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Abstract

The consideration of uncertainties in numerical models to obtain the probabilistic descriptions of
vibration response is becoming more desirable for industrial scale finite element models. Broadly
speaking, there are two aspects to this problem. The first is the quantification of parametric and
non-parametric uncertainties associated with the model and the second is the propagation of un-
certainties through the model. While the methods of uncertainty propagation have been extensively
researched in the past three decades (e.g., the stochastic finite element method), only relatively re-
cently has quantification been considered seriously. This paper considers uncertainty quantification
with the aim of gaining more insight into the nature of uncertainties in medium and high frequency
vibration problems. This paper and its companion [1] describe in detail the setup and results from
two experimental studies that may be used for this purpose. The experimental work in this paper
uses a fixed-fixed beam with 12 masses placed at random locations. The total ‘random mass’ is
about 2% of the total mass of the beam and this experiment simulates ‘random errors’ in the mass
matrix. One hundred nominally identical dynamical systems are created and individually tested. The
probabilistic characteristics of the frequency response functions are discussed in the low, medium
and high frequency ranges. The variability in the amplitude and phase of the measured frequency
response functions is compared with numerical Monte Carlo simulation results. The data obtained
in this experiments may be useful for the validation of uncertainty quantification and propagation
methods in structural dynamics.
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1 Introduction

The steady development of powerful computational hardware in recent years has led to

high-resolution finite element models of real-life engineering structural systems. However, for

high-fidelity and credible numerical models, a high resolution in the numerical mesh is not

enough. It is also required to quantify the uncertainties and robustness associated with a nu-

merical model. As a result, the quantification of uncertainties plays a key role in establishing

the credibility of a numerical model. Uncertainties can be broadly divided into two categories.

The first type is due to the inherent variability in the system parameters, for example, differ-

ent cars manufactured from a single production line are not exactly the same. This type of

uncertainty is often referred to as aleatoric uncertainty. If enough samples are present, it is

possible to characterize the variability using well established statistical methods and conse-

quently the probably density functions (pdf) of the parameters can be obtained. The second

type of uncertainty is due to the lack of knowledge regarding a system, often referred to as

epistemic uncertainty. This kind of uncertainty generally arises in the modelling of complex

∗ Corresponding author, Tel: + 44 (0)1792 602088, Fax: + 44 (0)1792 295676
Email addresses: S.Adhikari@swansea.ac.uk (S. Adhikari), M.I.Friswell@bristol.ac.uk (M.

I. Friswell), kuldeepl@iitk.ac.in (K. Lonkar).
URLs: http://engweb.swan.ac.uk/∼adhikaris (S. Adhikari),

http://www.aer.bris.ac.uk/contact/academic/friswell/home page.html (M. I. Friswell),
http://home.iitk.ac.in/ kuldeepl/ (K. Lonkar).
1 Chair of Aerospace Engineering
2 Sir George White Professor
3 Student

Adhikari, Friswell & Lonkar 2 10 June 2007

http://engweb.swan.ac.uk/~adhikaris�
http://www.aer.bris.ac.uk/contact/academic/friswell/home_page.html�
http://home.iitk.ac.in/~kuldeepl/�


systems, for example, in the modelling of cabin noise in helicopters. Due to its very nature, it

is comparatively difficult to quantify or model this type of uncertainty. There are two broad

approaches to quantify uncertainties in a model. The first is the parametric approach and the

second is the non-parametric approach. In the parametric approach the uncertainties asso-

ciated with the system parameters, such as Young’s modulus, mass density, Poisson’s ratio,

damping coefficient and geometric parameters, are quantified using statistical methods and

propagated, for example, using the stochastic finite element method [2–10]. This type of ap-

proach is suitable to quantify aleatoric uncertainties. Epistemic uncertainty on the other hand

does not explicitly depend on the system parameters. For example, there can be unquantified

errors associated with the equation of motion (linear or non-linear), in the damping model

(viscous or non-viscous), in the model of structural joints, and also in the numerical methods

(e.g, discretisation of displacement fields, truncation and round-off errors, tolerances in the

optimization and iterative algorithms, step-sizes in the time-integration methods). It is evi-

dent that the parametric approach is not suitable to quantify this type of uncertainty. As a

result non-parametric approaches [11–13] have been proposed for this purpose.

