
J. Parallel Distrib. Comput. 107 (2017) 101–113
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Domain decomposition approach for parallel improvement of
tetrahedral meshes
Jianjun Chen a,b,c, Dawei Zhao a,b, Yao Zheng a,b, Yan Xu a,b,∗, Chenfeng Li c,
Jianjing Zheng a,b

a Center for Engineering and Scientific Computation, Zhejiang University, Hangzhou 310027, China
b School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
c Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea SA2 8PP, UK

h i g h l i g h t s

• The proposed algorithm ensures the inter-domain boundary contains no features that might negatively impact element quality.
• The parallel mesh improvement algorithm fixes the inter-domain boundary without compromising mesh quality.
• The parallel algorithm can fully reuse existing sequential mesh improvement codes.
• The parallel algorithm takes only 90 seconds to improve 170 million elements using 128 computer cores in a test.

a r t i c l e i n f o

Article history:
Received 8 October 2014
Received in revised form
29 April 2016
Accepted 18 April 2017
Available online 27 April 2017

Keywords:
Parallel algorithms
Mesh generation
Quality improvement
Domain decomposition
Dual graph

a b s t r a c t

Presently, a tetrahedral mesher based on the Delaunay triangulation approach may outperform a
tetrahedral improver based on local smoothing and flip operations by nearly one order in terms of
computing time. Parallelization is a feasible way to speed up the improver and enable it to handle
large-scale meshes. In this study, a novel domain decomposition approach is proposed for parallel mesh
improvement. It analyses the dual graph of the inputmesh to build an inter-domain boundary that avoids
small dihedral angles and poorly shaped faces. Consequently, the parallel improver can fit this boundary
without compromising the mesh quality. Meanwhile, the new method does not involve any inter-
processor communications and therefore runs very efficiently. A parallel pre-processing pipeline that
combines the proposed improver and existing parallel surface and volumemeshers can prepare a quality
mesh containing hundreds of millions of elements in minutes. Experiments are presented to show that
the developed system is robust and applicable to models of a complication level experienced in industry.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

For numerical simulationswith complex geometries,mesh gen-
eration typically represents a large portion of the overall analysis
time. The ability to perform computations on tetrahedral elements
has always been regarded as very important, since the meshing
time required for them is usually at least an order of magnitude
smaller than for hexahedral or other types of elements. The funda-
mental reason is related to the fact that tetrahedral elements can
be automatically generated for complex geometries using a the-
oretically guaranteed procedure [43,19,12], while this is not the

∗ Corresponding author at: School of Aeronautics and Astronautics, Zhejiang
University, Hangzhou 310027, China.

E-mail address: xyzs@zju.edu.cn (Y. Xu).

http://dx.doi.org/10.1016/j.jpdc.2017.04.008
0743-7315/© 2017 Elsevier Inc. All rights reserved.
case for other types of elements. The weakness of tetrahedral ele-
ments is that simulations on themmay suffer from stability issues
and need more elements given a similar node set. However, these
difficulties related to solution efficiency and stability have been
resolved to some extent, thanks to the rapid advance of high per-
formance computing (HPC) technologies andnewnumericalmeth-
ods on tetrahedral elements.

The Delaunay triangulation (DT) [43,19,12,7,37,20,25,38,40,4]
and the advancing front technique (AFT) [27,30,14,42] are two
of the most successful tetrahedral mesh generation approaches,
although both approaches may generate low-quality elements.
Firstly, they usually rely on surface inputs, and as a result the
quality of a volume mesh is limited by the quality of its surface
mesh. Secondly, both approaches are still far away from being
perfect. The AFTmainly considers creating an element in each step

http://dx.doi.org/10.1016/j.jpdc.2017.04.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.04.008&domain=pdf
mailto:xyzs@zju.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2017.04.008


102 J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113
of forwarding a front. After a number of front-forwarding steps,
the fronts that define the unmeshed regionmay contain undesired
geometry features. Low-quality elements have to be introduced
to ensure the termination of the mesh generation process. With
respect to the DT based approach, quality guaranteed algorithms
have been proposed [38,40]. However, their 3D versions are still
problematic due to the issues of sliver elements and boundary
integrity. Therefore, an improvement procedure must be followed
after calling an AFT or a DT mesher to ensure the mesh quality
meets the requirement of downstream simulations.

