon_1 F_1(x, \theta)\right) \mathbf{N}''(x)\mathbf{N}''^T(x) \, dx.
\] \hspace{1cm} (14)
Example: A beam with random properties

Expanding the random field $F_1(x, \theta)$ in KL expansion

$$K_e(\theta) = K_{e0} + \Delta K_e(\theta)$$ \hspace{1cm} (15)

where the deterministic and random parts are

$$K_{e0} = EI_0 \int_0^{\ell_e} N''(x)N''^T(x) \, dx \quad \text{and} \quad \Delta K_e(\theta) = \epsilon_1 \sum_{j=1}^{N_K} \xi_{Kj}(\theta) \sqrt{\lambda_{Kj}} K_{ej}.$$ \hspace{1cm} (16)

The constant N_K is the number of terms retained in the Karhunen-Loève expansion and $\xi_{Kj}(\theta)$ are uncorrelated Gaussian random variables with zero mean and unit standard deviation. The constant matrices K_{ej} can be expressed as

$$K_{ej} = EI_0 \int_0^{\ell_e} \varphi_{Kj}(x_e + x)N''(x)N''^T(x) \, dx$$ \hspace{1cm} (17)
Example: A beam with random properties

The mass matrix can be obtained as

\[M_e(\theta) = M_{e0} + \Delta M_e(\theta) \] \hspace{1cm} (18)

The deterministic and random parts is given by

\[M_{e0} = \rho A_0 \int_0^{\ell_e} N(x)N^T(x) \, dx \quad \text{and} \quad \Delta M_e(\theta) = \epsilon_2 \sum_{j=1}^{N_M} \xi_{Mj}(\theta) \sqrt{\lambda_{Mj}} M_{ej}. \] \hspace{1cm} (19)

The constant \(N_M \) is the number of terms retained in Karhunen-Loève expansion and the constant matrices \(M_{ej} \) can be expressed as

\[M_{ej} = \rho A_0 \int_0^{\ell_e} \phi_{Mj}(x_e + x)N(x)N^T(x) \, dx. \] \hspace{1cm} (20)
Example: A beam with random properties

These element matrices can be assembled to form the global random stiffness and mass matrices of the form

\[K(\theta) = K_0 + \Delta K(\theta) \quad \text{and} \quad M(\theta) = M_0 + \Delta M(\theta). \] (21)

Here the deterministic parts \(K_0 \) and \(M_0 \) are the usual global stiffness and mass matrices obtained form the conventional finite element method. The random parts can be expressed as

\[\Delta K(\theta) = \epsilon_1 \sum_{j=1}^{N_K} \xi_{Kj}(\theta) \sqrt{\lambda_{Kj}} K_j \quad \text{and} \quad \Delta M(\theta) = \epsilon_2 \sum_{j=1}^{N_M} \xi_{Mj}(\theta) \sqrt{\lambda_{Mj}} M_j \] (22)

The element matrices \(K_{ej} \) and \(M_{ej} \) can be assembled into the global matrices \(K_j \) and \(M_j \). The total number of random variables depend on the number of terms used for the truncation of the infinite series. This in turn depends on the respective correlation lengths of the underlying random fields.
Discrete equation for stochastic mechanics

- Truncating the KL expansion upto the M-th term and discretising the displacement field, the equation for static deformation can be expresses as

$$\begin{bmatrix} A_0 + \sum_{i=1}^{M} \xi_i(\omega) A_i \end{bmatrix} u(\omega) = f$$ \hspace{1cm} (23)

- The aim is to efficiently solve for $u(\omega)$.
Using the Polynomial Chaos expansion, the solution (a vector valued function) can be expressed as

\[u(\omega) = u_{i_0} h_0 + \sum_{i_1=1}^{\infty} u_{i_1} h_1(\xi_{i_1}(\omega)) \]

\[+ \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} u_{i_1,i_2} h_2(\xi_{i_1}(\omega), \xi_{i_2}(\omega)) \]

\[+ \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} \sum_{i_3=1}^{i_2} u_{i_1,i_2,i_3} h_3(\xi_{i_1}(\omega), \xi_{i_2}(\omega), \xi_{i_3}(\omega)) \]

\[+ \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} \sum_{i_3=1}^{i_2} \sum_{i_4=1}^{i_3} u_{i_1,i_2,i_3,i_4} h_4(\xi_{i_1}(\omega), \xi_{i_2}(\omega), \xi_{i_3}(\omega), \xi_{i_4}(\omega)) + \ldots, \]

Here \(u_{i_1,\ldots,i_p} \in \mathbb{R}^n \) are deterministic vectors to be determined.
Polynomial Chaos expansion

- After the finite truncation, concisely, the polynomial chaos expansion can be written as

\[
\hat{u}(\omega) = \sum_{k=1}^{P} H_k(\xi(\omega))u_k
\]

where \(H_k(\xi(\omega)) \) are the polynomial chaoses.