Uncertainties associated with a variable can be characterized using the probabilistic ap-

proach or possibilistic approaches based on interval algebra, convex sets or Fuzzy sets. In

this paper the probabilistic approach has been adopted. The equation of motion of a damped

n-degree-of-freedom linear structural dynamic system can be expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

where M ∈ Rn,n, C ∈ Rn,n and K ∈ Rn,n are the mass, damping and stiffness matrices

respectively. The importance of considering parametric and/or non-parametric uncertainty

also depends on the frequency of excitation. For example, in high frequency vibration the

wave lengths of the vibration modes become very small. As a result the vibration response

can be very sensitive to the small details of the system. In such situations a non-parametric

uncertainty model may be adequate. Overall, three different approaches are currently available

to analyze stochastic structural dynamic systems across the frequency range:

• Low frequency vibration problems : Stochastic Finite Element Method [2–10, 14] (SFEM) -

considers parametric uncertainties in detail;

• High frequency vibration problems : Statistical Energy Analysis [15–17] (SEA) - does not

consider parametric uncertainties in detail;

• Mid-frequency vibration problems [18–21]: both parametric and non-parametric uncertain-

ties need to be considered.

The majority of the studies reported in probabilistic mechanics are based on analytical or

simulation methods. Often simulation based methods are used to validate approximate but
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relatively fast prediction tools (such as perturbation based methods). Experimental results are

rare because of difficulties such as (a) generating nominally identical samples of a structural

system, (b) the resources and effort involved in testing a large number of samples, (c) the

repetitive nature of the experimental procedure and (d) ensuring that different samples are

tested in exactly the same way so that no uncertainty arises due to the measurement process.

In spite these difficulties some authors have conducted experimental investigations on ran-

dom dynamical systems. Kompella and Bernhard [22] measured 57 structure-borne frequency

response functions at driver microphones for different pickup trucks. Fahy [23, page 275] re-

ported measurements of FRFs on 41 nominally identical beer cans. Both of these experiments

show variability in nominally identical engineered systems. Friswell et al. [24] reported two

experiments where random systems were ‘created’ in the laboratory for the purpose of model

validation. The first experiment used a randomly moving mass on a free-free beam and the

second experiment comprised a copper pipe with uncertain internal pressure. Fifty nominally

identical random samples were created and tested for both experiments.

This paper and its companion [1] describes two experimental studies that may be used to

test methods of uncertainty quantification across the frequency range. The tests are closely

controlled and the uncertainty can be considered to be ‘known’ for all practical purposes. This

allows one to model uncertainty, propagate it through dynamical models and compare the re-

sults with this experimentally obtained data. The experiment described in this paper uses a

fixed-fixed beam with 12 masses placed at random locations. The total random mass is about

2% of the total mass of the beam and this experiment simulates random errors in the mass ma-

trix. One hundred nominally identical dynamical systems are created and individually tested

in the Bristol Laboratory for Advanced Dynamic Engineering (BLADE). The model of the

beam and experimental setup are described in section 2. The experimental method to test one

hundred nominally identical structures are discussed in section 3. In section 4 the probabilistic

characteristics of the amplitude and phase of the measured frequency response functions are

discussed in the low, medium and high frequency ranges. In section 5 the experimental sys-

tem with random mass distribution is numerically simulated using the Euler-Bernoulli beam

theory and Monte Carlo simulation. In section 6 the mean and standard deviation of the am-

plitude and phase of the experimentally measured frequency response functions are compared

with Monte Carlo simulation results. The key results and the contributions of this work are

discussed section 7. The data presented here are available on the world wide web for research

purposes. The web address is http://engweb.swan.ac.uk/∼adhikaris/uq/. This data may be

used to validate different uncertainty quantification and propagation methods in structural

dynamics.
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2 System Model and Experimental Setup

