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SUMMARY

In order to overcome the computational difficulties in Karhunen–Loève (K–L) expansions of stationary
random material properties in stochastic finite element method (SFEM) analysis, a Fourier–Karhunen–
Loève (F–K–L) discretization scheme is developed in this paper, by following the harmonic essence of
stationary random material properties and solving a series of specific technical challenges encountered in
its development. Three numerical examples are employed to investigate the overall performance of the
new discretization scheme and to demonstrate its use in practical SFEM simulations. The proposed F–K–L
discretization scheme exhibits a number of advantages over the widely used K–L expansion scheme based
on FE meshes, including better computational efficiency in terms of memory and CPU time, convenient
a priori error-control mechanism, better approximation accuracy of random material properties, explicit
methods for predicting the associated eigenvalue decay speed and geometrical compatibility for random
medium bodies of different shapes. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background of discretization of random material properties

Due to the increasing demand for quantitative analysis of practical engineering systems consisting
of random media (e.g. rocks, concrete and composite materials with random inclusions) and
also due to the continual exponential increase in computer power and data storage, the study
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Figure 1. Young’s modulus of a random medium plate.

of stochastic finite element methods (SFEMs) [1–20] has developed steadily over the past two
decades. A major issue for setting up a SFEM simulation for practical random medium systems
is to effectively discretize the irregular variation of material properties through the medium.
Figure 1 plots a simple example of random material properties to be discretized, and g(x) denotes
a particular variation in Young’s modulus of a random medium plate.

Over the last few decades, various methods have been developed for the discretization of random
material properties, and they include the middle point method [1, 2], the local averaging method [3],
the shape function method [4–6], the least-squares discretization method [7] and the trigonometric
series approximation method [8–11]. However, some of these are either inefficient (measured by
the total number of random variables required) or inaccurate (measured by the error between the
interpolated stochastic field and the real one) for an advanced SFEM formulation. Some critical
reviews on this subject can be found in [7, 9, 13, 20].

To date, the most significant step forward for the above stochastic-field discretization problem
is the application of Karhunen–Loève (K–L) expansions [21], which was first introduced into
SFEM research by Spanos and Ghanem [12], and since then has been widely used in various
SFEM formulations [13–20] to discretize random material properties. However, as outlined in the
next subsection, several computational issues arise in further applications of K–L expansions to
practical random medium problems.

1.2. Motivation of this paper

In this paper, symbols R, Z and N are exclusively used with their standard meanings, i.e. R denotes
the real number set, Z the integer set and N�{1, 2, 3, . . .} the natural number set. Symbols �,
�i j and (·) represent, respectively, a basic random event, the Kronecker delta and the complex
conjugate. Superscript T denotes the transpose of a matrix or a vector. Integer n = 1, 2, 3 denotes
the dimensionality of the problem’s spatial domain, and a term n-interval is used to, respectively,
denote an interval in 1D cases, a rectangle in 2D cases or a cuboid in 3D cases.

Let D ⊂ Rn be a random medium body with the random material property denoted by
H(x, �) x∈ D, a second-order stochastic field [21] initially defined by its expectation function
H0(x)�E(H(x,�)) and a covariance function R(x1, x2)�Cov(H(x1, �), H(x2, �)). Following
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the K–L expansion theorem [21], H(x,�) can be discretized as

H(x,�) = H0(x) +
+∞∑
i=1

√
�i�i (�)�i (x) (1)

where the random variables �i (�) satisfy E(�i (�))= 0 and E(�i (�)� j (�))= �i j , and the deter-
ministic constants �i and functions �i (x) are eigenvalues and eigenfunctions of the characteristic
equation ∫

D
R(x1, x2)�(x1) dx1 = ��(x2) (2)

such that �i>0 and
∫
D �i (x)� j (x) dx= �i j . In a numerical treatment, Equation (1) is truncated

into a finite series after sorting �i in a descending order, and by using the trace relation

+∞∑
i=1

�i =
∫
D
R(x, x) dx (3)

the length of the series can be determined by the required accuracy of the total variance. In the
sense of mean-square convergence, the finite K–L series truncated from (1) then provides an
optimal linear representation for keeping the subspace that has the minimum variance of error.

It is clear that successful applications of K–L expansions in practical problems crucially rely
on the existence of efficient and accurate methods to solve for the required eigenstructures of
stochastic fields. In the SFEM literature, the integral equation (2) is usually solved by the standard
Galerkin finite element method (FEM) (see e.g. [13, 18]), and the same FE mesh is adopted for
the solution of the governing partial differential equations (PDEs) of the physical system. This
leads to a generalized algebraic eigenvalue problem

Av= �Bv (4)

in which A is a full matrix (real symmetric and non-negative definite), B a sparse matrix (real
symmetric and positive definite), and � and v denote, respectively, the unknown eigenvalue and
eigenvector. Unfortunately, several computational difficulties are encountered when solving the
K–L eigenpairs in various SFEM simulations [12–18]:

• The associated computational costs mainly include two parts: constructing the full matrix A
and solving for the corresponding generalized eigenproblem. These operations can be very
challenging [18], in terms of both memory and CPU time, because the dimension of the full
matrix A equals the total number of FE nodes and a large number of elements are required
to achieve a reasonable K–L solution for practical random media, of which the ratio between
material size and the effective correlation length is often greater than 10.

• The computational error of the K–L eigenpairs and hence of the K–L representation for
random material properties relies largely on the density of the FE mesh involved. It is
generally difficult to predict and control the resulting approximation error unless appropriate
adaptive re-meshing algorithms are employed.

• The approximation error of the eigenfunctions �i (x) is relatively poor [13] due to the lack of
an effective a priori error-control mechanism in the K–L representation based on FE meshes,
although the error of eigenvalues �i can be partially managed using Equation (3).
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• In engineering analysis of practical random medium systems, it is desirable to make a pre-
estimate of the overall computational cost of the SFEM simulation, which is very much
determined by the total number of random variables included in the corresponding math-
ematical model. However, an effective method to predict the minimum number of random
variables required in the K–L representation to satisfy the given discretization accuracy of
random material properties has not been available in the current literature.