- The value of the number of terms \(P \) depends on the number of basic random variables \(M \) and the order of the PC expansion \(r \) as

\[
P = \sum_{j=0}^{r} \frac{(M + j - 1)!}{j!(M - 1)!}
\]

(24)
Polynomial Chaos expansion

We need to solve a $nP \times nP$ linear equation to obtain all $u_k \in \mathbb{R}^n$.

\[
\begin{bmatrix}
A_{0,0} & \cdots & A_{0,P-1} \\
A_{1,0} & \cdots & A_{1,P-1} \\
\vdots & \ddots & \vdots \\
A_{P-1,0} & \cdots & A_{P-1,P-1}
\end{bmatrix}
\begin{bmatrix}
u_0 \\
u_1 \\
\vdots \\
u_{P-1}
\end{bmatrix}
=
\begin{bmatrix}
f_0 \\
f_1 \\
\vdots \\
f_{P-1}
\end{bmatrix}
\]

P increases exponentially with M:

<table>
<thead>
<tr>
<th>M</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd order PC</td>
<td>5</td>
<td>9</td>
<td>20</td>
<td>65</td>
<td>230</td>
<td>1325</td>
<td>5150</td>
</tr>
<tr>
<td>3rd order PC</td>
<td>9</td>
<td>19</td>
<td>55</td>
<td>285</td>
<td>1770</td>
<td>23425</td>
<td>176850</td>
</tr>
</tbody>
</table>
Some basics of linear algebra

Definition

(Linearly independent vectors) A set of vectors \(\{\phi_1, \phi_2, \ldots, \phi_n\} \) is linearly independent if the expression \(\sum_{k=1}^{n} \alpha_k \phi_k = 0 \) if and only if \(\alpha_k = 0 \) for all \(k = 1, 2, \ldots, n \).

Remark

(The spanning property) Suppose \(\{\phi_1, \phi_2, \ldots, \phi_n\} \) is a complete basis in the Hilbert space \(H \). Then for every nonzero \(u \in H \), it is possible to choose \(\alpha_1, \alpha_2, \ldots, \alpha_n \neq 0 \) uniquely such that \(u = \alpha_1 \phi_1 + \alpha_2 \phi_2 + \ldots \alpha_n \phi_n \).
Polynomial Chaos expansion

- We can ‘split’ the Polynomial Chaos type of expansions as

$$\hat{u}(\omega) = \sum_{k=1}^{n} H_k(\xi(\omega))u_k + \sum_{k=n+1}^{P} H_k(\xi(\omega))u_k$$ \hspace{1cm} (27)

- According to the spanning property of a complete basis in \mathbb{R}^n it is always possible to project $\hat{u}(\omega)$ in a finite dimensional vector basis for any $\omega \in \Omega$. Therefore, in a vector polynomial chaos expansion (27), all u_k for $k > n$ must be linearly dependent.

- This is the motivation behind seeking a finite dimensional expansion.
Theorem

There exist a finite set of functions \(\Gamma_k : (\mathbb{R}^m \times \Omega) \rightarrow (\mathbb{R} \times \Omega) \) and an orthonormal basis \(\phi_k \in \mathbb{R}^n \) for \(k = 1, 2, \ldots, n \) such that the series

\[
\hat{u}(\omega) = \sum_{k=1}^{n} \Gamma_k(\xi(\omega)) \phi_k
\]

converges to the exact solution of the discretized stochastic finite element equation (23) with probability 1.

Outline of proof: The first step is to generate a complete orthonormal basis. We use the eigenvectors \(\phi_k \in \mathbb{R}^n \) of the matrix \(A_0 \) such that

\[
A_0 \phi_k = \lambda_{0k} \phi_k; \quad k = 1, 2, \ldots n
\]
Projection in a finite dimensional vector-space

We define the matrix of eigenvalues and eigenvectors

\[\Lambda_0 = \text{diag} [\lambda_0, \lambda_1, \ldots, \lambda_n] \in \mathbb{R}^{n \times n}; \Phi = [\phi_1, \phi_2, \ldots, \phi_n] \in \mathbb{R}^{n \times n} \] (30)

Eigenvalues are ordered in the ascending order: \(\lambda_0 < \lambda_1 < \ldots < \lambda_n \).

Since \(\Phi \) is an orthogonal matrix we have \(\Phi^{-1} = \Phi^T \) so that:

\[\Phi^T A_0 \Phi = \Lambda_0; \quad A_0 = \Phi^{-T} \Lambda_0 \Phi^{-1} \quad \text{and} \quad A_0^{-1} = \Phi \Lambda_0^{-1} \Phi^T \] (31)

We also introduce the transformations

\[\tilde{A}_i = \Phi^T A_i \Phi \in \mathbb{R}^{n \times n}; \quad i = 0, 1, 2, \ldots, M \] (32)

Note that \(\tilde{A}_0 = \Lambda_0 \), a diagonal matrix and

\[A_i = \Phi^{-T} \tilde{A}_i \Phi^{-1} \in \mathbb{R}^{n \times n}; \quad i = 1, 2, \ldots, M \] (33)
Suppose the solution of Eq. (23) is given by

$$\hat{u}(\omega) = \left[\mathbf{A}_0 + \sum_{i=1}^{M} \xi_i(\omega) \mathbf{A}_i \right]^{-1} \mathbf{f}$$ \hspace{1cm} (34)$$

