Dynamics of structures with uncertainties

S Adhikari

College of Engineering, Swansea University, Swansea UK
Email: S.Adhikari@swansea.ac.uk
http://engweb.swan.ac.uk/ adhikaris/
Twitter: @ProfAdhikari

The University of Campinas, Campinas, Brazil
November 2014
Swansea University
About me

Education:
- PhD (Engineering), 2001, University of Cambridge (Trinity College), Cambridge, UK.
- MSc (Structural Engineering), 1997, Indian Institute of Science, Bangalore, India.
- B. Eng, (Civil Engineering), 1995, Calcutta University, India.

Work:
- 04/2007-Present: Professor of Aerospace Engineering, Swansea University (Civil and Computational Engineering Research Centre).
- 01/2003-03/2007: Lecturer in dynamics: Department of Aerospace Engineering, University of Bristol.
Outline of this talk

1. Introduction
2. Stochastic single degrees of freedom system
3. Stochastic multi degree of freedom systems
 - Stochastic finite element formulation
 - Projection in the modal space
 - Properties of the spectral functions
4. Error minimization
 - The Galerkin approach
 - Model Reduction
 - Computational method
5. Numerical illustrations
6. Conclusions
Mathematical models for dynamic systems

Mathematical Models of Dynamic Systems

- Linear
- Non-linear
- Time-invariant
- Time-variant
- Elastic
- Elasto-plastic
- Viscoelastic
- Continuous
- Discrete
- Deterministic
- Uncertain
- Probabilistic
- Fuzzy set
- Convex set

- Low frequency
- Mid-frequency
- High frequency

- Single-degree-of-freedom (SDOF)
- Multiple-degree-of-freedom (MDOF)
A general overview of computational mechanics

Input
(eg, earthquake, turbulence)

Real System

Measured output
(eg, velocity, acceleration, stress)

Input Uncertainty
- uncertainty in time history
- uncertainty in location

System Uncertainty
- parametric uncertainty
- model inadequacy
- model uncertainty
- calibration uncertainty

Physics based model
\[L(u) = f \]
(eg, ODE/PDESDESPDE)

Simulated Input
(time or frequency domain)

System identification

Calibration/Updating

Computational Uncertainty
- machine precession,
- error tolerance
- ‘h’ and ‘p’ refinements

Computation
(eg, FEM/BEM/Finite difference/SFEM/MCS)

Total Uncertainty = input + system + computational uncertainty

Model output
(eg, velocity, acceleration, stress)

Verification

Model validation
Uncertainty in structural dynamical systems

Many structural dynamic systems are manufactured in a production line (nom- inally identical systems). On the other hand, some models are complex! Com- plex models can have ‘errors’ and/or ‘lack of knowledge’ in its formulation.
The quality of a model of a dynamic system depends on the following three factors:

- **Fidelity to (experimental) data:** The results obtained from a numerical or mathematical model undergoing a given excitation force should be close to the results obtained from the vibration testing of the same structure undergoing the same excitation.

- **Robustness with respect to (random) errors:** Errors in estimating the system parameters, boundary conditions and dynamic loads are unavoidable in practice. The output of the model should not be very sensitive to such errors.

- **Predictive capability:** In general it is not possible to experimentally validate a model over the entire domain of its scope of application. The model should predict the response well beyond its validation domain.
Sources of uncertainty

Different sources of uncertainties in the modeling and simulation of dynamic systems may be attributed, but not limited, to the following factors:

- **Mathematical models**: equations (linear, non-linear), geometry, damping model (viscous, non-viscous, fractional derivative), boundary conditions/initial conditions, input forces.
- **Model parameters**: Young’s modulus, mass density, Poisson’s ratio, damping model parameters (damping coefficient, relaxation modulus, fractional derivative order).
- **Numerical algorithms**: weak formulations, discretisation of displacement fields (in finite element method), discretisation of stochastic fields (in stochastic finite element method), approximate solution algorithms, truncation and roundoff errors, tolerances in the optimization and iterative methods, artificial intelligent (AI) method (choice of neural networks).
- **Measurements**: noise, resolution (number of sensors and actuators), experimental hardware, excitation method (nature of shakers and hammers), excitation and measurement point, data processing (amplification, number of data points, FFT), calibration.
How does system uncertainty impact the dynamic response? Does it matter?
What is the underlying physics?
How can we model uncertainty in dynamic systems? Do we ‘know’ the uncertainties?
How can we efficiently quantify uncertainty in the dynamic response for large multi degrees of freedom systems?
What about using ‘black box’ type response surface methods?
Can we use modal analysis for stochastic systems? Does stochastic systems have natural frequencies and mode shapes?
Consider a normalised single degree of freedom system (SDOF):

\[\ddot{u}(t) + 2\zeta\omega_n \dot{u}(t) + \omega_n^2 u(t) = f(t)/m \]

(1)

Here \(\omega_n = \sqrt{k/m} \) is the natural frequency and \(\xi = c/2\sqrt{km} \) is the damping ratio.

- We are interested in understanding the motion when the natural frequency of the system is perturbed in a stochastic manner.
- Stochastic perturbation can represent statistical scatter of measured values or a lack of knowledge regarding the natural frequency.
Figure: We assume that the mean of r is 1 and the standard deviation is σ_a.

- Suppose the natural frequency is expressed as $\omega_n^2 = \omega_{n0}^2 r$, where ω_{n0} is deterministic frequency and r is a random variable with a given probability distribution function.
- Several probability distribution function can be used.
- We use uniform, normal and lognormal distribution.
Frequency samples

(a) Frequencies: $\sigma_a = 0.1$

(b) Frequencies: $\sigma_a = 0.2$

Figure: 1000 sample realisations of the frequencies for the three distributions
Response in the time domain

(a) Response: $\sigma_a = 0.1$

(b) Response: $\sigma_a = 0.2$

Figure: Response due to initial velocity v_0 with 5% damping
Figure: Normalised frequency response function $|u/u_{st}|^2$, where $u_{st} = f/k$
The mean response is more damped compared to deterministic response.
The higher the randomness, the higher the “effective damping”.
The qualitative features are almost independent of the distribution the random natural frequency.
We often use averaging to obtain more reliable experimental results - is it always true?

Assuming uniform random variable, we aim to explain some of these observations.
Assume that the random natural frequencies are \(\omega_n^2 = \omega_{n_0}^2 (1 + \epsilon x) \), where \(x \) has zero mean and unit standard deviation.