These computational difficulties have hampered further applications of K–L expansions in
practical random medium problems, in particular for large random media and small effective
correlation length. It is this concern that motivates the current work, and a Fourier–Karhunen–
Loève (F–K–L) discretization scheme for stationary random material properties is presented in
this paper. The discretization problem is first analysed in the light of the existing mathematical
results in Section 2. Section 3 introduces the F–K–L discretization scheme with the solutions of
a sequence of specific technical problems encountered in its development, following which some
useful properties are derived in Section 4.

2. PROBLEM ANALYSIS

In the K–L expansion (1), the probability distribution of �i (�) remains undetermined unless
H(x, �) is a Gaussian field, for which �i (�) are Gaussian random variables [21]. The first two
statistical moments of H(x,�) are insufficient to fully define a general second-order stochastic
field, and additional information must be provided in order to determine the probability distribution
of �i (�). This important issue is, however, out of the scope of this paper. Nevertheless, due to the
central limit theorem, the Gaussian assumption may be approximately satisfied in many engineering
problems and therefore widely adopted [11, 13]. In this work, whenever the probability distribution
of �i (�) is needed, H(x,�) is assumed to be a Gaussian field.

For the description of randommaterial properties, the wide-sense stationary (or briefly stationary)
stochastic field [21–23] is one of the most widely used types of stochastic fields in the SFEM
literature [1–20]. It should be noted that the K–L expansion holds for any second-order stochastic
field, but this paper considers only stationary random material properties. In this special case, the
expectation and covariance functions of H(x, �) degenerate, respectively, into H0(x)= H0 and
R(x1, x2) = R(x1−x2) = R(s). In mathematics, the eigenpair, �i and �i (x) in (1), is essentially the
spectrum of the linear integral operator (Tf)(x2)�

∫
D R(x1, x2) f (x1) dx1, which is very difficult

to be obtained accurately if H(x,�) is a general second-order stochastic field. However, due to
the harmonic essence of the stationary stochastic fields outlined below, it is possible to develop
an accurate and efficient discretization scheme for stationary random material properties.

For the stationary stochastic field H(x,�), x∈ Rn , whose covariance function is R(s), the
following spectral decompositions (see e.g. [22, 23]) hold:

H(x,�) = H0 +
∫

Rn
e
√−1x·y dZ(y,�) (5)

R(s) =
∫

Rn
e
√−1s·y dF(y)=

∫
Rn

f (y)e
√−1s·y dy (6)
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where F(y) is a bounded, real-valued function satisfying
∫
A dF(y)�0 for all measurable A ⊂ Rn;

f (y)>0 vanishes at infinity (i.e. lim‖y‖2→+∞ f (y)= 0); and Z(y, �) satisfying

Z(−∞,�) = 0, E(Z(y, �))= 0

E(|Z(y,�)|2) = F(y), E(|dZ(y,�)|2) = dF(y)= f (y) dy
(7)

is a complex-valued stochastic field with orthogonal increments (i.e. E(Z(Fn
1, �)Z(Fn

2, �))= 0 for
any pair of disjoint n-intervals Fn

1,F
n
2 ⊂ Rn). In (5)–(6), both H(x, �) and R(s) are expressed in

the frequency space and in the form of the inverse Fourier transform. In particular, F(y) is termed
the spectral distribution function of H(x,�) and R(s), and f (y) is the associated spectral density
function that can be readily obtained using the Fourier transform

f (y)= 1

(2�)n

∫
Rn

R(s)e−√−1s·y ds (8)

Clearly, by approximating the infinite integrations in (5)–(6) with finite summations, a stationary
stochastic field defined in Rn can be expressed as a finite series of general trigonometric functions.
For instance, a real-valued stationary stochastic field h(x,�), x ∈ R with mean zero and spectral
density function fh(y) can be approximated by

∑q
i=1 �i (Ai (�) cos(yi x)+ Bi (�) sin(yi x)), where

�2i = ∫ yk+�y/2
yk−�y/2 fh(y) dy, Ai (�) and Bi (�) are uncorrelated random variables with mean zero and

variance one. Since no equation solving is involved, this trigonometric series approximation scheme
and its improvements have long been applied in the SFEM (mainly in Monte Carlo simulations
[8–11] to generate material samples) in an intuitive manner. However, in order to ensure the
convergence of such a general trigonometric series, the integration domain in (5)–(6) has to be
truncated at a sufficiently large domain in the frequency space while the summation steps have
to be set sufficiently small, which in turn makes this simple scheme inefficient for practical uses.
Moreover, the continual spectrum in (5)–(8) is not particularly useful for model reduction in SFEM
analysis.

In fact, applying Equation (8) to calculate the following integration yields∫
Rn

R(x1 − x2)e−√−1x1·y dx1 = e−√−1x2·y
∫

Rn
R(x1 − x2)e−√−1(x1−x2)·y dx1

= (2�)n f (y)e−√−1x2·y (9)

The above characteristic equation is satisfied for all y∈ Rn . More importantly, by comparing (9) with
(2), it is clear that, without solving Equation (2), expressions (5)–(6) provide an explicit solution
for the K–L expansion of H(x,�), x∈ Rn in terms of Fourier integrals. Specifically, dZ(y,�) and
e
√−1x·y in (5) correspond, respectively, to

√
�i�i (�) and �i (x) in (1), and the continual spectrum

indexed by y corresponds to the discrete spectrum indexed by i . The connection between the
K–L expansion (1)–(3) and the spectral representation theory (5)–(8) has long been recognized
in applied mathematics and signal processing (see, e.g. [24]), and the recognition is vital to the
investigation of asymptotic properties of the solution for Equation (2) in stationary cases and is
also useful for the derivation of exact solutions for Equation (2) in several special cases.