Using Eqs. (30)–(33) and the orthonormality of Φ one has

$$\hat{u}(\omega) = \left[\Phi^{-T} \Lambda_0 \Phi^{-1} + \sum_{i=1}^{M} \xi_i(\omega) \Phi^{-T} \tilde{\mathbf{A}}_i \Phi^{-1} \right]^{-1} \mathbf{f} = \Phi \Psi \left(\xi(\omega) \right) \Phi^T \mathbf{f}$$ \hspace{1cm} (35)$$

where

$$\Psi \left(\xi(\omega) \right) = \left[\Lambda_0 + \sum_{i=1}^{M} \xi_i(\omega) \tilde{\mathbf{A}}_i \right]^{-1}$$ \hspace{1cm} (36)$$

and the M-dimensional random vector

$$\xi(\omega) = \{ \xi_1(\omega), \xi_2(\omega), \ldots, \xi_M(\omega) \}^T$$ \hspace{1cm} (37)$$
Projection in a finite dimensional vector-space

Now we separate the diagonal and off-diagonal terms of the \tilde{A}_i matrices as

$$\tilde{A}_i = \Lambda_i + \Delta_i, \quad i = 1, 2, \ldots, M$$

(38)

Here the diagonal matrix

$$\Lambda_i = \text{diag} \left[\tilde{A} \right] = \text{diag} \left[\lambda_i, \lambda_i, \ldots, \lambda_i \right] \in \mathbb{R}^{n \times n}$$

(39)

and $\Delta_i = \tilde{A}_i - \Lambda_i$ is an off-diagonal only matrix.

$$
\Psi \left(\xi(\omega) \right) = \left[\begin{array}{c}
\Lambda_0 + \sum_{i=1}^{M} \xi_i(\omega) \Lambda_i + \sum_{i=1}^{M} \xi_i(\omega) \Delta_i \\
\Lambda(\xi(\omega)) \\
\Delta(\xi(\omega))
\end{array} \right]^{-1}
$$

(40)

where $\Lambda(\xi(\omega)) \in \mathbb{R}^{n \times n}$ is a diagonal matrix and $\Delta(\xi(\omega))$ is an off-diagonal only matrix.
We rewrite Eq. (40) as

\[
\Psi(\xi(\omega)) = \left[\Lambda(\xi(\omega)) \left[I_n + \Lambda^{-1}(\xi(\omega)) \Delta(\xi(\omega)) \right] \right]^{-1}
\] (41)

The above expression can be represented using a Neumann type of matrix series as

\[
\Psi(\xi(\omega)) = \sum_{s=0}^{\infty} (-1)^s \left[\Lambda^{-1}(\xi(\omega)) \Delta(\xi(\omega)) \right]^s \Lambda^{-1}(\xi(\omega))
\] (42)
Polynomial Chaos expansion

Taking an arbitrary r-th element of $\hat{u}(\omega)$, Eq. (35) can be rearranged to have

$$\hat{u}_r(\omega) = \sum_{k=1}^{n} \Phi_{rk} \left(\sum_{j=1}^{n} \psi_{kj}(\xi(\omega)) \left(\phi_j^T f \right) \right)$$ \hspace{1cm} (43)

Defining

$$\Gamma_k(\xi(\omega)) = \sum_{j=1}^{n} \psi_{kj}(\xi(\omega)) \left(\phi_j^T f \right)$$ \hspace{1cm} (44)

and collecting all the elements in Eq. (43) for $r = 1, 2, \ldots, n$ one has

$$\hat{u}(\omega) = \sum_{k=1}^{n} \Gamma_k(\xi(\omega)) \phi_k$$ \hspace{1cm} (45)
Spectral functions

Definition

The functions \(\Gamma_k (\xi(\omega)) \), \(k = 1, 2, \ldots n \) are called the spectral functions as they are expressed in terms of the spectral properties of the coefficient matrices of the governing discretized equation.

- The main difficulty in applying this result is that each of the spectral functions \(\Gamma_k (\xi(\omega)) \) contain infinite number of terms and they are highly nonlinear functions of the random variables \(\xi_i(\omega) \).
- For computational purposes, it is necessary to truncate the series after certain number of terms.
- Different order of spectral functions can be obtained by using truncation in the expression of \(\Gamma_k (\xi(\omega)) \)
First-order spectral functions

Definition

The first-order spectral functions \(\Gamma_k^{(1)}(\xi(\omega)), k = 1, 2, \ldots, n \) are obtained by retaining one term in the series (42).