The normalised harmonic response in the frequency domain

\[
\frac{u(i\omega)}{f/k} = \frac{k/m}{[-\omega^2 + \omega_{n_0}^2 (1 + \epsilon x)] + 2i\xi\omega\omega_{n_0} \sqrt{1 + \epsilon x}}
\]

Considering \(\omega_{n_0} = \sqrt{k/m} \) and frequency ratio \(r = \omega/\omega_{n_0} \) we have

\[
\frac{u}{f/k} = \frac{1}{[(1 + \epsilon x) - r^2] + 2i\xi r \sqrt{1 + \epsilon x}}
\]
Equivalent damping

- The squared-amplitude of the normalised dynamic response at $\omega = \omega_{n_0}$ (that is $r = 1$) can be obtained as

$$\hat{U} = \left(\frac{|u|}{f/k} \right)^2 = \frac{1}{\epsilon^2 x^2 + 4\xi^2(1 + \epsilon x)} \quad (4)$$

- Since x is zero mean unit standard deviation uniform random variable, its pdf is given by $p_x(x) = 1/2\sqrt{3}, -\sqrt{3} \leq x \leq \sqrt{3}$

- The mean is therefore

$$E \left[\hat{U} \right] = \int \frac{1}{\epsilon^2 x^2 + 4\xi^2(1 + \epsilon x)} p_x(x) \, dx$$

$$= \frac{1}{4\sqrt{3}\epsilon \xi \sqrt{1 - \xi^2}} \tan^{-1} \left(\frac{\sqrt{3}\epsilon}{2\xi \sqrt{1 - \xi^2} - \xi} \right) + \frac{1}{4\sqrt{3}\epsilon \xi \sqrt{1 - \xi^2}} \tan^{-1} \left(\frac{\sqrt{3}\epsilon}{2\xi \sqrt{1 - \xi^2} + \xi} \right) \quad (5)$$
Equivalent damping

Note that

\[
\frac{1}{2} \left\{ \tan^{-1}(a + \delta) + \tan^{-1}(a - \delta) \right\} = \tan^{-1}(a) + O(\delta^2) \tag{6}
\]

Neglecting terms of the order \(O(\xi^2)\) we have

\[
E \left[\hat{U} \right] \approx \frac{1}{2\sqrt{3}\epsilon \xi \sqrt{1 - \xi^2}} \tan^{-1} \left(\frac{\sqrt{3}\epsilon}{2\xi \sqrt{1 - \xi^2}} \right) = \frac{\tan^{-1}(\sqrt{3}\epsilon/2\xi)}{2\sqrt{3}\epsilon \xi} \tag{7}
\]
Equivalent damping

- For small damping, the maximum deterministic amplitude at $\omega = \omega_n$ is $1/4\xi_e^2$ where ξ_e is the equivalent damping for the mean response.
- Therefore, the equivalent damping for the mean response is given by

$$
(2\xi_e)^2 = \frac{2\sqrt{3}\epsilon\xi}{\tan^{-1}(\sqrt{3}\epsilon/2\xi)}
$$

(8)

- For small damping, taking the limit we can obtain

$$
\xi_e \approx \frac{3^{1/4}\sqrt{\epsilon}}{\sqrt{\pi}} \sqrt{\xi}
$$

(9)

- The equivalent damping factor of the mean system is proportional to the square root of the damping factor of the underlying baseline system.
Equivalent frequency response function

(a) Response: $\sigma_a = 0.1$

(b) Response: $\sigma_a = 0.2$

Figure: Normalised frequency response function with equivalent damping ($\xi_e = 0.05$ in the ensembles). For the two cases $\xi_e = 0.0643$ and $\xi_e = 0.0819$ respectively.
Can we extend the ideas based on stochastic SDOF systems to stochastic MDOF systems?
Stochastic modal analysis

- Stochastic modal analysis to obtain the dynamic response needs further thoughts
- Consider the following 3DOF example:

Figure: A 3DOF system with parametric uncertainty in m_i and k_i
The SDOF based approach cannot be applied when there is statistical overlap in the eigenvalues.
We consider a stochastic partial differential equation (PDE) for a linear dynamic system

\[\rho(r, \theta) \frac{\partial^2 U(r, t, \theta)}{\partial t^2} + \mathcal{L}_\alpha \frac{\partial U(r, t, \theta)}{\partial t} + \mathcal{L}_\beta U(r, t, \theta) = p(r, t) \]

(10)

The stochastic operator \(\mathcal{L}_\beta \) can be

- \(\mathcal{L}_\beta \equiv \frac{\partial}{\partial x} AE(x, \theta) \frac{\partial}{\partial x} \) axial deformation of rods
- \(\mathcal{L}_\beta \equiv \frac{\partial^2}{\partial x^2} EI(x, \theta) \frac{\partial^2}{\partial x^2} \) bending deformation of beams

\(\mathcal{L}_\alpha \) denotes the stochastic damping, which is mostly proportional in nature. Here \(\alpha, \beta : \mathbb{R}^d \times \Theta \rightarrow \mathbb{R} \) are stationary square integrable random fields, which can be viewed as a set of random variables indexed by \(r \in \mathbb{R}^d \). Based on the physical problem the random field \(a(r, \theta) \) can be used to model different physical quantities (e.g., \(AE(x, \theta), EI(x, \theta) \)).
The random process $a(r, \theta)$ can be expressed in a generalized Fourier type of series known as the Karhunen-Loève expansion

$$a(r, \theta) = a_0(r) + \sum_{i=1}^{\infty} \sqrt{\nu_i} \xi_i(\theta) \varphi_i(r)$$ \hspace{1cm} (11)

Here $a_0(r)$ is the mean function, $\xi_i(\theta)$ are uncorrelated standard Gaussian random variables, ν_i and $\varphi_i(r)$ are eigenvalues and eigenfunctions satisfying the integral equation

$$\int_{\mathcal{D}} C_a(r_1, r_2) \varphi_j(r_1) dr_1 = \nu_j \varphi_j(r_2), \hspace{1cm} \forall j = 1, 2, \ldots$$ \hspace{1cm} (12)
Exponential autocorrelation function

The autocorrelation function:

\[C(x_1, x_2) = e^{-|x_1-x_2|/b} \] \hspace{1cm} (13)

The underlying random process \(H(x, \theta) \) can be expanded using the Karhunen-Loève (KL) expansion in the interval \(-a \leq x \leq a\) as

\[H(x, \theta) = \sum_{j=1}^{\infty} \xi_j(\theta) \sqrt{\lambda_j} \varphi_j(x) \] \hspace{1cm} (14)