In SFEM analysis, specifically for the K–L discretization of random material properties, it is
required to numerically obtain the discrete spectrum of Equation (2) in finite domain. However, it
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appears that the essential link indicated in (9) has not been fully appreciated in the SFEM com-
munity, but instead the FEM has almost always been adopted in the solution of the corresponding
characteristic equation, in many of which the random material property involved is essentially
stationary [12–20]. The advantage of the FE–K–L approach is obvious in that the same mesh with
the following mechanical analysis can be employed, which in turn minimizes the extra work in
mesh generation and stiffness-matrix computation. However, as highlighted in Section 1.2, several
unsatisfactory computational issues arise. Hence, inspired by the harmonic essence of stationary
stochastic fields (5)–(9), a meshfree F–K–L discretization scheme is introduced in the next section
and a sequence of specific technical problems encountered in its development are solved. It will be
shown that, for stationary random material properties, the F–K–L discretization scheme resolves
all the computational problems previously addressed.

3. THE F–K–L DISCRETIZATION SCHEME

3.1. Fourier expansion of stationary random material properties

As the random material property H(x,�), x∈ D of the random medium body D ⊂ Rn is as-
sumed stationary, the discretization problem can alternatively be considered in an n-interval
Tn�{x= (x1, . . . , xn) ∈ Rn|− tk�xk�tk, tk>0 (k = 1, . . . , n)} ⊃ D with volume VTn = 2n

∏n
k=1 tk .

Note that the Fourier integral and series [25] are essentially equivalent, except that the former
is defined in Rn but the latter is defined in an n-interval. The inverse Fourier transform (5) of
H(x, �), x∈ Rn infers the following complex Fourier expansion of H(x, �), x∈Tn:

H(x,�) = H0 +
+∞∑

m1=−∞
· · ·

+∞∑
mn=−∞

�Z(m, �)e
√−1

∑n
k=1 mk�k xk (10)

where m= (m1, . . . ,mn) ∈ Zn; �k = �/tk, k = 1, . . . , n; e
√−1

∑n
k=1 mk�k xk constitute the Fourier ba-

sis defined in Tn; and �Z(m,�) = 1/VTn
∫
Tn (H(x,�) − H0)e−√−1

∑n
k=1 mk�k xk dx are complex-

valued random Fourier coefficients. The convergence and well posedness of (10) are ensured by
the completeness and orthogonality of the Fourier basis. It is then obvious that E(�Z(m, �))= 0.

Although the stochastic field Z(y,�) in (5) is with orthogonal increments, the random variable
sequence �Z(m,�) in (10) is not necessarily (and usually is not) composed of orthogonal random
variables. This is because of the simplification from the Fourier integrals to the Fourier series;
the frequency of the trigonometric functions in (10) is preset by m and, consequently, random
coefficients �Z(m,�) must be adapted for the convergence of the infinite Fourier series, for which
the strictly orthogonal property of Z(y,�) is inevitably destroyed. Hence, Equation (10) is not the
K–L expansion of H(x,�), x∈Tn .

In a numerical formulation, the convergent Fourier series (10) is truncated such that

H(x, �) ≈ H0 +
M1∑

m1=−M1

· · ·
Mn∑

mn=−Mn

�Z(m, �)e
√−1

∑n
k=1 mk�k xk

= H0 + �ZT(�)e(x)= HN (x, �) (11)

where M= (M1, . . . , Mn) ∈ Nn; N =∏n
k=1(2Mk + 1); and vectors �Z(�) and e(x) are, respec-

tively, constructed from
√
VTn�Z(m, �) and e

√−1
∑n

k=1 mk�k xk/
√
VTn . The constant coefficient
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√
VTn is chosen to normalize the Fourier basis, and the entries in �Z(�) and e(x) are organized

in an ascending order of the frequency number m.
The truncation error 	N�|H(x,�) − HN (x,�)| of the Fourier approximation (11) depends on

the integer domain Mn�{m∈ Zn| − Mk�mk�Mk(k = 1, . . . , n)}, whose boundary is M. Thus, in
order to have an explicit control of 	N , M must be determined according to the required accuracy
of H(x,�). This can be achieved using the spectral representation of R(s), and the details are
given below.

The covariance function of HN (x,�) is

RN (s) = E

((
M1∑

m1=−M1

· · ·
Mn∑

mn=−Mn

�Z(m, �)e
√−1

∑n
k=1 mk�k x1k

)

×
(

M1∑
m1=−m1

· · ·
Mn∑

mn=−Mn

�Z(m, �)e
√−1

∑n
k=1 mk�k x2k

))
(12)

and its right-hand side term with the highest frequency is

E(�Z(M, �)e
√−1

∑n
k=1 Mk�k x1k�Z(M, �)e

√−1
∑n

k=1 Mk�k x2k )

= E(�Z(M,�)�Z(M, �))e
√−1

∑n
k=1 Mk�k(x1k−x2k) (13)

Hence, as indicated by (m1�1, . . . ,mn�n), RN (s) has a discrete frequency domain whose boundary
is (M1�1, . . . , Mn�n). Let Fn�{y∈ Rn| − fk�yk� fk, fk>0 (k = 1, . . . , n)} denote the smallest
domain in the frequency space of R(s) such that∫

Fn f (y) dy∫
Rn f (y) dy

=
∫
Fn f (y) dy

R(0)
�
, 0<
<1 (14)

where constant 
 is the required accuracy for approximating the spectrum identified by f (y). In
order to ensure that HN (x,�) satisfies the given accuracy 
, the discrete frequency domain of
RN (s) needs to be set in accordance with the continual frequency domain of R(s). Therefore, the
relation

(Mk − 1)�k< fk�Mk�k, k = 1, . . . , n (15)

holds between frequency boundaries (M1�1, . . . , Mn�n) and Fn , which further leads to

Mk =
⌈
fk
�k

⌉
=
⌈
fk tk
�

⌉
, k = 1, . . . , n (16)

where operator 
x� gives the minimum integer that is not less than x .
Regarding the above Fourier expansion of stationary random material properties, the following

two remarks can be made in order. Firstly, it is well known that the Fourier transforms of many
typical functions can be obtained analytically; therefore, the spectral density function f (y) (8)
can be obtained exactly for many typical R(s) encountered in practice. If this is not the case,
the standard fast Fourier transform (FFT) can be applied to numerically calculate f (y). Secondly,
according to the well-known Heisenberg inequality [25] in Fourier analysis, a wider R(s), which
corresponds approximately to a larger effective correlation length, results in a narrower f (y), which
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approximately corresponds to a smaller major frequency domain Fn; and vice versa. Consequently,
from (16), Mn expands with the growth of the random medium domain, but normally shrinks as
the effective correlation length increases; and vice-versa.