Although various improvement approaches have been pro-
posed for tetrahedral meshes, the prevailing ones involve two
types of local operations. One is smoothing, which repositions
mesh points to improve adjacent elements [13,3,11,15,17]. The
others are topological transformations [17,24,22,26,32,9,10,18,39],
which replace a localmeshwith anothermesh that fills up the sim-
ilar region but has different point connections. A general purpose
improver usually needs to combine both types of operations and
execute them iteratively [17,24]. This process is demonstrated to
be very time-consuming, in particular when the simulation needs
a quality mesh containing hundreds of millions of elements. In our
experience, a sequential Delaunay mesher can now generate one
hundred million elements in about ten minutes [28]. Owing to the
rapid advance of parallel algorithms, the time cost for a parallel De-
launaymesher can be further reduced to a very low level [2,1,5,41].
However, the following improvement procedure may take several
hours to improve this mesh. If a higher standard is set for mesh
quality, the time cost for mesh improvement can even grow to be
larger than the sequential meshing time by several orders [24]. In
this sense, the real performance bottleneck of generating tetrahe-
dral meshes for complicatedmodels lies in the phase of quality im-
provement rather than mesh generation itself.

Parallelization is a feasible way to speed up the mesh improve-
ment procedure and enable it to handle large-scale meshes, where
a prevailing approach is to subdivide the original problem into
many subproblems by a domain decomposition (DD) procedure
and then solve these subproblems in parallel. The DD tools for par-
allel solutions of partial differential equations (PDEs) mainly fo-
cus on reducing load imbalance and interface communication, and
are incompetent to avoid the generation of a poorly shaped inter-
domain boundary. If configuredwith suchDD tools, the parallel im-
prover has to introduce time-consuming inter-process operations
to improve the elements in the neighbourhood of the inter-domain
boundary [2]. Besides, these operationswill complicate the process
of parallelizing a sequential improver, where an ideal approach is
to fully reuse the existing sequential codes as a black box.

In this study, a DD approach [45] that can ensure good geo-
metric properties for the inter-domain boundary is examined for
three-dimensional mesh improvement. Instead of directly send-
ing the input mesh to a graph partitioner [31,23,34,35], an in-
termediate procedure is proposed to simplify the mesh through
local operations defined on the dual graphs of the mesh. Partition-
ing the simplified mesh rather than the initial mesh produces a
distributed mesh that not only fulfils the dual goal of balancing
loads and minimizing communications, but also contains an inter-
domain boundary with desirable geometric shapes. Therefore, the
subsequent parallel improvement procedure can fit the boundary
without compromising mesh quality, and any sequential improver
that respects domain boundary can be reused.Meanwhile, because
the improvement procedure involves no communications, its par-
allel efficiency is very high.

To demonstrate the efficiency and effectiveness of the DD
approach, the open-source mesh improver Grummp [17,33] is
revised and incorporated. The DD approach is parallelized to
accommodate large-scale meshes. Furthermore, a parallel pre-
processing pipeline that combines this improver and the existing
parallel surface and volumemeshers [5,45] is set up, which can re-
duce the time for preparing a mesh that contains hundreds of mil-
lions of elements fromhours (for a sequential pipeline) tominutes.
Fig. 1. Independent sets of mesh points for parallel mesh smoothing. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

2. Related work

Parallelmeshing algorithms have been extensively investigated
in the literature [2,1,5,41,45,29], but much fewer algorithms have
been reported on parallel mesh improvement. In general, the
existing approaches for parallel mesh improvement could be
classified into two types: algorithm parallel approaches [15,16]
and problem parallel approaches [5,29,21].