A steel beam with uniform rectangular cross-section is used for the experiment. The phys-

ical and geometrical properties of the steel beam are shown in Table 1. The beam is actually

Beam Properties Numerical values

Length (L) 1200 mm

Width (b) 40.06 mm

Thickness (th) 2.05 mm

Mass density (ρ) 7800 kg/m3

Young’s modulus (E) 2.0× 105 MPa

Cross sectional area (a = bth) 8.212× 10−5 m2

Moment of inertia (I = 1/12bt3h) 2.876× 10−11 m4

Mass per unit length (ρl) 0.641 kg/m

Bending rigidity (EI) 5.752 Nm2

Total weight 0.7687 kg
Table 1
Material and geometric properties of the beam considered for the experiment

a 1.5m long ruler made of mild steel. The use of a ruler ensures that the masses may be easily

placed at predetermined locations. The ruler is clamped between 0.05m and 1.25m so that

the effective length of the vibrating beam is 1.2m. The overall experimental setup is shown in

Figure 1. The end clamps are bolted to two heavy steel blocks, which in turn are fixed to a

Fig. 1. The test rig for the fixed-fixed beam.

rigid table with bolts as shown in Figure 2. The clamping arrangements are aimed at providing
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fixed-fixed boundary conditions. The edges of both the solid metal blocks are sharpened to

(a) Left end (b) Right end

Fig. 2. The clamping arrangements at the two ends of the beam. The clamping arrangement is aimed
at providing fixed-fixed boundary conditions.

ensure that no rotation is allowed beyond the true ‘end’ of the beam. It is should be empha-

sized that it is, in general, extremely difficult to ensure there is no residual stress in a clamped

or any other constrained system. Due to the fixed nature of the supports and flexibility of

the beam, our initial tests show that the beam was in compression and was buckling in the

first mode (the first natural frequency turned out to be close to zero and significantly lower

than predicted by beam theory). The length between the supports was adjusted to minimize

the compression or tension in the beam. Because the supports were not disturbed during the

entire test spanning 100 realizations, we expect that the residual stress did not change from

sample to sample.

Twelve equal masses are used to simulate a randomly varying mass distribution. The

masses are actually magnets so that they can be easily attached at any location on the steel

beam. These magnets are cylindrical in shape, with a length of 12.0mm and a diameter of

6.0mm. Some of the attached masses for a sample realization are shown in Figure 3. Each

mass weights 2g so that the total variable mass is 1.6% of the mass of the beam. The location

of the 12 masses are assumed to be between 0.2m and 1.0m from the left end of the beam. A

uniform distribution with 100 samples is used to generate the mass locations. The mean and

the standard deviations of the mass locations are given by

x̄m = [0.2709, 0.3390, 0.3972, 0.4590, 0.5215, 0.5769,

0.6398, 0.6979, 0.7544, 0.8140, 0.8757, 0.9387] m (2)
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Fig. 3. The attached masses (magnets) at random locations. In total 12 masses, each weighting 2g,
are used.
and

σxm = [0.0571, 0.0906, 0.1043, 0.1034, 0.1073, 0.1030,

0.1029, 0.1021, 0.0917, 0.0837, 0.0699, 0.0530] m (3)

The variation of the locations of the 12 masses are shown in Figure 4.

3 Experimental Methodology

Experimental modal analysis [25–27] is used in this work. The three main components

of the implemented experimental technique are (a) the excitation of the structure, (b) the

sensing of the response, and (c) the data acquisition and processing. In this experiment a

shaker was used (the make, model no. and serial no. are LDS V201, and 92358.3, respectively)

to act as an impulse hammer. The usual manual impact hammer was not used because of the

difficulty in ensuring the impact occurs at exactly at the same location with the same force

for every sample run. The shaker generates impulses at a pulse interval of 20s and a pulse

width of 0.01s. Using the shaker in this way eliminates, as far as possible, any uncertainties

arising from the input forces. This innovative experimental technique is designed to ensure

that the resulting uncertainty in the response arises purely due to the random locations of the

attached masses. Figure 5 shows the arrangement of the shaker. A hard steel tip is used for

the hammer to increase the frequency range of excitation. The beam material was relatively

’soft’ compared to the hard steel tip, resulting in indentation marks. To avoid this problem a

small circular brass plate weighting 2g is attached to the beam to take the impact from the

shaker. The details of the force transducer attached to the shaker is given in Table 2.