3.2. Principal component analysis of the Fourier expansion

In (11), in terms of the fixed Fourier vector e(x), HN (x,�) − H0 is represented by the random
vector �Z(�), whose entries �Z(m, �) are not strictly orthogonal to each other. Hence, due to
the orthogonality of Fourier basis, the standard dimensionality reduction technique of principal
component analysis (PCA) can be performed to orthogonalize �Z(m, �) and further improve the
efficiency of the Fourier expansion. The PCA operation for �Z(�) is formulated below, and the
general theoretical background of PCA can be found in standard textbooks, e.g. [26].

Let G= E(�Z(�)�ZT(�)) denote the covariance matrix of �Z(�), ei (x) the i th term of e(x)
and �Zi (�) the i th term of �Z(�). Then, the matrix G can be constructed from

Gi j =Cov(�Zi (�),�Z j (�))

=
∫
Tn

∫
Tn

R(x1 − x2)ei (x1)e j (x2) dx1 dx2

= 1

VTn

∫
Tn

∫
Tn

R(x1 − x2)e−√−1
∑n

k=1 mik�k x1ke
√−1

∑n
k=1 m jk�k x2k dx1 dx2 (17)

where Gi j is the entry at the i th row and j th column of G. Due to the symmetric and non-negative
definite properties of R(x1 − x2) [21–23], G is a non-negative-definite Hermitian matrix.

It is observed from Equation (17) that each entry of matrix G is an integral of multidimensional
oscillatory functions, for which standard numerical integration algorithms [27] such as Clenshaw–
Curtis quadrature method, Gaussian quadrature method and Filon’s integration have very poor
performance and may even cease to be useful in 2D and 3D random medium problems. Conse-
quently, although the form of (17) is clear, it is not particularly useful for the calculation of G,
and further transformation is necessary. Substituting (6) into (17) yields

Gi j = 2n

VTn

∫
Rn

f (y)
n∏

k=1

cos((m jk − mik)�) − cos(2yktk − (mik + m jk)�)(
yk − mik

�

tk

)(
yk − m jk

�

tk

) dy (18)

and, furthermore, substituting (8) into the above equation yields

Gi j = 1

�nVTn

∫
Rn

R(s)

×

⎛⎜⎜⎝ n∏
k=1

∫
R

cos((m jk−mik)�)− cos(2yktk−(mik+m jk)�)(
yk−mik

�

tk

)(
yk−m jk

�

tk

) e−√−1yk�k dyk

⎞⎟⎟⎠ ds (19)
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After explicitly calculating the inner integral in the above equation, which is a standard 1D Fourier
transform, the resulting expression can be simplified as

Gi j =
∫ 2t1

0
· · ·
∫ 2tn

0
R̃(s)

(
n∏

k=1
Ai jk(�k)Bi jk(�k)

)
ds (20)

in which

Ai jk(�k) =

⎧⎪⎪⎨⎪⎪⎩
2 − �k

tk
, mik =m jk

(−1)mik+m jk

(mik − m jk)�
, mik �=m jk

(21)

Bi jk(�k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos

(
mik

�

tk
�k

)
, mik =m jk

sin

(
m jk

�

tk
�k

)
− sin

(
mik

�

tk
�k

)
, mik �=m jk

(22)

and

R̃(s) = 1

2n
2∑

k1=1
· · ·

2∑
kn=1

R((−1)k1�1, . . . , (−1)kn�n) (23)

is the axis-symmetric component of R(s).
Note that in (20)–(23), all the entries in G are essentially Fourier coefficients of

R̃(s)
∏n

k=1Ai jk(�k), and up to a constant scalar determined by i and j there are only 2n pos-
sible forms of R̃(s)

∏n
k=1 Ai jk(�k). Hence, the covariance matrix can be efficiently constructed by

using the FFT [28], and the computational cost is O(2nN log N ). It is worth noting that the right-
hand side of (20) may be analytically obtained for some typical covariance functions encountered
in practice.

From (20)–(23), it is observed that the matrix G is real and symmetric. Hence, the non-negative-
definite Hermitian matrix G is specifically real-symmetric and non-negative definite. Therefore,
there exists an orthogonal matrix Q−1 =QT such that

QTGQ= diag(�1, �2, . . . , �N ) (24)

where �1��2� · · · �N�0. The calculation of Q and �i is a standard algebraic eigenvalue problem.
Furthermore, the matrix G can be transformed into a block-diagonal matrix containing two blocks,
and the dimensionality of each block matrix is approximately half of the dimensionality of G. The
proof for the block-diagonal property of G is outlined below.