Using the notation \(c = 1/b \), the corresponding eigenvalues and eigenfunctions for odd \(j \) and even \(j \) are given by

\[
\begin{align*}
\lambda_j &= \frac{2c}{\omega_j^2 + c^2}, & \varphi_j(x) &= \frac{\cos(\omega_j x)}{\sqrt{a + \frac{\sin(2\omega_j a)}{2\omega_j}}}, & \text{where} & \tan(\omega_j a) = \frac{c}{\omega_j}, \\
\lambda_j &= \frac{2c}{\omega_j^2 + c^2}, & \varphi_j(x) &= \frac{\sin(\omega_j x)}{\sqrt{a - \frac{\sin(2\omega_j a)}{2\omega_j}}}, & \text{where} & \tan(\omega_j a) = \frac{\omega_j}{-c}.
\end{align*}
\] \hspace{1cm} (15, 16)
The eigenvalues of the Karhunen-Loève expansion for different correlation lengths, b, and the number of terms, N, required to capture 90% of the infinite series. An exponential correlation function with unit domain (i.e., $a = 1/2$) is assumed for the numerical calculations. The values of N are obtained such that $\lambda_N/\lambda_1 = 0.1$ for all correlation lengths. Only eigenvalues greater than λ_N are plotted.
Example: A beam with random properties

The equation of motion of an undamped Euler-Bernoulli beam of length \(L \) with random bending stiffness and mass distribution:

\[
\frac{\partial^2}{\partial x^2} \left[EI(x, \theta) \frac{\partial^2 Y(x, t)}{\partial x^2} \right] + \rho A(x, \theta) \frac{\partial^2 Y(x, t)}{\partial t^2} = p(x, t). \tag{17}
\]

\(Y(x, t) \): transverse flexural displacement, \(EI(x) \): flexural rigidity, \(\rho A(x) \): mass per unit length, and \(p(x, t) \): applied forcing. Consider

\[
EI(x, \theta) = EI_0 \left(1 + \epsilon_1 F_1(x, \theta) \right) \tag{18}
\]

and

\[
\rho A(x, \theta) = \rho A_0 \left(1 + \epsilon_2 F_2(x, \theta) \right) \tag{19}
\]

The subscript 0 indicates the mean values, \(0 < \epsilon_i << 1 \ (i=1,2) \) are deterministic constants and the random fields \(F_i(x, \theta) \) are taken to have zero mean, unit standard deviation and covariance \(R_{ij}(\xi) \).
Random beam element in the local coordinate.
Some random realizations of the bending rigidity EI of the beam for correlation length $b = L/3$ and strength parameter $\epsilon_1 = 0.2$ (mean 2.0×10^5). Thirteen terms have been used in the KL expansion.
Example: A beam with random properties

We express the shape functions for the finite element analysis of Euler-Bernoulli beams as

\[N(x) = \Gamma \, s(x) \quad (20) \]

where

\[
\Gamma = \begin{bmatrix}
1 & 0 & \frac{-3}{\ell_e^2} & \frac{2}{\ell_e^3} \\
0 & 1 & \frac{-2}{\ell_e^2} & \frac{1}{\ell_e^3} \\
0 & 0 & \frac{3}{\ell_e^2} & \frac{-2}{\ell_e^3} \\
0 & 0 & \frac{-1}{\ell_e^2} & \frac{1}{\ell_e^2}
\end{bmatrix}
\]

and

\[s(x) = [1, x, x^2, x^3]^T. \quad (21) \]

The element stiffness matrix:

\[
K_e(\theta) = \int_0^{\ell_e} N''(x)EI(x, \theta)N''^T(x)dx = \int_0^{\ell_e} EI_0 \left(1 + \epsilon_1 F_1(x, \theta)\right) N''(x)N''^T(x)dx.
\quad (22)
\]
Expanding the random field $F_1(x, \theta)$ in KL expansion

$$K_e(\theta) = K_{e0} + \Delta K_e(\theta)$$ \hspace{1cm} (23)

where the deterministic and random parts are

$$K_{e0} = EL_0 \int_0^{\ell_e} N''(x)N''^T(x) \, dx \quad \text{and} \quad \Delta K_e(\theta) = \epsilon_1 \sum_{j=1}^{N_K} \xi_{Kj}(\theta) \sqrt{\lambda_{Kj}} K_{ej}. \hspace{1cm} (24)$$

The constant N_K is the number of terms retained in the Karhunen-Loève expansion and $\xi_{Kj}(\theta)$ are uncorrelated Gaussian random variables with zero mean and unit standard deviation. The constant matrices K_{ej} can be expressed as

$$K_{ej} = EL_0 \int_0^{\ell_e} \varphi_{Kj}(x_e + x)N''(x)N''^T(x) \, dx$$ \hspace{1cm} (25)
The mass matrix can be obtained as

\[M_e(\theta) = M_{e0} + \Delta M_e(\theta) \] \hspace{1cm} (26)

The deterministic and random parts is given by

\[M_{e0} = \rho A_0 \int_0^{\ell_e} N(x)N^T(x) \, dx \quad \text{and} \quad \Delta M_e(\theta) = \epsilon_2 \sum_{j=1}^{N_M} \xi_{Mj}(\theta) \sqrt{\lambda_{Mj}}M_{ej}. \] \hspace{1cm} (27)

The constant \(N_M \) is the number of terms retained in Karhunen-Loève expansion and the constant matrices \(M_{ej} \) can be expressed as

\[M_{ej} = \rho A_0 \int_0^{\ell_e} \varphi_{Mj}(x_e + x)N(x)N^T(x) \, dx. \] \hspace{1cm} (28)

Both \(K_{ej} \) and \(M_{ej} \) can be obtained in closed-form.
Example: A beam with random properties

These element matrices can be assembled to form the global random stiffness and mass matrices of the form

\[K(\theta) = K_0 + \Delta K(\theta) \quad \text{and} \quad M(\theta) = M_0 + \Delta M(\theta). \]

(29)

Here the deterministic parts \(K_0 \) and \(M_0 \) are the usual global stiffness and mass matrices obtained form the conventional finite element method. The random parts can be expressed as

\[\Delta K(\theta) = \epsilon_1 \sum_{j=1}^{N_K} \xi_{Kj}(\theta) \sqrt{\lambda_{Kj}} K_j \quad \text{and} \quad \Delta M(\theta) = \epsilon_2 \sum_{j=1}^{N_M} \xi_{Mj}(\theta) \sqrt{\lambda_{Mj}} M_j \]

(30)

The element matrices \(K_{ej} \) and \(M_{ej} \) can be assembled into the global matrices \(K_j \) and \(M_j \). The total number of random variables depend on the number of terms used for the truncation of the infinite series. This in turn depends on the respective correlation lengths of the underlying random fields.
Stochastic equation of motion

- The equation for motion for stochastic linear MDOF dynamic systems:

\[
\mathbf{M}(\theta)\ddot{\mathbf{u}}(\theta, t) + \mathbf{C}(\theta)\dot{\mathbf{u}}(\theta, t) + \mathbf{K}(\theta)\mathbf{u}(\theta, t) = \mathbf{f}(t) \tag{31}
\]

- \(\mathbf{M}(\theta) = \mathbf{M}_0 + \sum_{i=1}^{p} \mu_i(\theta_i) \mathbf{M}_i \in \mathbb{R}^{n \times n} \) is the random mass matrix,
- \(\mathbf{K}(\theta) = \mathbf{K}_0 + \sum_{i=1}^{p} \nu_i(\theta_i) \mathbf{K}_i \in \mathbb{R}^{n \times n} \) is the random stiffness matrix,
- \(\mathbf{C}(\theta) \in \mathbb{R}^{n \times n} \) as the random damping matrix and \(\mathbf{f}(t) \) is the forcing vector.