In this experiment three accelerometers are used as the response sensors. The locations of

the three sensors are selected such that two of them are near the two ends of the beam and
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Fig. 4. All 100 samples of the locations of the 12 masses along the length of the beam. For each of
the 100 samples, the 12 magnets are placed in these locations and the FRFs are measured.

one is at the exciter location, near the middle of the beam, so that driving-point frequency

response function may be obtained. The exact locations are calculated such that the nodal

lines of the first few bending modes are avoided. The details of the accelerometers, including

their locations, are shown in Table 2. Small holes are drilled into the beam and the three

Role Model & Serial number Position from the
left end

Channel Sensitivity

Sensor (accelerometer) PCB 333M07 SN 25948 23 cm (Point1) 1 98.8 mV/g

Sensor (accelerometer) PCB 333M07 SN 26018 50 cm (Point2) 2 101.2 mV/g

Sensor (accelerometer) PCB 333M07 SN 25942 102 cm (Point3) 3 97.6 mV/g

Actuator (force trans-
ducer)

PCB 208C03 21487 50 cm (Point2) 4 2.24 mV/N

Table 2
The details of the accelerometers and the force transducer for the beam experiment.

accelerometers are attached by bolts through these holes.
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Fig. 5. The shaker is used as an impulse hammer which in turn is controlled via SimulinkTMand
dSpaceTM. A hard steel tip was used and small brass plate weighting 2g is attached to the beam to
take the impact from the shaker.

The signal from the force transducer is amplified using a Kistler type 5134 amplifier

(with settings Gain: 100, Filter: 10K and Bias: Off) while the signals from the accelerometers

are directly input into a 32 channel LMSTM system. For data acquisition and processing, LMS

Test Lab 5.0 is used. In Impact Scope, the bandwidth is set to 8192 Hz with 8192 spectral

lines (i.e., 1.00 Hz resolution). The steel tip used in the experiment only gives clean data up

to approximately 4500 Hz, and thus 4500 Hz is used as the upper limit of the frequency in the

measured frequency response functions. The data logged beyond 4500 Hz should be ignored.

4 Results and discussions

4.1 Amplitude spectra

In this paper we will discuss results corresponding to point 1 (a cross FRF) and point 2 (the

driving-point FRF) only. Results for the other points are not shown to save space but can be

obtained from the uploaded data file. Figure 6 shows the amplitude of the frequency response

function (FRF) at point 1 (see Table 2 for the location) of the beam without any masses

(the baseline model). In the same figure 100 samples of the amplitude of the FRF are shown

together with the ensemble mean, 5% and 95% probability lines. Figures 6(b)-(d) show the low,

medium and high-frequency response separately, obtained by zooming around the appropriate
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 6. Experimentally measured amplitude of the FRF of the beam at point 1 (23 cm from the left
end) with 12 randomly placed masses. 100 FRFs, together with the ensemble mean, 5% and 95%
probability lines are shown.

frequency ranges in Figure 6(a). There are, of course, no fixed and definite boundaries between

the low, medium and high-frequency ranges. Here we have selected 0 − 0.8kHz as the low-

frequency vibration, 0.8 − 2.2kHz as the medium-frequency vibration and 2.2 − 4.5kHz as

the high-frequency vibration. These frequency boundaries are selected on the basis of the

qualitative nature of the response and devised purely for the presentation of the results. The

experimental approach discussed here is independent of these selections. The ensemble mean

follows the result of the baseline system closely only in the low frequency range. In the higher

modes, the mean natural frequencies are lower than the baseline system. This is because

the mass of the baseline system is lower than the random system realizations. The relative

variability of the amplitude of the FRF remains more or less constant in the mid and high

frequency ranges. Equivalent results for point 2 (the driving-point FRF, see Table 2 for the
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location) are shown in Figure 7. The general trend of the results is similar to that of point

(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 7. Experimentally measured amplitude of the FRF of the beam at point 2 (the driving-point
FRF, 50 cm from the left end) with 12 randomly placed masses. 100 FRFs, together with the ensemble
mean, 5% and 95% probability lines are shown.