The pioneering work for algorithm parallel approaches was
conducted by Freitag et al. [15]. Their parallel smoothing algorithm
considers the region covered by elements adjacent to one single
mesh point as an individual submesh, e.g., the shaded elements
around a mesh point p in Fig. 1. In order to avoid the synchro-
nization costs required by the operations of repositioning adjacent
mesh points, the mesh points are classified into many independent
sets. The points belonging to a similar set must not be adjacent to
each other, as shown in Fig. 1, wheremesh points of different inde-
pendent sets are differently coloured. Based on independent sets,
the smoothing procedure is rescheduled as Algorithm 1, where the
main computation lies in the inner loop described by Lines 5 and 6.
This computation is parallelizable because the smoothing function
callings in Line 6 can be executed concurrently.

For most applications, smoothing is usually not sufficient to
ensure a qualified mesh. Topological transformations must be
included in the improvement procedure [17,24]. It is possible to
extend the concept of independent sets for topological operations.
Freitag et al. demonstrated the extension schemes for the 2D edge
flip and edge bisection [16]. But to our knowledge, no extension
schemes for 3D flips have been reported so far.

On a shared memory computer, the schemes like Algorithm 1
can be parallelized easily. For instance, if OpenMP is adopted, a
line of codes ‘#pragma omp parallel for’ before Line 5 of Algorithm
1 will dispatch concurrent tasks onto available threads. Besides,
a synchronization barrier is required after Line 8 to ensure all
threads can enter the smoothing step for the next independent
set simultaneously. Although it is possible to tailor the parallel



J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113 103
schemes like Algorithm 1 onto a distributed environment, the
tailoring process is rather complicated. Here, the main difficulty
is to ensure:

(1) The workloads are well distributed on all processes;
(2) The mesh is well distributed so that a process does not need to

query global data when conducting the workloads distributed
on this process.

Two extreme options exist to meet the above goals when
switching from one independent set to another or from one local
operation to another: repartitioning the mesh or fitting a copy of
the mesh into all processes. For parallel smoothing, Freitag et al.
suggested a trade-off strategy [15]. It records workload distribu-
tions with a coloured vertex adjacency graph and fits this graph
into each process. Before switching into another independent set,
each process queries the new workload distributions and sends
the mesh data it owns to other processes in need. However, two
more difficulties arise when extending this strategy to topologi-
cal transformations. Firstly, more dual graphs of the mesh need to
be defined, which complicates the design of a suitable distributed
data structure. In addition, since the mesh topology is updated af-
ter transformations, it ismore difficult tomaintain a coherentmesh
on all processes.

Furthermore, the recent advance of mesh improvement tech-
niques sets more obstacles for the above parallel strategy, where
more aggressive local operations have been suggested such as
aggressive vertex insertion [24], small polyhedron reconnection
(SPR) [4,26] and recursive flips [22,39,46]. Unlike smoothingwhere
a submesh can be predetermined by clustering all elements adja-
cent to a point, these operations impact more elements, and the
affected elements are determined in the run time.

The parallel algorithm based on independent sets can improve
the mesh quality to a similar level, and it is possible to execute a
variant of this algorithm on GPU [36,8]. However, the drawbacks
of this algorithm are also evident. Firstly, its implementation
on distributed platforms is far more complicated. Secondly, this
algorithm cannot reuse the sequential algorithm as a black box
because no general schemes can apply the concept of independent
sets for all local operations. In contrast, these schemes have to
be revised case by case. Thirdly, it remains an outstanding issue
to extend the method for local operations where the affected
elements are determined dynamically [24,22,26,39,46].