- The mass and stiffness matrices have been expressed in terms of their deterministic components (\(\mathbf{M}_0 \) and \(\mathbf{K}_0 \)) and the corresponding random contributions (\(\mathbf{M}_i \) and \(\mathbf{K}_i \)). These can be obtained from discretising stochastic fields with a finite number of random variables (\(\mu_i(\theta_i) \) and \(\nu_i(\theta_i) \)) and their corresponding spatial basis functions.

- **Proportional damping** model is considered for which \(\mathbf{C}(\theta) = \zeta_1 \mathbf{M}(\theta) + \zeta_2 \mathbf{K}(\theta) \), where \(\zeta_1 \) and \(\zeta_2 \) are scalars.
For the harmonic analysis of the structural system, taking the Fourier transform

$$\left[-\omega^2 M(\theta) + i\omega C(\theta) + K(\theta) \right] \tilde{u}(\omega, \theta) = \tilde{f}(\omega)$$

(32)

where $\tilde{u}(\omega, \theta)$ is the complex frequency domain system response amplitude, $\tilde{f}(\omega)$ is the amplitude of the harmonic force.

For convenience we group the random variables associated with the mass and stiffness matrices as

$$\xi_i(\theta) = \mu_i(\theta) \quad \text{and} \quad \xi_{j+p_1}(\theta) = \nu_j(\theta) \quad \text{for} \quad i = 1, 2, \ldots, p_1$$

and

$$j = 1, 2, \ldots, p_2$$
Using $M = p_1 + p_2$ which we have

$$
\left(A_0(\omega) + \sum_{i=1}^{M} \xi_i(\theta)A_i(\omega) \right) \tilde{u}(\omega, \theta) = \tilde{f}(\omega)
$$

where A_0 and $A_i \in \mathbb{C}^{n \times n}$ represent the complex deterministic and stochastic parts respectively of the mass, the stiffness and the damping matrices ensemble.

For the case of proportional damping the matrices A_0 and A_i can be written as

$$
A_0(\omega) = \begin{bmatrix} -\omega^2 + i\omega\zeta_1 \end{bmatrix} M_0 + \begin{bmatrix} i\omega\zeta_2 + 1 \end{bmatrix} K_0, \quad (34)
$$

$$
A_i(\omega) = \begin{bmatrix} -\omega^2 + i\omega\zeta_1 \end{bmatrix} M_i \quad \text{for} \quad i = 1, 2, \ldots, p_1 \quad (35)
$$

and

$$
A_{j+p_1}(\omega) = \begin{bmatrix} i\omega\zeta_2 + 1 \end{bmatrix} K_j \quad \text{for} \quad j = 1, 2, \ldots, p_2.
$$
Time domain representation

If the time steps are fixed to Δt, then the equation of motion can be written as

$$M(\theta)\ddot{u}_{t+\Delta t}(\theta) + C(\theta)\dot{u}_{t+\Delta t}(\theta) + K(\theta)u_{t+\Delta t}(\theta) = p_{t+\Delta t}.$$

(36)

Following the Newmark method based on constant average acceleration scheme, the above equations can be represented as

$$[a_0M(\theta) + a_1C(\theta) + K(\theta)]u_{t+\Delta t}(\theta) = p^\text{eqv}_{t+\Delta t}(\theta)$$

(37)

and,

$$p^\text{eqv}_{t+\Delta t}(\theta) = p_{t+\Delta t} + f(u_t(\theta), \dot{u}_t(\theta), \ddot{u}_t(\theta), M(\theta), C(\theta))$$

(38)

where $p^\text{eqv}_{t+\Delta t}(\theta)$ is the equivalent force at time $t + \Delta t$ which consists of contributions of the system response at the previous time step.
Newmark’s method

The expressions for the velocities $\dot{u}_{t+\Delta t}(\theta)$ and accelerations $\ddot{u}_{t+\Delta t}(\theta)$ at each time step is a linear combination of the values of the system response at previous time steps (Newmark method) as

$$
\ddot{u}_{t+\Delta t}(\theta) = a_0 [u_{t+\Delta t}(\theta) - u_t(\theta)] - a_2 \dot{u}_t(\theta) - a_3 \ddot{u}_t(\theta) \tag{39}
$$

and,

$$
\dot{u}_{t+\Delta t}(\theta) = \dot{u}_t(\theta) + a_6 \ddot{u}_t(\theta) + a_7 \ddot{u}_{t+\Delta t}(\theta) \tag{40}
$$

where the integration constants $a_i, \ i = 1, 2, \ldots, 7$ are independent of system properties and depends only on the chosen time step and some constants:

$$
a_0 = \frac{1}{\alpha \Delta t^2}; \quad a_1 = \frac{\delta}{\alpha \Delta t}; \quad a_2 = \frac{1}{\alpha \Delta t}; \quad a_3 = \frac{1}{2 \alpha} - 1; \quad \tag{41}
$$

$$
a_4 = \frac{\delta}{\alpha} - 1; \quad a_5 = \frac{\Delta t}{2} \left(\frac{\delta}{\alpha} - 2 \right); \quad a_6 = \Delta t(1 - \delta); \quad a_7 = \delta \Delta t \quad \tag{42}
$$
Newmark’s method

Following this development, the linear structural system in (37) can be expressed as

\[
\left[A_0 + \sum_{i=1}^{M} \xi_i(\theta) A_i \right] u_{t+\Delta t}(\theta) = p_{t+\Delta t}^{eqv}(\theta). \tag{43}
\]

where \(A_0 \) and \(A_i \) represent the deterministic and stochastic parts of the system matrices respectively. For the case of proportional damping, the matrices \(A_0 \) and \(A_i \) can be written similar to the case of frequency domain as

\[
A_0 = \left[a_0 + a_1 \zeta_1 \right] M_0 + \left[a_1 \zeta_2 + 1 \right] K_0 \tag{44}
\]
and,

\[
A_i = \left[a_0 + a_1 \zeta_1 \right] M_i \quad \text{for} \quad i = 1, 2, \ldots, p_1 \tag{45}
\]

\[
= \left[a_1 \zeta_2 + 1 \right] K_i \quad \text{for} \quad i = p_1 + 1, p_1 + 2, \ldots, p_1 + p_2.
\]
Whether time-domain or frequency domain methods were used, in general the main equation which need to be solved can be expressed as

\[
\left(A_0 + \sum_{i=1}^{M} \xi_i(\theta) A_i \right) u(\theta) = f(\theta)
\]

(46)

where \(A_0\) and \(A_i\) represent the deterministic and stochastic parts of the system matrices respectively. These can be real or complex matrices.