In (17)–(20), G is constructed with respect to the complex Fourier basis e
√−1

∑n
k=1 mk�k xk/

√
VTn ,

and, equivalently, the covariance matrix can be constructed with respect to the real Fourier basis

1/
√
VTn/2

{
1√
2
, cos

n∑
k=1

mk�k xk, sin
n∑

k=1
mk�k xk

}
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Noting that

cos

(
n∑

k=1
mk�k xk

)
= e

√−1
∑n

k=1 mk�k xk + e−√−1
∑n

k=1 mk�k xk

2
(25a)

and

sin

(
n∑

k=1
mk�k xk

)
= e

√−1
∑n

k=1 mk�k xk − e−√−1
∑n

k=1 mk�k xk

2
√−1

(25b)

the covariance matrix based on the real Fourier basis can be obtained from G via an orthogonal
transformation. Furthermore, consider the following entry:

2/VTn

∫
Tn

∫
Tn

R(x1 − x2)
(
cos

n∑
k=1

mik�k x1k

)(
sin

n∑
k=1

m jk�k x2k

)
dx1 dx2 (26)

in the covariance matrix based on the real Fourier basis. The above expression is obviously real-
valued, and also, according to (17), (20) and (25), its real part is zero. Hence, all the coupled entries
of the form of (27) are zero. This decoupling between sine terms and cosine terms infers that the
covariance matrix based on the real Fourier basis can be organized as a block-diagonal matrix
with two blocks: one block is constructed from the sine terms and the other block is constructed
from the cosine terms together with the constant term.

The algebraic eigenstructure of G can be readily obtained by using existing eigensolvers. Once
Q and �i (i = 1, . . . , N ) are obtained, the eigenfunctions �i (x) and eigenvalues �i (�) can be
constructed as follows:

w(x) = (�1(x), . . . , �N (x))T =QT e(x) (27)

n(�) = (�1(�), . . . , �N (�))T = diag

(
1√
�1

, . . . ,
1√
�N

)
QT�Z(�) (28)

Then, it follows from Equation (11) that

HN (x,�) = H0 +
N∑
i=1

√
�i�i (�)�i (x)≈ H0 +

N∗∑
i=1

√
�i�i (�)�i (x)= HN∗(x, �) (29)

in which N∗ is the smallest integer such that∑N∗
i=1�i∑N
i=1 �i

�
∗, 0<
∗�1 (30)

where 
∗ is the required accuracy for approximating the total variance of HN (x,�).

3.3. The F–K–L discretization algorithm

Remark
Equation (29), together with (20)–(24) and (27)–(28), is termed the F–K–L discretization of
stationary random material properties. Due to the completeness and orthogonality of the Fourier
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basis and the PCA procedure, HN∗(x,�) provides a series solution for the K–L expansion of
H(x, �), x∈Tn . The total truncation error 	N∗ = |H(x, �) − HN∗(x, �)| is explicitly controlled
by (14), (16) and (30); specifically, l controls the error of the spectrum (i.e. eigenvalues and
eigenfunctions) of H(x,�) and 
∗ controls the error of the total variance of H(x, �).

For a stationary random material property denoted by H(x, �), x∈ D, given the mean value
H0, the covariance function R(s) and the error-control parameters l and 
∗, the corresponding
F–K–L discretization can be obtained with the following algorithm:

1. Find the minimum n-interval Tn ⊂ Rn such that D ⊂Tn .
2. Determine M, the boundary of Mn , according to l and Equations (8), (14), (16).
3. Form the covariance matrix G according to Equations (20)–(23).
4. Solve the standard algebraic eigenvalue problem with respect to G to obtain Q and �i .
5. Construct the F–K–L representation according to 
∗ and Equations (27)–(30).

It is worth mentioning that for an irregular domain D the above F–K–L discretization constructed
via the n-interval Tn is not equivalent to the exact K–L expansion in D. Hence, in terms of the
number of random variables contained in the series expression, the F–K–L representation may be
less economical than the exact K–L expansion depending on the specific domain D.

The computational costs of the F–K–L discretization algorithm include two parts: (a) constructing
the N × N covariance matrix G and (b) solving the associated standard algebraic eigenvalue
problem to obtain Q and �i . For the former part, following Equations (20)–(23) and using FFT,
the construction of G is trivial. For the latter part, by using the decoupling technique addressed at
the end of the previous subsection to transform G into a block-diagonal matrix, the problem size
of the associated algebraic eigenvalue problem can be reduced to half, which in turn significantly
improves the computational efficiency of solving forQ and �i (especially for large-scale covariance
matrices G). Consequently, the computational cost of the F–K–L discretization scheme can be
expected to be very competitive.

4. PROPERTIES OF THE F–K–L DISCRETIZATION SCHEME

4.1. The diagonal F–K–L approximation scheme

It is observed in (20)–(23) that:

(1) The integral kernel Ai jk(�k) is much larger in a diagonal entry of G than in an off-diagonal
entry; with the decreasing rate 1/

∏n
k=1 |mik − m jk |, it becomes increasingly smaller when

the associated entry moves away from the matrix diagonal.
(2) In practice, the function R̃(s) usually exhibits its largest value at s= 0 and decreases as

‖s‖2 increases. Therefore, the major non-zero domain of R̃(s) is the vicinity of the origin,
in which Bi jk(�k) is much larger in a diagonal entry than in an off-diagonal entry depending
on the decay rate of R̃(s).

Following these two observations, it is concluded from (20) that the diagonal entries of the
covariance matrix G are usually much larger than the corresponding off-diagonal entries, i.e.

|Gi i |  |Gi j |, i �= j (31)
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The above property infers that �Zi (�) are, in most cases, nearly orthogonal to each other,
which further implies that �Zi (�) and ei (x) provide a good initial estimate to the eigenstructure
of H(x,�), x∈Tn . This insight makes it interesting to investigate the following stochastic field
constructed only from the diagonal entries of G:

Hd(x,�) = H0 +
+∞∑
i=1

�Z̃i (�)ei (x) (32)

where E(�Z̃i (�))= 0 and E(�Z̃i (�)�Z̃ j (�)) = �i j E(�Zi (�)�Z j (�)).
Using (21)–(22), the covariance function of Hd(x, �) can be obtained as

Cov(Hd(x1, �), Hd(x2,�))

= 1

VTn

+∞∑
m1=−∞

· · ·
+∞∑

mn=−∞

(∫ 2t1

0
· · ·
∫ 2tn

0
R̃(s)

(
n∏

k=1

(
2 − �k

tk

)
cos

(
mk

�

tk
�k

))
ds

)

× e
√−1

∑n
k=1 mk�k (x1k−x2k)

= Rd(s) (33)

According to (32)–(33), Hd(x,�) is a stationary stochastic field with the same expectation function
as H(x,�). Naturally, it is expected that Rd(s) approximates R(s) in a certain sense such that the
diagonal F–K–L approximation Hd(x,�) can provide a reasonable estimate of H(x, �).