Retaining one term in (42) we have

\[
\psi^{(1)}(\xi(\omega)) = \Lambda^{-1}(\xi(\omega)) \quad \text{or} \quad \psi_{kj}^{(1)}(\xi(\omega)) = \frac{\delta_{kj}}{\lambda_{0k} + \sum_{i=1}^{M} \xi_i(\omega) \lambda_{ik}}
\]

(46)

Using the definition of the spectral function in Eq. (44), the first-order spectral functions can be explicitly obtained as

\[
\Gamma_k^{(1)}(\xi(\omega)) = \sum_{j=1}^{n} \psi_{kj}^{(1)}(\xi(\omega)) \left(\phi_j^T \mathbf{f} \right) = \frac{\phi_k^T \mathbf{f}}{\lambda_{0k} + \sum_{i=1}^{M} \xi_i(\omega) \lambda_{ik}}
\]

(47)

- From this expression it is clear that \(\Gamma_k^{(1)}(\xi(\omega)) \) are non-Gaussian random variables even if \(\xi_i(\omega) \) are Gaussian random variables.
Second-order spectral functions

Definition

The second-order spectral functions $\Gamma_k^{(2)}(\xi(\omega))$, $k = 1, 2, \ldots, n$ are obtained by retaining two terms in the series (42).

Retaining two terms in (42) we have

$$\psi^{(2)}(\xi(\omega)) = \Lambda^{-1}(\xi(\omega)) - \Lambda^{-1}(\xi(\omega)) \Delta(\xi(\omega)) \Lambda^{-1}(\xi(\omega))$$

(48)

Using the definition of the spectral function in Eq. (44), the second-order spectral functions can be obtained in closed-form as

$$\Gamma_k^{(2)}(\xi(\omega)) = \frac{\phi_k^T f}{\lambda_0 + \sum_{i=1}^{M} \xi_i(\omega) \lambda_{i_k}} - \sum_{j=1}^{n} \frac{\left(\phi_j^T f\right) \sum_{i=1}^{M} \xi_i(\omega) \Delta_{ij}}{\left(\lambda_0 + \sum_{i=1}^{M} \xi_i(\omega) \lambda_{i_k}\right) \left(\lambda_0 + \sum_{i=1}^{M} \xi_i(\omega) \lambda_{i_j}\right)}$$

(49)
Analysis of spectral functions

- The spectral basis functions are not simple polynomials, but ratio of polynomials in $\xi(\omega)$.

We now look into the functional nature of the solution $u(\omega)$ in terms of the random variables $\xi_i(\omega)$.

Theorem

If all $A_i \in \mathbb{R}^{n \times n}$ are matrices of rank n, then the elements of $u(\omega)$ are the ratio of polynomials of the form

$$
\frac{p^{(n-1)}(\xi_1(\omega), \xi_2(\omega), \ldots, \xi_M(\omega))}{p^{(n)}(\xi_1(\omega), \xi_2(\omega), \ldots, \xi_M(\omega))}
$$

where $p^{(n)}(\xi_1(\omega), \xi_2(\omega), \ldots, \xi_M(\omega))$ is an n-th order complete multivariate polynomial of variables $\xi_1(\omega), \xi_2(\omega), \ldots, \xi_M(\omega)$.

Adhikari (SU)
Analysis of spectral functions

Suppose we denote

$$A(\omega) = \left[A_0 + \sum_{i=1}^{M} \xi_i(\omega)A_i \right] \in \mathbb{R}^{n \times n} \quad (51)$$

so that

$$u(\omega) = A^{-1}(\omega)f \quad (52)$$

From the definition of the matrix inverse we have

$$A^{-1} = \frac{\text{Adj}(A)}{\det(A)} = \frac{C^T_a}{\det(A)} \quad (53)$$

where C_a is the matrix of cofactors. The determinant of A contains a maximum of n number of products of A_{kj} and their linear combinations. Note from Eq. (51) that

$$A_{kj}(\omega) = A_{0kj} + \sum_{i=1}^{M} \xi_i(\omega)A_{ikj} \quad (54)$$
Analysis of spectral functions

- Since all the matrices are of full rank, the determinant contains a maximum of n number of products of linear combination of random variables in Eq. (54). On the other hand, each entries of the matrix of cofactors, contains a maximum of $(n-1)$ number of products of linear combination of random variables in Eq. (54). From Eqs. (52) and (53) it follows that

$$u(\omega) = \frac{C^T_a f}{\det(A)} \quad (55)$$

Therefore, the numerator of each element of the solution vector contains linear combinations of the elements of the cofactor matrix, which are complete polynomials of order $(n-1)$.

- The result derived in this theorem is important because the solution methods proposed for stochastic finite element analysis essentially aim to approximate the ratio of the polynomials given in Eq. (50).
Analysis of spectral functions

Theorem

The linear combination of the spectral functions has the same functional form in \((\xi_1(\omega), \xi_2(\omega), \ldots, \xi_M(\omega))\) as the elements of the solution vector, that is,

\[
\hat{u}_r(\omega) \equiv \frac{p_r^{(n-1)}(\xi_1(\omega), \xi_2(\omega), \ldots, \xi_M(\omega))}{p_r^{(n)}(\xi_1(\omega), \xi_2(\omega), \ldots, \xi_M(\omega))}, \quad \forall r = 1, 2, \ldots, n
\] (56)