1. The measured FRF data up to 4.5 KHz as shown here is significantly noise-free, since the

hard steel tip used was able to excite the whole frequency range. The experimental data shown

throughout the paper is the ‘raw data’ (that is, without any filtering) obtained directly from

the LMS system.

4.2 Phase spectra

Figure 9 shows the phase of the frequency response function (FRF) at point 1 (see Table 2

for the location) of the beam without any masses (the baseline model). In the same figure

100 samples of the phase of the FRF are shown together with the ensemble mean, 5% and
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 8. Experimentally measured amplitude of the FRF of the beam at point 3 with 12 randomly
placed masses (102 cm from the left end). 100 FRFs, together with the ensemble mean, 5% and 95%
probability lines are shown.

95% probability lines. Figures 9(b)-(d) show the phase in low, medium and high-frequency

separately, obtained by zooming around the appropriate frequency ranges in Figure 9(a). The

ensemble mean follows the result of the baseline system closely only in the low frequency range.

In the higher modes, one can observe a clear phase-lag. This is again due to the fact that the

baseline system has lower mass compared to the mass of the random system realizations.

The relative variability of the phase of the FRF remains more or less constant in the mid

and high frequency ranges. Equivalent results for point 2 (the driving-point FRF, see Table 2

for the location) are shown in Figure 10. Because this is the phase of driving-point FRF, its

general characteristics is different from the cross FRF shown in Figure 9. The variability is

also observed to be slightly higher compared to the phase of the cross-FRF.
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(a) Phase across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 9. Experimentally measured phase of the FRF of the beam at point 1 (23 cm from the left
end) with 12 randomly placed masses. 100 FRFs, together with the ensemble mean, 5% and 95%
probability lines are shown.

5 Numerical simulation

In this section we model the beam and the attached masses at random locations using

Monte Carlo simulation. As shown in Figure 1, the beam is uniform and clamped at both

ends. We include the 12 randomly located masses, the mass of the three accelerometers (6g

each) and the mass of the small circular brass plate (2g) to take the impact from the impulse

hammer. The equation of motion of the mass loaded beam can be expressed as

EI
∂4w(x, t)

∂x4
+ m ẅ(x, t) +

12∑

j=1

mr ẅ(xrj
, t) +

3∑

j=1

ma ẅ(xaj
, t) + mb ẅ(xb, t) = f(x, t). (4)
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(a) Phase across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 10. Experimentally measured phase of the FRF of the beam at point 2 (the driving-point FRF,
50 cm from the left end) with 12 randomly placed masses. 100 FRFs, together with the ensemble
mean, 5% and 95% probability lines are shown.

where EI is the bending stiffness of the beam, x is the spatial coordinate along the length of

the beam, t is the time, w(x, t) is the time depended transverse deflection of the beam, f(x, t)

is the applied time depended load on the beam, m is the mass per unit length of the beam

and L is the length of the beam. An in-house finite element code was developed to implement

the discretized version of equation (4).