According to the Fourier expansion in (33), Rd(s) is essentially the axis-symmetric component
of R̃(s)

∏n
k=1(2 − �k/tk). In addition, Rd(s) has a period of Tn; therefore, it is necessary to consider

only the behaviour of Rd(s) in one half of Tn; that is,

Rd(s) = 1

2n
2∑

i1=1
· · ·

2∑
in=1

R̃(t1+(−1)i1(t1−�1), . . . , tn+(−1)in (tn−�n))
n∏

k=1

tk−(−1)ik (tk−�k)

tk

0� �k�tk, k = 1, . . . , n (34)

For the sake of simplicity, Rd(s) is first considered in 1D cases (i.e. n = 1) such that

Rd(�) = 1

2

(
R̃(�)

2t − �

t
+ R̃(2t − �)

�

t

)
, 0���t (35)

As R(�) ≡ R(−�) ⇒ R̃(�) ≡ R(�), we have

Rd(�) − R(�) = �

2t
(R(2t − �) − R(�)), 0���t (36)

Further noting that R(�) in practice is monotone decreasing from the origin, the relation

Rd(�) − R(�) = 0, �= 0, t

Rd(�) − R(�) ≈ 0, 0<�<t
(37)

holds when t is sufficiently large. Hence, for � ∈ [−t, t], Hd(x,�) provides a good estimate of
H(x,�) in the sense of the first two statistical moments.
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For higher-dimensional cases, it can be proven using a similar procedure that, for s∈Tn ,
Hd(x,�) provides a good estimate of H(x, �) as long as Tn is sufficiently large and H(x, �)

is isotropic or orthotropic. The isotropic/orthotropic requirement of H(x, �) is because, although
R(s) ≡ R(−s) holds for any real-valued 2D/3D stationary stochastic fields, R̃(s) = R(s) holds
only for isotropic or orthotropic 2D/3D stationary stochastic fields.

The advantage of the diagonal F–K–L approximation (32) is its inexpensive computational cost
as no equation solving is involved. It should also be noted that (32) does not provide the K–L
solution of H(x,�), x∈Tn . For large random media with small effective correlation length, the full
F–K–L discretization scheme requires the solution of a large algebraic eigenvalue problem, which
may be beyond the available computer storage (especially in 3D cases). For those ‘unsolvable’
situations, the diagonal F–K–L approximation scheme may provide an acceptable alternative.

4.2. Estimates of the eigenvalue decay

In an SFEM formulation, the size of the final algebraic equation system or the number of necessary
parametric simulations is determined by the total number of random variables included in the
mathematical model. Generally, the more the random variables in the model, the more the computing
power required to solve the associated stochastic PDEs. Hence, when the K–L expansion is
employed to discretize random material properties, it is desirable to have an approximate prediction
on the eigenvalue decay, which in turn determines the total number of random variables included
in the simulation system.

Let �i/�1 denote the eigenvalue decay rate. In the F–K–L discretization scheme, �i/�1 can be
readily predicted by two different methods.

In the first method, �i/�1 is estimated by using the spectral density function f (y). Specifically,
through a procedure similar to the derivation of (14)–(16),

�i
�1

≈
f

(
mi1

�

t1
, . . . ,min

�

tn

)
f (0)

, i�1 (38)

From the above predication, it is clear that the larger the random medium domain Tn , the slower the
decay of eigenvalues, and vice versa. In addition, according to Equation (8) and the Heisenberg
inequality [25], a smaller effective correlation length normally corresponds to a wider spectral
density function f (y), and therefore resulting in slower eigenvalue decay, and vice versa.

In the second prediction method, according to property (31), �i/�1 can be estimated using the
diagonal entries of G. Specifically, according to (20)–(23),

�i
�1

≈
∫ 2t1
0 · · · ∫ 2tn

0 R̃(s)

(∏n
k=1

(
2 − �k

tk

)
cos

(
mik

�

tk
�k

))
ds

∫ 2t1
0 · · · ∫ 2tn

0 R̃(s)
∏n

k=1

(
2 − �k

tk

)
ds

, i�1 (39)

In the above prediction, the eigenvalues are estimated by the Fourier coefficients of the axis-
symmetric component of R̃(s)

∏n
k=1(2 − �k/tk). Hence, the eigenvalue decay rate �i/�1 is approxi-

mately the decay rate of some Fourier coefficients.
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Let c j (g), j = 0,±1,±2, . . . be the Fourier coefficients of a function g(x) defined in an interval.
It is well known in the classic theory of Fourier series [29] that

(1) If g has a finite total variation V (g), then |c j (g)|�V (g)/|4 j |.
(2) If the pth derivative of g is absolutely continuous, then c j (g) = o(1/| j |p+1) as j → ±∞.

Consequently, in 1D cases, �i/�1 is at least proportional to 1/ i (for sufficiently large i) as long
as the corresponding condition of the bounded variation is satisfied; moreover, the smoother the
covariance function, the faster the eigenvalues decay. The generalization of these conclusions
to higher-dimensional cases with separable R̃(s) is immediate. For general higher-dimensional
cases, although the analysis on Fourier coefficients is not straightforward, it can be expected that
essentially similar estimates hold for �i/�1.