When first-order spectral functions (47) are considered, we have

\[
\hat{u}_r^{(1)}(\omega) = \sum_{k=1}^{n} \Gamma_k^{(1)}(\xi(\omega)) \phi_{rk} = \sum_{k=1}^{n} \frac{\phi_k^T f}{\lambda_0 + \sum_{i=1}^{M} \xi_i(\omega) \lambda_{ik}} \phi_{rk}
\] (57)

All \((\lambda_0 + \sum_{i=1}^{M} \xi_i(\omega) \lambda_{ik})\) are different for different \(k\) because it is assumed that all eigenvalues \(\lambda_{0k}\) are distinct.
Analysis of spectral functions

Carrying out the above summation one has n number of products of $(\lambda_{0_k} + \sum_{i=1}^{M} \xi_i(\omega)\lambda_{i_k})$ in the denominator and n sums of $(n - 1)$ number of products of $(\lambda_{0_k} + \sum_{i=1}^{M} \xi_i(\omega)\lambda_{i_k})$ in the numerator, that is,

$$
\hat{u}_r^{(1)}(\omega) = \frac{\sum_{k=1}^{n} (\phi_k^T \mathbf{f}) \phi_{rk} \prod_{j=1 \neq k}^{n-1} \left(\lambda_{0_j} + \sum_{i=1}^{M} \xi_i(\omega)\lambda_{i_j} \right)}{\prod_{k=1}^{n-1} \left(\lambda_{0_j} + \sum_{i=1}^{M} \xi_i(\omega)\lambda_{i_j} \right)}
$$

(58)
The Galerkin approach

There exist a set of finite functions \(\hat{\Gamma}_k : (\mathbb{R}^m \times \Omega) \to (\mathbb{R} \times \Omega) \), constants \(c_k \in \mathbb{R} \) and orthonormal vectors \(\phi_k \in \mathbb{R}^n \) for \(k = 1, 2, \ldots, n \) such that the series

\[
\hat{u}(\omega) = \sum_{k=1}^{n} c_k \hat{\Gamma}_k(\xi(\omega))\phi_k
\]

converges to the exact solution of the discretized stochastic finite element equation (23) in the mean-square sense provided the vector \(c = \{ c_1, c_2, \ldots, c_n \}^T \) satisfies the \(n \times n \) algebraic equations \(S c = b \) with

\[
S_{jk} = \sum_{i=0}^{M} \tilde{A}_{ijk} D_{ijk}; \quad \forall \ j, k = 1, 2, \ldots, n; \quad \tilde{A}_{ijk} = \phi_j^T A_i \phi_k,
\]

\[
D_{ijk} = \mathbb{E} \left[\xi_i(\omega) \hat{\Gamma}_j(\xi(\omega)) \hat{\Gamma}_k(\xi(\omega)) \right] \quad \text{and} \quad b_j = \mathbb{E} \left[\hat{\Gamma}_j(\xi(\omega)) \right] \left(\phi_j^T f \right).
\]
The Galerkin approach

The error vector can be obtained as

\[
\varepsilon(\omega) = \left(\sum_{i=0}^{M} A_i \xi_i(\omega) \right) \left(\sum_{k=1}^{n} c_k \hat{\Gamma}_k(\xi(\omega)) \phi_k \right) - f \in \mathbb{R}^n
\]

The solution is viewed as a projection where \(\left\{ \hat{\Gamma}_k(\xi(\omega)) \phi_k \right\} \in \mathbb{R}^n \) are the basis functions and \(c_k \) are the unknown constants to be determined.

We wish to obtain the coefficients \(c_k \) such that the error norm \(\chi^2 = \langle \varepsilon(\omega), \varepsilon(\omega) \rangle \) is minimum. This can be achieved using the Galerkin approach so that the error is made orthogonal to the basis functions, that is, mathematically

\[
\varepsilon(\omega) \perp \left(\hat{\Gamma}_j(\xi(\omega)) \phi_j \right) \quad \text{or} \quad \langle \hat{\Gamma}_j(\xi(\omega)) \phi_j, \varepsilon(\omega) \rangle = 0 \quad \forall \ j = 1, 2, \ldots, n
\]
The Galerkin approach

- Imposing the orthogonality condition and using the expression of the error one has

\[
E \left[\hat{\Gamma}_j(\xi(\omega)) \phi_j^T \left(\sum_{i=0}^{M} A_i \xi_i(\omega) \right) \left(\sum_{k=1}^{n} c_k \hat{\Gamma}_k(\xi(\omega)) \phi_k \right) - \hat{\Gamma}_j(\xi(\omega)) \phi_j^T f \right] = 0, \quad \forall j
\]

(64)

- Interchanging the \(E[\bullet] \) and summation operations, this can be simplified to

\[
\sum_{k=1}^{n} \left(\sum_{i=0}^{M} \left(\phi_j^T A_i \phi_k \right) E \left[\xi_i(\omega) \hat{\Gamma}_j(\xi(\omega)) \hat{\Gamma}_k(\xi(\omega)) \right] \right) c_k = E \left[\hat{\Gamma}_j(\xi(\omega)) \right] \left(\phi_j^T f \right)
\]