Generic response surface based methods have been used in literature - for example the Polynomial Chaos Method.
Polynomial Chaos expansion

After the finite truncation, the polynomial chaos expansion can be written as

$$u(\theta) = \sum_{k=1}^{P} H_k(\xi(\theta))u_k$$ \hspace{1cm} (47)

where $H_k(\xi(\theta))$ are the polynomial chaoses. We need to solve a $nP \times nP$ linear equation to obtain all $u_k \in \mathbb{R}^n$.

$$
\begin{bmatrix}
A_{0,0} & \cdots & A_{0,P-1} \\
A_{1,0} & \cdots & A_{1,P-1} \\
\vdots & \vdots & \vdots \\
A_{P-1,0} & \cdots & A_{P-1,P-1}
\end{bmatrix}
\begin{bmatrix}
u_0 \\
u_1 \\
\vdots \\
u_{P-1}
\end{bmatrix}
=
\begin{bmatrix}
f_0 \\
f_1 \\
\vdots \\
f_{P-1}
\end{bmatrix}
$$ \hspace{1cm} (48)

The number of terms P increases exponentially with M:

<table>
<thead>
<tr>
<th>M</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd order PC</td>
<td>5</td>
<td>9</td>
<td>20</td>
<td>65</td>
<td>230</td>
<td>1325</td>
<td>5150</td>
</tr>
<tr>
<td>3rd order PC</td>
<td>9</td>
<td>19</td>
<td>55</td>
<td>285</td>
<td>1770</td>
<td>23425</td>
<td>176850</td>
</tr>
</tbody>
</table>
The basis is a function of the pdf of the random variables only. For example, Hermite polynomials for Gaussian pdf, Legendre’s polynomials for uniform pdf.

The physics of the underlying problem (static, dynamic, heat conduction, transients....) cannot be incorporated in the basis.

For an n-dimensional output vector, the number of terms in the projection can be more than n (depends on the number of random variables). This implies that many of the vectors u_k are linearly dependent.

The physical interpretation of the coefficient vectors u_k is not immediately obvious.

The functional form of the response is a pure polynomial in random variables.
Possibilities of solution types

As an example, consider the frequency domain response vector of the stochastic system $u(\omega, \theta)$ governed by

\[
\left[-\omega^2 M(\xi(\theta)) + i\omega C(\xi(\theta)) + K(\xi(\theta))\right] u(\omega, \theta) = f(\omega).
\]

Some possibilities are:

\[
\begin{align*}
\text{or } \quad u(\omega, \theta) &= \sum_{k=1}^{P_1} H_k(\xi(\theta))u_k(\omega) \\
\text{or } \quad &= \sum_{k=1}^{P_2} \Gamma_k(\omega, \xi(\theta))\phi_k \\
\text{or } \quad &= \sum_{k=1}^{P_3} a_k(\omega)H_k(\xi(\theta))\phi_k \\
\text{or } \quad &= \sum_{k=1}^{P_4} a_k(\omega)H_k(\xi(\theta))U_k(\xi(\theta)) \ldots \text{ etc.}
\end{align*}
\]
Deterministic classical modal analysis?

For a deterministic system, the response vector $\mathbf{u}(\omega)$ can be expressed as

$$
\mathbf{u}(\omega) = \sum_{k=1}^{P} \Gamma_k(\omega) \mathbf{u}_k
$$

where

$$
\Gamma_k(\omega) = \frac{\phi_k^T \mathbf{f}}{-\omega^2 + 2i\zeta_k \omega_k \omega + \omega_k^2}
$$

$$
\mathbf{u}_k = \phi_k \quad \text{and} \quad P \leq n \quad \text{(number of dominant modes)}
$$

Can we extend this idea to stochastic systems?
There exist a finite set of complex frequency dependent functions $\Gamma_k(\omega, \xi(\theta))$ and a complete basis $\phi_k \in \mathbb{R}^n$ for $k = 1, 2, \ldots, n$ such that the solution of the discretized stochastic finite element equation (31) can be expressed by the series

$$\hat{u}(\omega, \theta) = \sum_{k=1}^{n} \Gamma_k(\omega, \xi(\theta))\phi_k \quad (51)$$

Outline of the derivation: In the first step a complete basis is generated with the eigenvectors $\phi_k \in \mathbb{R}^n$ of the generalized eigenvalue problem

$$K_0 \phi_k = \lambda_0 \phi_k; \quad k = 1, 2, \ldots n \quad (52)$$
We define the matrix of eigenvalues and eigenvectors

$$\lambda_0 = \text{diag} [\lambda_{01}, \lambda_{02}, \ldots, \lambda_{0n}] \in \mathbb{R}^{n \times n}; \Phi = [\phi_1, \phi_2, \ldots, \phi_n] \in \mathbb{R}^{n \times n} \tag{53}$$

Eigenvalues are ordered in the ascending order: $\lambda_{01} < \lambda_{02} < \ldots < \lambda_{0n}$.