4.3. Comparison with the Galerkin format using Fourier basis

The conventional K–L expansion of random material properties [12–18] is usually obtained by
using the standard Galerkin FEM, in which the function basis is served by piecewise polynomials
and, as indicated in Equation (4), the resulting algebraic system is a generalized eigenvalue
problem. Recently, Li et al. [20] simply replaced piecewise polynomials with Fourier series in
the Galerkin format and obtained a so-called Fourier representation for random material pro-
perties. Due to the orthogonality of Fourier series, the final algebraic system in [20] becomes a
standard eigenvalue problem, which is formally the same as Equation (24). However, the Galerkin
format using Fourier basis [20] did not yet resolve the computational problems highlighted in
Section 1.2 and, specifically, compared with the F–K–L discretization scheme, it has the following
weaknesses:

• Construction of the covariance matrix arising in [20] requires directly computing a number of
integrations of multidimensional oscillatory functions, and as the matrix dimension grows the
associated computational cost increases significantly, in particular in 2D and 3D problems.

• As the length of the Fourier series is determined by trial and error in [20], the approxima-
tion error of the random material properties discretized cannot be explicitly controlled in
accordance with the given accuracy.

• In the Galerkin format using Fourier basis, there is no easy way to predict the decay speed
of K–L eigenvalues. Hence, the total number of random variables required by the associated
representation scheme of random material properties remains unknown until the final solutions
of all K–L eigenpairs are obtained.

The above disadvantages are due to the fact that the spectral representation theory [5–8], which
plays an important role in this paper, has not been taken into consideration in the Galerkin format
using the Fourier basis [20].

5. NUMERICAL EXAMPLES

In this section, the overall performance of the F–K–L discretization scheme is first examined
through two examples, and then an underground tunnel application is presented to demonstrate its
use in SFEM analysis.
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Figure 2. Asymptotic property of eigenvalues (Case I).

In this paper, the effective correlation length of a stationary stochastic field H(x, �), x⊂ D with
covariance function R(x1 − x2) is defined as the minimum value �c such that R(x1 − x2)�R(0)/100
holds for all points x1, x2 ∈ D satisfying ‖x1 − x2‖2>�c. Furthermore, without loss of generality,
it is assumed that H0(x)= H0 = 0 in the first two examples.

5.1. Example 1: stationary random material properties in 1D problems

Two stationary stochastic fields that are widely used in the description of randommaterial properties
are considered:

• Case I: H1
1D(x,�), x ∈ [−t, t] with covariance function e−|�|/a1, a1>0.

• Case II: H2
1D(x,�), x ∈ [−t, t] with covariance function e−�2/a2, a2 > 0.

5.1.1. Case I. Although H1
1D(x,�) has been widely used in the SFEM literature (e.g.

[3, 4, 6, 7, 12, 13, 15, 17, 18]), the authors do not advocate its use in describing the material proper-
ties of random media because it is non-differentiable almost everywhere [22, 23]. The sole objective
of choosing H1

1D(x,�) is to investigate the accuracy of the proposed F–K–L discretization scheme.
Assuming t = 65 and a1 = 1.25, the effective correlation length of H1

1D(x,�) is 5.75. The K–L
expansion of H1

1D(x,�) is, obtained using the exact solution (see e.g. [11, 13]), the FEM (see e.g.

[13, 18]) and the proposed F–K–L discretization scheme. Figure 2 plots
∑N

i=1 �i/
∑+∞

i=1 �i against
N , in which

∑+∞
i=1 �i = 130 and �i are calculated from the exact solution. It is observed that the

K–L expansion requires the first N = 100 eigenpairs to approximate 80% of the total variance of
H1
1D(x,�), i.e.

∑N
i=1 �i/

∑+∞
i=1 �i = 0.8.

Indeed, the number of terms contained in a reasonable K–L expansion of a random material
property encountered in practice can easily reach a few hundred, even in 1D problems. This is
because the ratio of the random medium size to the effective correlation length can be even larger

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:1942–1965
DOI: 10.1002/nme
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Figure 3. Relative errors of eigenvalues (Case I).

than that in this simple example. Hence, in order to achieve a reasonable K–L expansion of the
stochastic field concerned, it is important to accurately obtain all the required eigenvalues and
eigenfunctions rather than only the first few eigenpairs.

The relative errors of K–L eigenvalues are compared in Figure 3, in which the curves labelled
F–K–L are obtained with the F–K–L discretization scheme and the curves labelled FE–K–L are
obtained with the FEM. It is observed that the eigenvalue accuracy of the F–K–L discretization
scheme is much higher than that of the FE-mesh-based K–L expansion. Specifically, in the F–K–L
scheme, the approximation error is explicitly controlled by 
 and all eigenvalues are obtained with
good accuracy; however, in the FE-K–L scheme, only half of the eigenvalues are obtained with
reasonable accuracy.

Figure 4 compares some eigenfunctions of H1
1D(x,�) and, as expected, the F–K–L scheme shows

a significant advantage over the FE-K–L solution. Although the accuracy of the FE-mesh-based
K–L solution can be improved by employing more elements, the FE-K–L solution in general
provides relatively poor results for higher-order eigenfunctions. In the F–K–L solution with 
 = 0.8,
the dimensionality of the covariance matrix G is only 100; however, for the eigenfunctions shown
in Figure 4, there is no visible difference between the associated F–K–L solution and the exact
solution up to the 80th eigenfunction.

5.1.2. Case II. The aim of this particular example is to investigate the influences of the ran-
dom medium size and the effective correlation length on the F–K–L discretization scheme. Let-
ting a2 = 2, the effective correlation length of H2

1D(x,�) is 3.0. Consider H2
1D(x,�) defined

in [−1.5r, 1.5r ], where r ∈ {5, 10, 15, 20} denotes the ratio of the interval size to the effective
correlation length.

The K–L expansion of H2
1D(x,�) is obtained with the F–K–L discretization scheme, with


 = 0.95. The covariance-matrix property (31) is verified in Figure 5, where the matrix elements
are linearly mapped into pixels whose colours represent the values of the corresponding entries. It
is observed that inequality (31) holds well in various cases with different ratios r .