In the light of the above issues in relation with algorithm paral-
lel approaches, problem parallel approaches are preferred in some
other studies for their ability to employ sequential algorithms as
a black box [29,21]. In these studies, the meshes to be improved
(in most cases, these meshes are the outputs of a parallel mesher)
are usually subdivided into the same number of submeshes as
the number of parallel processes involved in the mesh improve-
ment task. Then, the input meshes could be improved concur-
rently by employing the sequential mesh improvement algorithm
on each submeshwith the inter-domain boundary fixed. However,
the main issue is that tetrahedral elements may not be in shape
near the inter-domain boundary. A possible solution to this issue
is to introduce inter-process local operations to improve the ele-
ments in the neighbourhood of the inter-domain boundary, based
on the same idea as that introduced by Chrisochoides et al. for
their parallel Delaunay mesher [6]. These inter-process operations
could be time-consuming because they involve a huge amount
of communication and synchronization costs, not to mention the
complication of their implementation. As a compromise, Ito et al.
suggested a two-stage strategy to deal with this issue [21]. In the
first stage, the submeshes are improved concurrently with the
inter-domain boundary fixed. In the second stage, a few layers of
elements adjacent to the inter-domain boundary are collected into
a single mesh, and then this single mesh is improved sequentially.
Evidently, the second stage could become a performance bottle-
neck due to its sequential nature. Differently, Löhner suggested
redistributing the submeshes after the first pass of mesh improve-
ment and then performing a second pass of mesh improvement
on the redistributed submeshes [29]. The redistribution algorithm
takes the first distribution as a starting point, and then adds 1–2
extra layers of elements to each domain (idomn) from the neigh-
bouring domains (jdomn) for which idomn < jdomn.

In this study, a problem parallel approach is proposed for
quality improvement of large-scalemeshes on distributedmemory
computers, which partitions the input mesh into many submeshes
and then improves these submeshes in parallel by fixing the inter-
domain boundary. So doing avoids the drawbacks of the algorithm
parallel algorithmmentioned above. Comparedwith those existing
problem parallel approaches [29,21], the proposed algorithm
ensures the inter-domain boundary contains no features that
might negatively impact element quality. Therefore, it provides a
better guarantee on the quality of elements near the inter-domain
boundary. Meanwhile, the proposed algorithm is more efficient
because it does not need a second mesh improvement pass.

3. The domain decomposition approach

3.1. Basic terms and definitions

Definition 1 (Non-overlapping Mesh).
A non-overlapping d-dimensional mesh is a group of mesh entities
whose dimensions range from 0 to d, i.e.

M = {E i
|i = 0, 1, . . . , d},

where

E i
= {eik|k = 0, 1, . . . , ni} (i = 0, 1, . . . , d)

refers to the set of i-dimensional mesh entities, ni is the cardinality
of E i, and

(1) ∀eik, e
i
l ∈ E i(0 ≤ i ≤ d), eik does not intersect e

i
l, or intersect e

i
l

at a mesh entity whose dimension is less than i;
(2) ∀ei−1

k ∈ E i−1(0 < i ≤ d), ei−1
k must be a boundary entity of one

or more i-dimensional entities.

In a non-overlapping mesh, elements and sides refer to mesh
entities with i = d and i = d − 1, respectively. If an (i − 1)-
dimensional entity ei−1

l is the boundary entity of an i-dimensional
entity eik, then name eik the domain entity of ei−1

l . Each mesh side
may have one or two domain entities. If the side has one domain
entity, it is a boundary side; otherwise, it is an interior side. Two
mesh entities eik and eil are neighbours if both of them are the
domain entities of an (i − 1)-dimensional entity ei−1

m .

More strictly, the sides of a 3D mesh must be defined by
co-planar vertices in order to define the angles adjacent to
neighbouring sides accurately. If two boundary sides of an element
are neighbours, the angle they form interior of the element is the
interior angle of the element.

Definition 2 (i-Dimensional Dual Graph). Given a d-dimensional
non-overlapping mesh

M = {E i
|i = 0, 1, . . . , d},

an i-dimensional dual graph (1 ≤ i ≤ d) of M is denoted as
G = {V , A}, where V is the set of graph nodes, and A is the set
of graph edges. Each graph node vk ∈ V corresponds to one mesh
entity eik in M , i.e. vk = φv(eik), and eik = φ−1

v (vk).



104 J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113
Fig. 2. Meshes and their dual graphs. (a) A side-deletion operation simplifies themesh to a newone that has fewer small angles. (b) An edge-contraction operation transforms
the EDG dual to the original mesh to a dual of the simplified mesh. (c) A node-deletion operation transforms the SDG dual to original mesh to a dual of the simplified mesh.
If two mesh entities of M , eik and eil, are neighbours across a
shared boundary entity ei−1

m , a graph edge akl ∈ A exists, and

akl = ⟨vk = φv(eik), vl = φv(eil)⟩.