In the numerical calculations 120 elements are used and the resulting finite element model

has 238 degrees-of-freedom. Half of the modes, that is 119 modes, are used in the calculation of

the frequency response functions. One intuitive way to quantify uncertainty in linear dynamical

systems is to use the statistical overlap factor [28], defined as the ratio of the standard deviation

of the natural frequencies to the average spacing of the natural frequencies. Figure 12 shows

the mean, standard deviation and statistical overlap factors of the natural frequencies of the
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(a) Phase across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 11. Experimentally measured phase of the FRF of the beam at point 3 with 12 randomly
placed masses (102 cm from the left end). 100 FRFs, together with the ensemble mean, 5% and 95%
probability lines are shown.

beam obtained using Monte Carlo simulation. From Figure 12(a) observe that the standard

deviation of the natural frequencies are quite small compared to the mean values. This is

also reflected in Figure 12(b) where it can be observed that, on average, the statistical overlap

factors of the system is below 0.5. This implies that we do not expect significant mid-frequency

or high-frequency type of behaviour. Experimental results shown in Figures 6 and 7 support

this conclusion.

5.1 Amplitude spectra

For the frequency response function calculation, a modal damping factor of 1.5% is assumed

for all of the modes. The location of 100 sets of mass positions used for the experiment are
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(b) Statistical overlap factors

Fig. 12. Mean, standard deviation and statistical overlap factor of the natural frequencies of the
beam with random mass.

again used for the Monte Carlo simulation. Figure 13 shows the amplitude of the frequency

response function (FRF) at point 1 (see Table 2 for the location) of the beam without any

masses (the baseline model). In the same figure 100 samples of the amplitude of the FRF

are shown together with the ensemble mean, 5% and 95% probability lines. Figures 13(b)-(d)

show the low, medium and high-frequency response separately, obtained by zooming around

the appropriate frequency ranges in Figure 13(a). Equivalent results for point 2 (the driving-

point FRF, see Table 2 for the location) are shown in Figure 14. For both the points, the
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ensemble mean follows the result of the baseline system fairly closely over the entire frequency

range. This is somewhat different what observed in the experimental results. The relative

variance of the amplitude of the FRF remains more or less constant in the mid and high

frequency ranges, which is qualitatively similar to the experimental results.

(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 13. Numerically calculated amplitude of the FRF of the beam at point 1 (23 cm from the left
end) with 12 randomly placed masses. 100 FRFs, together with the ensemble mean, 5% and 95%
probability lines are shown.

5.2 Phase spectra

Figure 16 shows the phase of the frequency response function (FRF) at point 1 (see Table 2

for the location) of the beam without any masses (the baseline model). In the same figure

100 samples of the phase of the FRF are shown together with the ensemble mean, 5% and

95% probability lines. Figures 16(b)-(d) show the phase in low, medium and high-frequency
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 14. Numerically calculated amplitude of the FRF of the beam at point 2 (the driving-point FRF,
50 cm from the left end) with 12 randomly placed masses. 100 FRFs, together with the ensemble
mean, 5% and 95% probability lines are shown.

separately, obtained by zooming around the appropriate frequency ranges in Figure 16(a).

The ensemble mean follows the result of the baseline system closely except in few areas. The

relative variability of the amplitude of the FRF remains more or less constant in the mid and

high frequency ranges. Equivalent results for point 2 (the driving-point FRF, see Table 2 for

the location) are shown in Figure 10. Because this is the phase of the driving-point FRF, its

general characteristics are different from the cross FRF shown in Figure 9. The variability

is also observed to be slightly higher compared to the phase of the cross-FRF. Overall, the

numerical results show a similar trend to the experiential results.
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 15. Numerically calculated amplitude of the FRF of the beam at point 3 with 12 randomly
placed masses (102 cm from the left end). 100 FRFs, together with the ensemble mean, 5% and 95%
probability lines are shown.

6 Comparisons between numerical and experimental results

6.1 Amplitude spectra

It is useful to compare the experimental results with the Monte Carlo simulation results.