Figure 6 plots the eigenvalue decay rate �i/�1, in which scatters � � � � are directly calculated
from the eigenvalues, and the solid and dashed curves are predicted using, respectively, (38)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:1942–1965
DOI: 10.1002/nme



1958 C. F. LI ET AL.

Figure 4. Comparison of eigenfunctions (Case I).
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Figure 5. The covariance matrix G (Case II).

and (39). As expected, the larger the ratio r , the slower the decay of eigenvalues. Both the
spectral density function prediction and the diagonal entry prediction provide good estimates of
the eigenvalue decay rate.

To examine the diagonal F–K–L approximations of H2
1D(x,�), Figure 7 compares their covari-

ance functions with the exact covariance function e−�2/2, and achieves reasonable agreements in
� ∈ [−1.5r, 1.5r ].

5.2. Example 2: stationary random material properties in 2D problems

This example considers the random material property described by a general stationary stochastic
field H2D(x,�), x∈ [−15, 15]× [−15, 15]with an inseparable covariance function e−(�21/3+�22/4)

2/3
.

The effective correlation length of H2D(x,�), is 6.3.
As no exact K–L solution is available for H2D(x,�), only the F–K–L discretization is constructed

for this general stationary stochastic field. By setting 
 = 0.95 in the F–K–L discretization scheme
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Figure 6. Eigenvalue decay rates (Case II).

are around 2800 K–L eigenpairs obtained for H2D(x,�). In a PC system with an Intel Xeon 2.4GHz
processor and 1.0GBDDRmemory it takes 23.6 s to construct the block-diagonal covariance matrix
G, and with the standard MATLAB eigensolver it takes 216.2 s to solve for the entire algebraic
eigenstructure of G.

Figures 8 and 9 plot, respectively, the eigenvalues and eigenfunctions, and Figure 10 shows a
particular realization of H2D(x,�), which is generated from the obtained F–K–L discretization
with 
∗ = 0.8.

5.3. Example 3: an underground tunnel application

An underground rock tunnel is investigated using a simple plain-strain model. The geometrical
configuration and boundary conditions are shown in Figure 11, and the Young’s modulus is
described by a stationary stochastic field with a mean value H0 = 3.0× 1010 Pa and a covariance
function R(s) = 3.8025× 1020e−[(x2−x1)2+(y2−y1)2]/2.02 Pa2.

First, by using the F–K–L discretization scheme, the random Young’s modulus is expressed in
the form of Equation (29). Then, following a standard FEM procedure, a stochastic linear system

(�1(�)K1 + �2(�)K2 + · · · + �N∗(�)KN∗)u(�) =P (40)

is constructed, in which �i (�) are the random variables in the F–K–L discretization of Young’s
modulus, Ki the corresponding deterministic stiffness matrices, P the deterministic nodal-load
vector and u(�) the unknown random nodal-displacement vector.

The solution u(�) is explicitly obtained after simultaneously diagonalizing all matrices Ki in
the stochastic linear system. The details of this novel joint-diagonalization solution strategy have
been reported previously [19].

Corresponding to one particular variation in the random Young’s modulus, principal stress
distributions of the stochastic plain-strain model are plotted in Figure 12. It is observed that,
besides the influence from the deterministic geometrical configurations and external loads, which
is represented by the symmetric stress concentration around the tunnel, the stress distributions are
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Figure 9. The eigenfunctions of H2D(x,�).

Figure 10. A particular realization of H2D(x,�).
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Figure 11. Illustration of Example 3.

Figure 12. Principal stress distributions of a simplified tunnel model (one-sample path):
(a) principal stress �1 and (b) principal stress �2.

also strongly influenced of by the random distribution of Young’s modulus, which is reflected by
the irregular variation in principal stresses through the medium. To arrive at a rational analysis
conclusion, the stress distributions should be summarized in a probability context to take into
consideration all possible pathwise solutions.
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6. CONCLUSIONS

Utilizing the connection between the K–L expansion theorem and the spectral representation
theory, an F–K–L discretization scheme for stationary random material properties is developed
to overcome the computational difficulties arising from the application of K–L expansions in the
SFEM analysis, and a number of technical challenges encountered in the development are solved.

Compared with the FE-mesh-based K–L expansion scheme that has, to a large extent, become
the standard method for the discretization of random material properties in SFEM simulations, the
proposed discretization scheme possesses the following advantages:

• The computational cost is very competitive, in that its underlying algebraic system is a
standard eigenvalue problem with respect to a block-diagonal real symmetric matrix that can
be readily formed by using the standard FFT. Also, in cases where the matrix involved exceeds
the computer storage, an alterative diagonal F–K–L approximation scheme can be explicitly
constructed without solving any equation.

• A priori error-control mechanism is provided. Specifically, the approximation error of random
material properties is explicitly controlled by two parameters, which control, respectively, the
error of K–L eigenpairs and of the total variance.

• Due to the harmonic essence of stationary random material properties, the accuracy of the
F–K–L discretization scheme is much better than that of the primitive K–L expansion scheme.

• Two accurate methods are equipped in the scheme to predict the associated eigenvalue-decay
speed, which in turn makes it possible to estimate precisely the overall computational cost of
an SFEM analysis before the simulation starts.

• It is completely meshfree and also independent of the detailed shape of the random structure.

It is worth mentioning that, for a stationary random material property H(x, �), x∈Tn , some
eigenfunctions obtained by the F–K–L discretization scheme do not converge to the exact eigen-
functions near �Tn , i.e. the boundary of Tn . This is due to the Gibbs phenomenon [29], where
some eigenfunctions of H(x,�) have discontinuities on �Tn . This adverse phenomenon can be
overcome by adjusting the Fourier summation with Lanczos’ � factor [30] or by slightly extending
the computational domain of Tn .
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5. Kamiński M, Kleiber M. Stochastic structural interface defects in fiber composites. International Journal of

Solids and Structures 1996; 33(20–22):3035–3056.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:1942–1965
DOI: 10.1002/nme
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