We use the orthogonality property of the modal matrix Φ as

$$\Phi^T K_0 \Phi = \lambda_0, \quad \text{and} \quad \Phi^T M_0 \Phi = I \tag{54}$$

Using these we have

$$\Phi^T A_0 \Phi = \Phi^T \left([-\omega^2 + i\omega \zeta_1] M_0 + [i\omega \zeta_2 + 1] K_0 \right) \Phi$$

$$= (-\omega^2 + i\omega \zeta_1) I + (i\omega \zeta_2 + 1) \lambda_0 \tag{55}$$

This gives $\Phi^T A_0 \Phi = \Lambda_0$ and $A_0 = \Phi^{-T} \Lambda_0 \Phi^{-1}$, where

$$\Lambda_0 = (-\omega^2 + i\omega \zeta_1) I + (i\omega \zeta_2 + 1) \lambda_0 \quad \text{and} \quad I \text{ is the identity matrix.}$$
Hence, Λ_0 can also be written as

$$\Lambda_0 = \text{diag} [\lambda_0, \lambda_0, \ldots, \lambda_0] \in \mathbb{C}^{n \times n}$$

(56)

where $\lambda_{0j} = (-\omega^2 + i\omega \zeta_1) + (i\omega \zeta_2 + 1) \lambda_j$ and λ_j is as defined in Eqn. (53). We also introduce the transformations

$$\tilde{\mathbf{A}}_i = \Phi^T \mathbf{A}_i \Phi \in \mathbb{C}^{n \times n}; i = 0, 1, 2, \ldots, M.$$

(57)

Note that $\tilde{\mathbf{A}}_0 = \Lambda_0$ is a diagonal matrix and

$$\mathbf{A}_i = \Phi^{-T} \tilde{\mathbf{A}}_i \Phi^{-1} \in \mathbb{C}^{n \times n}; i = 1, 2, \ldots, M.$$

(58)
Projection in the modal space

Suppose the solution of Eq. (31) is given by

$$
\hat{u}(\omega, \theta) = \left[A_0(\omega) + \sum_{i=1}^{M} \xi_i(\theta) A_i(\omega) \right]^{-1} f(\omega)
$$

(59)

Using Eqs. (53)–(58) and the mass and stiffness orthogonality of Φ one has

$$
\hat{u}(\omega, \theta) = \left[\Phi^{-T} \Lambda_0(\omega) \Phi^{-1} + \sum_{i=1}^{M} \xi_i(\theta) \Phi^{-T} \tilde{A}_i(\omega) \Phi^{-1} \right]^{-1} f(\omega)
$$

$$
\Rightarrow \hat{u}(\omega, \theta) = \Phi \left[\Lambda_0(\omega) + \sum_{i=1}^{M} \xi_i(\theta) \tilde{A}_i(\omega) \right]^{-1} \Phi^{-T} f(\omega)
$$

(60)

where

$$
\xi(\theta) = \left\{ \xi_1(\theta), \xi_2(\theta), \ldots, \xi_M(\theta) \right\}^T.
$$
Projection in the modal space

Now we separate the diagonal and off-diagonal terms of the \tilde{A}_i matrices as

$$\tilde{A}_i = \Lambda_i + \Delta_i, \quad i = 1, 2, \ldots, M$$ \hspace{1cm} (61)

Here the diagonal matrix

$$\Lambda_i = \text{diag} \left[\tilde{A} \right] = \text{diag} [\lambda_{i_1}, \lambda_{i_2}, \ldots, \lambda_{i_n}] \in \mathbb{R}^{n \times n}$$ \hspace{1cm} (62)

and $\Delta_i = \tilde{A}_i - \Lambda_i$ is an off-diagonal only matrix.

$$\Psi (\omega, \xi(\theta)) = \left[\Lambda_0(\omega) + \sum_{i=1}^{M} \xi(\theta) \Lambda_i(\omega) + \sum_{i=1}^{M} \xi(\theta) \Delta_i(\omega) \right]^{-1}$$ \hspace{1cm} (63)

where $\Lambda (\omega, \xi(\theta)) \in \mathbb{R}^{n \times n}$ is a diagonal matrix and $\Delta (\omega, \xi(\theta))$ is an off-diagonal only matrix.
We rewrite Eq. (63) as

\[\Psi(\omega, \xi(\theta)) = \left[\Lambda(\omega, \xi(\theta)) \left[\mathbf{I}_n + \Lambda^{-1}(\omega, \xi(\theta)) \Delta(\omega, \xi(\theta)) \right] \right]^{-1} \]

(64)

The above expression can be represented using a Neumann type of matrix series as

\[\Psi(\omega, \xi(\theta)) = \sum_{s=0}^{\infty} (-1)^s \left[\Lambda^{-1}(\omega, \xi(\theta)) \Delta(\omega, \xi(\theta)) \right]^s \Lambda^{-1}(\omega, \xi(\theta)) \]

(65)
Taking an arbitrary r-th element of $\hat{u}(\omega, \theta)$, Eq. (60) can be rearranged to have

\[
\hat{u}_r(\omega, \theta) = \sum_{k=1}^{n} \Phi_{rk} \left(\sum_{j=1}^{n} \Psi_{kj}(\omega, \xi(\theta)) \left(\phi_j^T f(\omega) \right) \right)
\]

(66)

Defining

\[
\Gamma_k(\omega, \xi(\theta)) = \sum_{j=1}^{n} \Psi_{kj}(\omega, \xi(\theta)) \left(\phi_j^T f(\omega) \right)
\]

(67)

and collecting all the elements in Eq. (66) for $r = 1, 2, \ldots, n$ one has

\[
\hat{u}(\omega, \theta) = \sum_{k=1}^{n} \Gamma_k(\omega, \xi(\theta)) \phi_k
\]

(68)
Definition

The functions $\Gamma_k(\omega, \xi(\theta))$, $k = 1, 2, \ldots n$ are the frequency-adaptive spectral functions as they are expressed in terms of the spectral properties of the coefficient matrices at each frequency of the governing discretized equation.

- Each of the spectral functions $\Gamma_k(\omega, \xi(\theta))$ contain infinite number of terms and they are highly nonlinear functions of the random variables $\xi_i(\theta)$.
- For computational purposes, it is necessary to truncate the series after certain number of terms.
- Different order of spectral functions can be obtained by using truncation in the expression of $\Gamma_k(\omega, \xi(\theta))$.
First-order and second order spectral functions

Definition

The different order of spectral functions $\Gamma_k^{(1)}(\omega, \xi(\theta)), k = 1, 2, \ldots, n$ are obtained by retaining as many terms in the series expansion in Eqn. (65).

Retaining one and two terms in (65) we have

$$
\Psi^{(1)}(\omega, \xi(\theta)) = \Lambda^{-1}(\omega, \xi(\theta))
$$

$$
\Psi^{(2)}(\omega, \xi(\theta)) = \Lambda^{-1}(\omega, \xi(\theta)) - \Lambda^{-1}(\omega, \xi(\theta)) \Delta(\omega, \xi(\theta)) \Lambda^{-1}(\omega, \xi(\theta))
$$

which are the first and second order spectral functions respectively.