Figure 19 compares the ensemble mean and standard deviation of the amplitude of the fre-

quency response function (FRF) at point 1 obtained from the experiment and Monte Carlo

simulation. Figures 19(b)-(d) show the low, medium and high-frequency response separately,

obtained by zooming around the appropriate frequency ranges in Figure 19(a). To the best

of the authors knowledge, this is perhaps the first time where direct comparison between

experimental and analytical (simulation) results for stochastic dynamical systems have been
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 16. Numerically calculated phase of the FRF of the beam at point 1 (23 cm from the left
end) with 12 randomly placed masses. 100 FRFs, together with the ensemble mean, 5% and 95%
probability lines are shown.

reported. The standard deviation of the amplitude of the FRF reaches a peak at the system

natural frequencies, which is also predicted by the numerical simulation. Qualitatively the sim-

ulation results agree well with the experimental results. The main reason for the discrepancies,

especially in the low frequency regions, is probably due to the incorrect value of the damping

factors. In the simulation study a constant damping factor of 1.5% is assumed for all of the

modes. Ideally one should measure modal damping factors from experimental measurements

for all of the samples and for as many modes as possible and perhaps take an average across

the samples for every mode. Equivalent comparisons for point 2 (the driving-point FRF) are

shown in Figure 20. For both points, the experimental mean and standard deviation in the

low frequency range is quite high compared to numerical results. This can again be attributed

to the wrong values of modal damping factors in the analytical model since the pattern of
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 17. Numerically calculated phase of the FRF of the beam at point 2 (the driving-point FRF, 50
cm from the left end) with 12 randomly placed masses. 100 FRFs, together with the ensemble mean,
5% and 95% probability lines are shown.

the peaks are strikingly similar but they are separated in ‘height’. This is a clear indication

that the damping values are incorrect in the simulation model. Therefore, one of the key out-

comes of this experimental study is that wrong values of the modal damping factors can lead

to significant errors in the response variance prediction even if everything else is performed

correctly.

6.2 Phase spectra

Figure 22 compares the ensemble mean and standard deviation of the phase of the fre-

quency response function at point 1 obtained from the experiment and Monte Carlo simulation.

Figures 22(b)-(d) show the low, medium and high-frequency response separately, obtained by
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(a) Response across the frequency range (b) Low-frequency response

(c) Medium-frequency response (d) High-frequency response

Fig. 18. Numerically calculated phase of the FRF of the beam at point 3 with 12 randomly placed
masses (102 cm from the left end). 100 FRFs, together with the ensemble mean, 5% and 95%
probability lines are shown.

zooming around the appropriate frequency ranges in Figure 22(a). Except in the low frequency

range, the standard deviation of the phase of the FRF is very small and the experimental and

simulation results agree well. The patterns of the mean results from the experiment and simu-

lation is very similar. The discrepancy is again primarily due to the incorrect damping model

in the numerical results. Equivalent comparisons for point 2 (the driving-point FRF) are shown

in Figure 23. Observe that the agreement of the simulated results with the experimental re-

sults is better than for the cross-FRF shown before. One can clearly see similar trends in both

the mean and the standard deviation. Taken overall, qualitatively the simulation results agree

well with the experimental results.
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(a) Amplitude across the frequency range
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(b) Amplitude in the Low-frequency range
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(c) Amplitude in the Medium-frequency range
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(d) Amplitude in the High-frequency range

Fig. 19. Comparison of the mean and standard deviation of the amplitude of the beam at point 1
(23 cm from the left end) using direct Monte Carlo simulation and experiment.

7 Conclusions

This paper has described an experiment that may be used to study methods to quantify

uncertainty in the dynamics of structures. The fixed-fixed beam is very easy to model and

the results of a one hundred sample experiment with randomly placed masses are described

in this paper. One hundred nominally identical beams are created and individually tested

using experimental modal analysis. Special measures have been taken so that the uncertainty

in the response only arises from the randomness in the mass locations and the experiments

are repeatable with minimum changes. Such measures include, but are not limited to (a) the

use of a shaker as an impact hammer to ensure a consistent force and location for all of the

tests, (b) the use of a ruler to minimize the error in measuring the mass locations, (c) the

use of magnets as attached masses and (d) the use of a hard steel tip and a small brass plate
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(a) Amplitude across the frequency range
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(b) Amplitude in the Low-frequency range
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(c) Amplitude in the Medium-frequency range