(65)

or

\[
\sum_{k=1}^{n} \left(\sum_{i=0}^{M} \tilde{A}_{ijk} D_{ijk} \right) c_k = b_j
\]

(66)
Computational method

- The mean vector can be obtained as

\[\bar{u} = \mathbb{E}[\hat{u}(\omega)] = \sum_{k=1}^{n} c_k \mathbb{E}[\hat{\Gamma}_k(\xi(\omega))] \phi_k \]

(67)

- The covariance of the solution vector can be expressed as

\[\Sigma_u = \mathbb{E}\left[(\hat{u}(\omega) - \bar{u}) (\hat{u}(\omega) - \bar{u})^T \right] = \sum_{k=1}^{n} \sum_{j=1}^{n} c_k c_j \Sigma_{\Gamma_{kj}} \phi_k \phi_j^T \]

(68)

where the elements of the covariance matrix of the spectral functions are given by

\[\Sigma_{\Gamma_{kj}} = \mathbb{E}\left[(\hat{\Gamma}_k(\xi(\omega)) - \mathbb{E}[\hat{\Gamma}_k(\xi(\omega))]) (\hat{\Gamma}_j(\xi(\omega)) - \mathbb{E}[\hat{\Gamma}_j(\xi(\omega))]) \right] \]

(69)
Summary of the computational method

1. Solve the eigenvalue problem associated with the mean matrix A_0 to generate the orthonormal basis vectors: $A_0 \Phi = \Lambda_0 \Phi$

2. Select a number of samples, say N_{samp}. Generate the samples of basic random variables $\xi_i(\omega)$, $i = 1, 2, \ldots, M$.

3. Calculate the spectral basis functions (for example, first-order):
 \[\Gamma_k(\xi(\omega)) = \frac{\phi_k^Tf}{\lambda_0 + \sum_{i=1}^{M} \xi_i(\omega)\lambda_{ik}} \]

4. Obtain the coefficient vector: $c = S^{-1}b \in \mathbb{R}^n$, where $b = \tilde{f} \circ \Gamma$, $S = \Lambda_0 \odot D_0 + \sum_{i=1}^{M} \tilde{A}_i \odot D_i$ and $D_i = E\left[\Gamma(\omega)\xi_i(\omega)\Gamma^T(\omega)\right]$, $\forall i = 0, 1, 2, \ldots, M$

5. Obtain the samples of the response from the spectral series:
 \[\hat{u}(\omega) = \sum_{k=1}^{n} c_k \Gamma_k(\xi(\omega))\phi_k \]
Computational complexity

- The spectral functions $\tilde{\Gamma}_k(\xi(\omega))$ are highly non-Gaussian in nature and do not in general enjoy any orthogonality properties like the Hermite polynomials or any other orthogonal polynomials with respect to the underlying probability measure.

- The coefficient matrix \mathbf{S} and the vector \mathbf{b} should be obtained numerically using the Monte Carlo simulation or other numerical integration technique.

- The simulated spectral functions can also be ‘recycled’ to obtain the statistics and probability density function (pdf) of the solution.

- The main computational cost of the proposed method depends on (a) the solution of the matrix eigenvalue problem, (b) the generation of the coefficient matrices \mathbf{D}_i, and (c) the calculation of the coefficient vector by solving linear matrix equation.
Computational complexity

- Both the linear matrix algebraic and the matrix eigenvalue problem scales in $O(n^3)$ in the worse case.
- The calculation of the coefficient matrices scales linearly with M and $n(n + 1)/2$ with n. Therefore, this cost scales with $O((M + 1) n(n + 1)/2)$. The overall cost is $2O(n^3) + O((M + 1) n(n + 1)/2)$.
- For large M and n, asymptotically the computational cost becomes $C_s = O(Mn^2) + O(n^3)$.
- The important point to note here that the proposed approach scales linearly with the number of random variables M.
- For comparison, in the classical PC expansion one needs to solve a matrix equation of dimension Pn, which in the worse case scales with $(O(Pn)^3)$. Since $P \gg M$, we have $O(P^3 n^3) \gg O(Mn^2) + O(n^3)$.
Nanoscale Energy Harvesting: ZnO nanowires

- ZnO materials have attracted extensive attention due to their excellent performance in electronic, ferroelectric and piezoelectric applications.

- Nano-scale ZnO is an important material for the nanoscale energy harvesting and scavenging.

- Investigation and understanding of the bending of ZnO nanowires are valuable for their potential application. For example, ZnO nanowires are bend by rubbing against each other for energy scavenging.
When ambient vibrations move a microfibre covered with zinc oxide nanowires (blue) back and forth with respect to a similar fibre that has been coated with gold (orange), electrical energy is produced because ZnO is a piezoelectric material; *Nature Nanotechnology, Vol 3, March 2008, pp 123.*
Power Shirt: Nanotechnology In Clothing Could Harvest Energy From Body Movement

ScienceDaily (Feb. 14, 2008) — Nanotechnology researchers are developing the perfect complement to the power tie: a "power shirt" able to generate electricity to power small electronic devices for soldiers in the field, hikers and others whose physical motion could be harnessed and converted to electrical energy.