From these we find $\Gamma_k^{(1)}(\omega, \xi(\theta)) = \sum_{j=1}^{n} \Psi_k^{(1)}(\omega, \xi(\theta)) \left(\phi_j^T \mathbf{f}(\omega) \right)$ are non-Gaussian random variables even if $\xi_i(\theta)$ are Gaussian random variables.
The amplitude of first seven spectral functions of order 4 for a particular random sample under applied force. The spectral functions are obtained for two different standard deviation levels of the underlying random field: \(\sigma_a = \{0.10, 0.20\} \).
The basis functions are:

1. **not** polynomials in $\xi_i(\theta)$ but ratio of polynomials.
2. **independent** of the nature of the random variables (i.e. applicable to Gaussian, non-Gaussian or even mixed random variables).
3. **not** general but **specific** to a problem as it utilizes the eigenvalues and eigenvectors of the system matrices.
4. such that truncation error depends on the off-diagonal terms of the matrix $\Delta (\omega, \xi(\theta))$.
5. showing ‘peaks’ when ω is near to the system natural frequencies.

Next we use these frequency-adaptive spectral functions as trial functions within a Galerkin error minimization scheme.
The Galerkin approach

One can obtain constants $c_k \in \mathbb{C}$ such that the error in the following representation

$$\hat{u}(\omega, \theta) = \sum_{k=1}^{n} c_k(\omega) \hat{\Gamma}_k(\omega, \xi(\theta)) \phi_k$$

(71)

can be minimised in the least-square sense. It can be shown that the vector $c = \{c_1, c_2, \ldots, c_n\}^T$ satisfies the $n \times n$ complex algebraic equations $S(\omega) c(\omega) = b(\omega)$ with

$$S_{jk} = \sum_{i=0}^{M} \tilde{A}_{ijk} D_{ijk}; \quad \forall \ j, k = 1, 2, \ldots, n; \ \tilde{A}_{ijk} = \phi_j^T A_i \phi_k,$$

(72)

$$D_{ijk} = \mathbb{E} \left[\xi_i(\theta) \hat{\Gamma}_k(\omega, \xi(\theta)) \right], \quad b_j = \mathbb{E} \left[\phi_j^T f(\omega) \right].$$

(73)
The Galerkin approach

The error vector can be obtained as

\[
\varepsilon(\omega, \theta) = \left(\sum_{i=0}^{M} A_i(\omega) \xi_i(\theta) \right) \left(\sum_{k=1}^{n} c_k \hat{\Gamma}_k(\omega, \xi(\theta)) \phi_k \right) - f(\omega) \in \mathbb{C}^{N \times N} \tag{74}
\]

The solution is viewed as a projection where \(\phi_k \in \mathbb{R}^n \) are the basis functions and \(c_k \) are the unknown constants to be determined. This is done for each frequency step.

The coefficients \(c_k \) are evaluated using the Galerkin approach so that the error is made orthogonal to the basis functions, that is, mathematically

\[
\varepsilon(\omega, \theta) \perp \phi_j \Rightarrow \left\langle \phi_j, \varepsilon(\omega, \theta) \right\rangle = 0 \ \forall \ j = 1, 2, \ldots, n \tag{75}
\]
The Galerkin approach

- Imposing the orthogonality condition and using the expression of the error one has

$$E \left[\phi_j^T \left(\sum_{i=0}^{M} A_i \xi_i(\theta) \right) \left(\sum_{k=1}^{n} c_k \hat{\Gamma}_k(\xi(\theta)) \phi_k \right) - \phi_j^T f \right] = 0, \forall j \quad (76)$$

- Interchanging the $E[\cdot]$ and summation operations, this can be simplified to

$$\sum_{k=1}^{n} \left(\sum_{i=0}^{M} \left(\phi_j^T A_i \phi_k \right) E \left[\xi_i(\theta) \hat{\Gamma}_k(\xi(\theta)) \right] \right) c_k =$$

$$E \left[\phi_j^T f \right] \quad (77)$$

or

$$\sum_{k=1}^{n} \left(\sum_{i=0}^{M} \tilde{A}_{ijk} D_{ijk} \right) c_k = b_j \quad (78)$$
Suppose the eigenvalues of A_0 are arranged in an increasing order such that
\[\lambda_{0_1} < \lambda_{0_2} < \ldots < \lambda_{0_n} \] (79)

From the expression of the spectral functions observe that the eigenvalues ($\lambda_{0_k} = \omega_{0_k}^2$) appear in the denominator:
\[
\Gamma_k^{(1)}(\omega, \xi(\theta)) = \frac{\phi_k^T f(\omega)}{\Lambda_{0_k}(\omega) + \sum_{i=1}^{M} \xi_i(\theta)\Lambda_i(\omega)}
\] (80)

where $\Lambda_{0_k}(\omega) = -\omega^2 + i\omega(\zeta_1 + \zeta_2\omega_{0_k}^2) + \omega_{0_k}^2$

The series can be truncated based on the magnitude of the eigenvalues relative to the frequency of excitation. Hence for the frequency domain analysis all the eigenvalues that cover almost twice the frequency range under consideration can be chosen.
The mean vector can be obtained as

$$\mathbf{\bar{u}} = \mathbf{E} [\mathbf{\hat{u}}(\theta)] = \sum_{k=1}^{p} c_k \mathbf{E} [\mathbf{\hat{G}}_k(\xi(\theta))] \mathbf{\phi}_k$$ (81)

The covariance of the solution vector can be expressed as

$$\mathbf{\Sigma}_u = \mathbf{E} [(\mathbf{\hat{u}}(\theta) - \mathbf{\bar{u}}) (\mathbf{\hat{u}}(\theta) - \mathbf{\bar{u}})^T] = \sum_{k=1}^{p} \sum_{j=1}^{p} c_k c_j \Sigma_{\Gamma_{kj}} \mathbf{\phi}_k \mathbf{\phi}_j^T$$ (82)

where the elements of the covariance matrix of the spectral functions are given by

$$\Sigma_{\Gamma_{kj}} = \mathbf{E} \left[\left(\mathbf{\hat{G}}_k(\xi(\theta)) - \mathbf{E} [\mathbf{\hat{G}}_k(\xi(\theta))] \right) \left(\mathbf{\hat{G}}_j(\xi(\theta)) - \mathbf{E} [\mathbf{\hat{G}}_j(\xi(\theta))] \right) \right]$$ (83)
Summary of the computational method

1. Solve the generalized eigenvalue problem associated with the mean mass and stiffness matrices to generate the orthonormal basis vectors:
 \[\mathbf{K}_0 \Phi = \mathbf{M}_0 \Phi \lambda_0 \]

2. Select a number of samples, say \(N_{\text{samp}} \). Generate the samples of basic random variables \(\xi_i(\theta) \), \(i = 1, 2, \ldots, M \).