Particularly, akl is a graph edge classified on the mesh entity ei−1
m .

The nodes and edges of a dual graph may be weighted for some
application-specific purposes. Assuming that wv(v)(v ∈ V ) and
wa(a)(a ∈ A) are the node and edgeweight functions, respectively,
the weighted dual graph is a tetrad, i.e.

G = {V , A, wv(v), wa(a)}.
With respect to Definition 2, it needs to be emphasized that a

graph is a pure combinatorial object. The term i-dimensional dual
graph is an abbreviation for the dual graph with its graph nodes
and edges respectively classified on the i-dimensional and (i − 1)-
dimensional mesh entities. It does not mean the graph defined in
this study is attached with any geometrical information.

According to Definition 2, the Side Dual Graph (SDG) and
ElementDualGraph (EDG) are two specific cases of the dual graphs
of a mesh, i.e. the (d − 1)-dimensional and d-dimensional dual
graphs of the mesh, respectively.

Definition 3 (Node Deletion). Node deletion defined on a graph
G = {V , A} is a local modification operation with respect to a node
vk of G. After deletion, a new graph G′

= {V ′, A′
} is generated. The

set of new graph nodes is defined as V ′
= V \ {vk}. The set of new

graph edges is defined by removing all of the edges in G that are
adjacent to vk.

Definition 4 (Edge Contraction). Edge contraction is a local modi-
fication operation defined on a weighted graph G = {V , A, wv(v),
wa(a)}with respect to an edge akl = ⟨vk, vl⟩ ofG. After contraction,
a new graph G′

= {V ′, A′, w′
v(v

′), w′
a(a

′)} is generated. The set of
new graph nodes is defined as V ′

= V \ {vk, vl} ∪ {v′
m}, where

v′
m is a new graph node, and w′

v(v
′
m) = wv(vk) + wv(vl). The set

of new graph edges is defined as follows: the edge akl is removed;
and each edge akn = ⟨vk, vn⟩ (or aln = ⟨vl, vn⟩) that is adjacent to
vk (or vl) and another graph node vn is removed, and instead, an
edge a′

mn = ⟨v′
m, vn⟩ is inserted. In the case that both vk and vl are

adjacent to vn,

w′

a(a
′

mn) = wa(akn) + wa(aln);

otherwise

w′

a(a
′

mn) = wa(akn)(or w′

a(a
′

mn) = wa(aln)).
Fig. 2 presents a simple example to explain the above
definitions. The left part of Fig. 2(a) is a 2D non-overlapping mesh,
which consists of one triangular and two quadrilateral elements.
The left parts of Fig. 2(b) and (c) correspond to the EDG and
SDG of this mesh, respectively. Only the EDG is weighted, and
its node and edge weights are initially set to be 1.0. The right
part of Fig. 2(a) shows the simplified mesh obtained by deleting
the side de, which results in the deletion of some small angles
as well. Consequently, the elements 1 and 3 are merged to a
new pentagonal element, labelled as 13. To obtain the respective
duals of the simplified mesh, an edge-contraction operation and
a node-deletion operation are conducted on the EDG and SDG, as
illustrated in Fig. 2(b) and (c).

3.2. The domain decomposition flowchart

Fig. 3 presents the basic flowchart of the proposedDD approach,
where the frames, solid arrows and dotted arrows represent
the data, algorithms and inputs of the algorithms, respectively.
The input is a non-overlapping mesh composed of any type of
polyhedral or polygonal elements (a tetrahedral mesh in this
study). The output is a partitioned result of the input mesh, where
no subdomains (submeshes) contain artificial small angles and
poorly shaped sides in their boundaries. If the input mesh is
appropriate, the dual goal of load balancing and communication
minimization is achieved at the same time.

The intermediate steps that connect the input and output are as
follows.