2500 3000 3500 4000 4500
−30

−20

−10

0

10

20

30

40

50

60

70

Frequency (Hz)

R
el

at
iv

e 
st

d 
of

 H (2
,2

) (
ω

)

 

 

Ensemble mean: Direct simulation

Ensemble mean: Experiment

Standard deviation: Direct simulation

Standard deviation: Experiment

(d) Amplitude in the High-frequency range

Fig. 20. Comparison of the mean and standard deviation of the amplitude of the beam at point 2 (the
driving-point FRF, 50 cm from the left end) using direct Monte Carlo simulation and experiment.

on the flexible beam to obtain relatively noise-free data up to 4.5KHz. The statistics of the

frequency response functions measured at the three points are obtained for low, medium and

high frequency ranges. More variability in the FRF at the high frequency range compared

to the low frequency range is observed. This data may be used for the model validation and

uncertainty quantification of dynamical systems. Of course one hundred set of samples is not

enough for a reliable statistical analysis. But to the best of the authors knowledge, to date this

is perhaps the most comprehensive set of experimentally measured response data available for

stochastic dynamical systems.

The experimental results are directly compared with numerical Monte Carlo simulation.

This is perhaps the first time where such a direct comparison between experimental and ana-

lytical (simulation) results for stochastic dynamical systems have been reported in stochastic

mechanics literature. A finite element model of a simple Euler-Bernoulli beam is used in the
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(b) Amplitude in the Low-frequency range
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(c) Amplitude in the Medium-frequency range
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(d) Amplitude in the High-frequency range

Fig. 21. Comparison of the mean and standard deviation of the amplitude of the beam at point 3
(102 cm from the left end) using direct Monte Carlo simulation and experiment.

analytical work, and the pattern of the response mean and standard deviation obtained in

the experimental analysis is predicted. The discrepancies between the two approaches are

attributed to incorrect values for damping used in the numerical model. This suggests that

correct damping values are crucial for the prediction of the response variance of stochastic

dynamical systems.

Acknowledgements

SA gratefully acknowledges the support of the Engineering and Physical Sciences Research

Council through the award of an Advanced Research Fellowship. MIF gratefully acknowledges

the support of the Royal Society through a Royal Society-Wolfson Research Merit Award.

Adhikari, Friswell & Lonkar 25 10 June 2007



0 500 1000 1500 2000 2500 3000 3500 4000 4500
−4

−3

−2

−1

0

1

2

3

4

Frequency (Hz)

P
ha

se
 o

f H
(2

,1
) (

ω
)

 

 

Ensemble mean: Direct simulation

Ensemble mean: Experiment

Standard deviation: Direct simulation

Standard deviation: Experiment

(a) Amplitude across the frequency range

0 100 200 300 400 500 600 700 800
−4

−3

−2

−1

0

1

2

3

4

Frequency (Hz)

P
ha

se
 o

f H
(2

,1
) (

ω
)

 

 

Ensemble mean: Direct simulation

Ensemble mean: Experiment

Standard deviation: Direct simulation

Standard deviation: Experiment

(b) Amplitude in the Low-frequency range
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(c) Amplitude in the Medium-frequency range
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Fig. 22. Comparison of the mean and standard deviation of the phase of the beam at point 1 (23 cm
from the left end) using direct Monte Carlo simulation and experiment.
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Nomenclature

f(t) forcing vector

M, C and K mass, damping and stiffness matrices respectively

q(t) response vector

EI bending stiffness of the beam

f(x, t) applied time depended load on the beam

L length of the beam

m mass per unit length of the beam, m = ρA

ma mass of an accelerometer, ma = 6g

mb mass of the circular brass plate, mb = 2g

mr added mass at random locations on the beam, ma = 2g

n number of degrees of freedom

t time

w(x, t) time depended transverse deflection of the beam

x spatial coordinate along the length of the beam

xaj
location of the accelerometers

xb location of the circular brass plate

xrj
random mass locations on beam
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˙(•) derivative with respect to time

FRF Frequency Response Function

SFEM Stochastic Finite Element Method
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