3. Calculate the spectral basis functions (for example, first-order):
 \[\Gamma_k(\omega, \xi(\theta)) = \frac{\phi_k^T \mathbf{f}(\omega)}{\Lambda_0(\omega) + \sum_{i=1}^M \xi_i(\theta) \Lambda_i(\omega)}, \text{ for } k = 1, \cdots p, p < n \]

4. Obtain the coefficient vector:
 \[\mathbf{c}(\omega) = \mathbf{S}^{-1}(\omega) \mathbf{b}(\omega) \in \mathbb{R}^n, \text{ where } \]
 \[\mathbf{b}(\omega) = \mathbf{f}(\omega) \odot \tilde{\Gamma}(\omega), \mathbf{S}(\omega) = \Lambda_0(\omega) \odot \mathbf{D}_0(\omega) + \sum_{i=1}^M \tilde{\mathbf{A}}_i(\omega) \odot \mathbf{D}_i(\omega) \text{ and } \]
 \[\mathbf{D}_i(\omega) = \mathbb{E} \left[\Gamma(\omega, \theta) \xi_i(\theta) \Gamma^T(\omega, \theta) \right], \forall i = 0, 1, 2, \ldots, M \]

5. Obtain the samples of the response from the spectral series:
 \[\hat{\mathbf{u}}(\omega, \theta) = \sum_{k=1}^p c_k(\omega) \Gamma_k(\xi(\omega, \theta)) \phi_k \]
An Euler-Bernoulli cantilever beam with stochastic bending modulus for a specified value of the correlation length and for different degrees of variability of the random field.

(c) Euler-Bernoulli beam (d) Natural frequency distribution.

(e) Eigenvalue ratio of KL decomposition

- Length: 1.0 m, Cross-section: 39 × 5.93 mm², Young’s Modulus: 2 × 10¹¹ Pa.
- Load: Unit impulse at \(t = 0 \) on the free end of the beam.
The bending modulus of the cantilever beam is taken to be a homogeneous stationary Gaussian random field of the form

\[EI(x, \theta) = EI_0(1 + a(x, \theta)) \] \hspace{1cm} (84)

where \(x \) is the coordinate along the length of the beam, \(EI_0 \) is the estimate of the mean bending modulus, \(a(x, \theta) \) is a zero mean stationary random field.

The covariance kernel associated with this random field is

\[C_a(x_1, x_2) = \sigma_a^2 e^{-|x_1 - x_2|/\mu_a} \] \hspace{1cm} (85)

where \(\mu_a \) is the correlation length and \(\sigma_a \) is the standard deviation.

A correlation length of \(\mu_a = L/5 \) is considered in the present numerical study.
The random field is assumed to be Gaussian. The results are compared with the polynomial chaos expansion.

- The number of degrees of freedom of the system is \(n = 200 \).
- The K.L. expansion is truncated at a finite number of terms such that 90% variability is retained.
- Direct MCS have been performed with 10,000 random samples and for three different values of standard deviation of the random field, \(\sigma_a = 0.05, 0.1, 0.2 \).
- Constant modal damping is taken with 1% damping factor for all modes.
- Time domain response of the free end of the beam is sought under the action of a unit impulse at \(t = 0 \).
- Upto 4\(^{th}\) order spectral functions have been considered in the present problem. Comparison have been made with 4\(^{th}\) order Polynomial chaos results.
Mean of the response

(f) Mean, $\sigma_a = 0.05$.

(g) Mean, $\sigma_a = 0.1$.

(h) Mean, $\sigma_a = 0.2$.

- Time domain response of the deflection of the tip of the cantilever for three values of standard deviation σ_a of the underlying random field.
- Spectral functions approach approximates the solution accurately.
- For long time-integration, the discrepancy of the 4th order PC results increases.
Standard deviation of the response

(i) Standard deviation of deflection, $\sigma_a = 0.05$.

(j) Standard deviation of deflection, $\sigma_a = 0.1$.

(k) Standard deviation of deflection, $\sigma_a = 0.2$.

- The standard deviation of the tip deflection of the beam.
- Since the standard deviation comprises of higher order products of the Hermite polynomials associated with the PC expansion, the higher order moments are less accurately replicated and tend to deviate more significantly.
The frequency domain response of the deflection of the tip of the Euler-Bernoulli beam under unit amplitude harmonic point load at the free end. The response is obtained with $10,000$ sample MCS and for $\sigma_a = \{0.10, 0.20\}$.

(l) Beam deflection for $\sigma_a = 0.1$.

(m) Beam deflection for $\sigma_a = 0.2$.

Frequency domain response: mean
(n) Standard deviation of the response for $\sigma_a = 0.1$.

(o) Standard deviation of the response for $\sigma_a = 0.2$.

The standard deviation of the tip deflection of the Euler-Bernoulli beam under unit amplitude harmonic point load at the free end. The response is obtained with 10,000 sample MCS and for $\sigma_a = \{0.10, 0.20\}$.
Experimental investigations

Figure: A cantilever plate with randomly attached oscillators - Probabilistic Engineering Mechanics, 24[4] (2009), pp. 473-492
Measured frequency response function

- Frequency (Hz)
- Log amplitude (dB) of $H_{(1,1)(\omega)}$

- Baseline
- Ensemble mean
- 5% line
- 95% line
Conclusions

- The mean response of a damped stochastic system is more damped than the underlying baseline system.
- For small damping, $\xi_e \approx \frac{3^{1/4}}{\sqrt{\pi}} \frac{\sqrt{\epsilon}}{\sqrt{\xi}}$.
- Random modal analysis may not be practical or physically intuitive for stochastic multiple degrees of freedom systems.
- Conventional response surface based methods fails to capture the physics of damped dynamic systems.
- Proposed spectral function approach uses the undamped modal basis and can capture the statistical trend of the dynamic response of stochastic damped MDOF systems.
The solution is projected into the modal basis and the associated stochastic coefficient functions are obtained at each frequency step (or time step).

The coefficient functions, called as the spectral functions, are expressed in terms of the spectral properties (natural frequencies and mode shapes) of the system matrices.

The proposed method takes advantage of the fact that for a given maximum frequency only a small number of modes are necessary to represent the dynamic response. This modal reduction leads to a significantly smaller basis.
In the frequency domain, the response can be simplified as

\[u(\omega, \theta) \approx \sum_{k=1}^{n_r} \frac{\phi_k^T f(\omega)}{-\omega^2 + 2i\omega \zeta_k \omega_0 k + \omega_0^2 + \sum_{i=1}^{M} \xi_i(\theta) \Lambda_k(\omega)} \phi_k \]

Some parts can be obtained from experiments while other parts can come from stochastic modelling.