The February 14 issue of the journal Nature details how pairs of textile fibers covered with zinc oxide nanowires can generate electrical current using the piezoelectric effect. Combining current flow from many fiber pairs woven into a shirt or jacket could allow the wearer’s body movement to power a range of portable electronic devices. The fibers could also be woven into curtains, tents or other structures to capture energy from wind motion, sound vibration or other mechanical energy.

Close-up image shows a pair of entangled fibers that make up a microfiber nanogenerator. Both fibers are coated with zinc oxide nanowires; one fiber is additionally coated with gold. When rubbed together, they generate electrical current. (Credit: Georgia Tech Photo: Gary Meek)

See Also:
- Matter & Energy
 - Energy Technology
 - Nanotechnology
 - Materials Science
 - Electricity
 - Solar Energy
 - Physics

Reference
- Nanowire
- Electric power
- Electrical phenomena

Composite Fibers.
Add Boron Fibers To Carbon Progres...
A collection of vertically grown ZnO NWs. This can be viewed as the sample space for the application of stochastic finite element method.
Uncertainties in ZnO NWs in the close up view. The uncertain parameter include geometric parameters such as the length and the cross sectional area along the length, boundary condition and material properties.
For the future nano energy scavenging devices several thousands of ZnO NWs will be used simultaneously. This gives a natural framework for the application of stochastic finite element method due a large ‘sample space’.

ZnO NWs have the nano piezoeelastic property so that the electric charge generated is a function of the deformation.

It is therefore vitally important to look into the ensemble behavior of the deformation of ZnO NW for the reliable estimate of mechanical deformation and consequently the charge generation.

For the nano-scale application this is especially crucial as the margin of error is very small. Here we study the deformation of a cantilevered ZnO NW with stochastic properties under the Atomic Force Microscope (AFM) tip.
ZnO nanowires

(a) The SEM image of a collection of ZnO NW showing hexagonal cross sectional area.

(b) The atomic structure of the cross section of a ZnO NW (the red is O\textsubscript{2} and the grey is Zn atom)
(c) The atomistic model of a ZnO NW (d) The continuum idealization of a cantilevered ZnO NW grown from a ZnO crystal in the $(0, 0, 0, 1)$ direction.
Stochastic nanomechanics: computational challenges

When applying the continuum stochastic mechanics at the nanoscale, the following points need to be considered:

- The finite element discretization should be very small to take account of nanoscale spatial resolution (large \(n \)).
- Due to the small length-scale, the uncertainties are relatively large (as can be seen in the SEM images (large \(\sigma \)).
- The correlation length, which governs the statistical correlation between two points in the space is generally very small. This is because the interaction between the atoms reduces significantly with distance. This can be understood, for example, by looking at the Lennard-Jones potential \(V(r) = 4\epsilon \left[\left(\frac{r_{\text{min}}}{r} \right)^{12} - \left(\frac{r_{\text{min}}}{r} \right)^{6} \right] \) (large \(M \)).

Since the standard deviation \(\sigma \), the degrees-of-freedom \(n \) and the number of random variables \(M \) are all expected to be large, stochastic nanomechanics is particularly challenging as the computational cost can be significantly higher.
Problem details

- We study the deflection of ZnO NW under the AFM tip considering stochastically varying bending modulus. The variability of the deflection is particularly important as the harvested energy from the bending depends on it.

- We assume that the bending modulus of the ZnO NW is a homogeneous stationary Gaussian random field of the form

\[EI(x, \omega) = EI_0(1 + a(x, \omega)) \]

(70)

where \(x \) is the coordinate along the length of ZnO NW, \(EI_0 \) is the estimate of the mean bending modulus, \(a(x, \omega) \) is a zero mean stationary Gaussian random field.

- The autocorrelation function of this random field is assumed to be

\[C_a(x_1, x_2) = \sigma_a^2 e^{-|x_1 - x_2|/\mu_a} \]

(71)

where \(\mu_a \) is the correlation length and \(\sigma_a \) is the standard deviation.
Problem details

- We consider a long nanowire where the continuum model has been validated.
- We use the baseline parameters for the ZnO NW from Gao and Wang (*Nano Letters* 7 (8) (2007), 2499–2505) as the length \(L = 600\text{nm} \), diameter \(d = 50\text{nm} \) and the lateral point force at the tip \(f_T = 80\text{nN} \).
- Using these data, the baseline deflection can be obtained as \(\delta_0 = 145\text{nm} \). We normalize our results with this baseline value for convenience.
- Two correlation lengths are considered in the numerical studies: \(\mu_a = L/3 \) and \(\mu_a = L/10 \).
- The number of terms \(M \) in the KL expansion becomes 24 and 67 (95% capture).
- The nanowire is divided into 50 beam elements of equal length. The number of degrees of freedom of the model \(n = 100 \) (standard beam element).
Numerical illustration

Results for larger correlation length

Moments: larger correlation length

![Graphs showing normalized mean deflection and standard deviation](image)

(e) Mean of the normalized deflection.
(f) Standard deviation of the normalized deflection.

Figure: The number of random variable used: $M = 24$. The number of degrees of freedom: $n = 100$.
Error in moments: larger correlation length

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Methods</th>
<th>$\sigma_a = 0.05$</th>
<th>$\sigma_a = 0.10$</th>
<th>$\sigma_a = 0.15$</th>
<th>$\sigma_a = 0.20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1st order</td>
<td>0.1027</td>
<td>0.4240</td>
<td>1.0104</td>
<td>1.9749</td>
</tr>
<tr>
<td></td>
<td>2nd order</td>
<td>0.0003</td>
<td>0.0045</td>
<td>0.0283</td>
<td>0.1321</td>
</tr>
<tr>
<td></td>
<td>Galerkin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galerkin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1st order</td>
<td>1.8693</td>
<td>3.0517</td>
<td>5.2490</td>
<td>11.3447</td>
</tr>
<tr>
<td></td>
<td>2nd order</td>
<td>0.2201</td>
<td>1.0425</td>
<td>2.7690</td>
<td>8.2712</td>
</tr>
<tr>
<td></td>
<td>Galerkin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galerkin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage error in the mean and standard deviation of the deflection of the ZnO NW under the AFM tip when correlation length is $\mu_a = L/3$. For $n = 100$ and $M = 24$, if the second-order PC was used, one would need to solve a linear system of equation of size 32400. The results shown here are obtained by solving a linear system of equation of size 100 using the proposed Galerkin approach.
Pdf: larger correlation length

(a) Probability density function for $\sigma_a = 0.05$.

(b) Probability density function for $\sigma_a = 0.1$.

The probability density function of the normalized deflection δ/δ_0 of the ZnO NW under the AFM tip ($\delta_0 = 145\text{nm}$).
Numerical illustration

Results for larger correlation length

Pdf: larger correlation length

(c) Probability density function for $\sigma_a = 0.15$.

(d) Probability density function for $\sigma_a = 0.2$.

The probability density function of the normalized deflection δ/δ_0 of the ZnO NW under the AFM tip ($\delta_0 = 145$nm).
Moments: smaller correlation length

(e) Mean of the normalized deflection.
(f) Standard deviation of the normalized deflection.

Figure: The number of random variable used: $M = 67$. The number of degrees of freedom: $n = 100$.
Error in moments: smaller correlation length

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Methods</th>
<th>$\sigma_a = 0.05$</th>
<th>$\sigma_a = 0.10$</th>
<th>$\sigma_a = 0.15$</th>
<th>$\sigma_a = 0.20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1st order Galerkin</td>
<td>0.1761</td>
<td>0.7206</td>
<td>1.6829</td>
<td>3.1794</td>
</tr>
<tr>
<td></td>
<td>2nd order Galerkin</td>
<td>0.0007</td>
<td>0.0113</td>
<td>0.0642</td>
<td>0.6738</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1st order Galerkin</td>
<td>3.9543</td>
<td>5.9581</td>
<td>9.0305</td>
<td>14.6568</td>
</tr>
<tr>
<td></td>
<td>2nd order Galerkin</td>
<td>0.3222</td>
<td>1.8425</td>
<td>4.6781</td>
<td>8.9037</td>
</tr>
</tbody>
</table>

Percentage error in the mean and standard deviation of the deflection of the ZnO NW under the AFM tip when correlation length is $\mu_a = L/3$. For $n = 100$ and $M = 67$, if the second-order PC was used, one would need to solve a linear system of equation of size 234,500. The results shown here are obtained by solving a linear system of equation of size 100 using the proposed Galerkin approach.
Pdf: smaller correlation length

(a) Probability density function for $\sigma_a = 0.05$.

(b) Probability density function for $\sigma_a = 0.1$.

The probability density function of the normalized deflection δ/δ_0 of the ZnO NW under the AFM tip ($\delta_0 = 145$nm).
(c) Probability density function for $\sigma_a = 0.15$.

(d) Probability density function for $\sigma_a = 0.2$.

The probability density function of the normalized deflection δ/δ_0 of the ZnO NW under the AFM tip ($\delta_0 = 145\text{nm}$).
1. We consider discretised stochastic elliptic partial differential equations.

2. The solution is projected into a finite dimensional complete orthonormal vector basis and the associated coefficient functions are obtained.

3. The coefficient functions, called as the spectral functions, are expressed in terms of the spectral properties of the system matrices.

4. If n is the size of the discretized matrices and M is the number of random variables, then the computational complexity grows in $O(Mn^2) + O(n^3)$ for large M and n in the worse case.

5. We consider a problem with 24 and 67 random variables and $n = 100$ degrees of freedom. A second-order PC would require the solution of equations of dimension 32,400 and 234,500 respectively. In comparison, the proposed Galerkin approach requires the solution of algebraic equations of dimension n only.
Acknowledgements