(1) Build the SDG and EDG of the input mesh.
(2) Identify mesh sides with undesirable shapes as removable, and

simplify the SDG by deleting the graph nodes dual to the
removable sides.

(3) Simplify the SDG by deleting some graph nodes and identify
the mesh sides they correspond to as removable, to ensure
that the mesh without these sides contains no interior angles
smaller than a predefined threshold.

(4) Simplify the EDG by contracting all of the edges that are
identified as removable in Steps 2 and 3.

(5) Decompose the simplified EDG using a graph-partitioning tool,
aimed at the dual goal of load balancing and communication
minimization. In this study, the open-source tools Metis
[31,23] and its parallel counterpart ParMetis [34,35] are
employed for graph partitioning.



J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113 105
Fig. 3. The flowchart of the proposed domain decomposition approach.
(6) Based on the dual relation between the simplifiedmesh and its
EDG, decompose the inputmesh into subdomains according to
the partitioning result of the simplified EDG.

3.3. Shape analysis of mesh sides

Step 2 of the proposed DD approach identifies mesh sides with
undesirable shapes and removes their counterparts from the SDG.
It depends on the specific application purpose to label whichmesh
sides as undesirable. For tetrahedral mesh improvement, mesh
faces with small interior angles are not favoured to appear on the
inter-domain boundary because badly shaped volume elements
are usually incident to these faces. Therefore, given a user specified
threshold αth, we check the minimal interior angle of each interior
face. If this value is smaller than αth, the face is identified as
removable. Correspondingly, the SDG node dual to this face is
deleted.

3.4. Node deletion of the SDG

Step 3 of the proposed DD approach can ensure that no small
interior angles (except those incident to two boundary sides) will
survive in the simplified mesh by deleting a minimal number of
mesh sides. To clarify it, two definitions are presented as follows.

Definition 5 (Weighted SDG). Given a d-dimensional non-
overlapping mesh M and a predefined angle threshold βth, the
weighted SDG is the (d − 1)-dimensional dual graph of M , with
its nodes and edges weighted as follows.

(1) For each graph edge, its weight equals the interior angle
bounded by two sides that the end nodes of the graph edge
represent. In the case that there are two such angles (for
example, in the right of Fig. 2(a), both angles bounded by bd
and df are interior angles), the smaller value is chosen.
(2) For each graph node, if it corresponds to a boundary side, its
weight equals zero; otherwise, its weight equals the number
of its incident edges whose weights are less than βth.

Here, a graph node with a non-zero weight is an unqualified
node, and an SDG containing unqualified nodes is an unqualified
SDG, which corresponds to a mesh having small interior angles.

Because Definition 3 only applies for the unweighted graph, a
new definition is introduced for the node-deletion operation of a
weighted SDG.

Definition 6 (Node Deletion of a Weighted SDG). Node deletion
defined on a weighted SDG is a local modification operation
related to a graph node vk. The graph topologies are updated as
in Definition 3. The weights of remaining nodes and edges are kept
unchanged except for the following particular cases:

(1) For each unqualified node adjacent to vk, its weight is
decreased by 1.

(2) For each graph edge endedwith the nodes adjacent to vk, if it is
the only edge classified on one (d−2)-dimensionalmesh entity
(d is the mesh dimension), reset its weight as the smaller one
of we and 2π − we, where we is the original edge weight.

Fig. 4 illustrates the above definitions with the mesh examples
shown in Fig. 2(a). It is supposed that three angles are less than
βth in the unsimplified mesh, i.e., ̸ dfc , ̸ fde and ̸ def . The interior
sides that bound these angles are de and df, and either of the sides
is incident to two of the three small angles. Therefore, the graph
nodes dual to both sides are weighted to be 2, and the other nodes
are all weighted to be 0. After the graph node de is removed, the
edges incident to de are removed as well, and the weight of the
node df decreases from 2 to 1. In the meantime, the graph edge
ending with bd and df becomes the unique edge classified on the
mesh point d; therefore, the weight of this edge is set to be ̸ fdb,
which is the smaller one of the two angles formed by the mesh
edges bd and df.



106 J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113
Fig. 4. Illustration for the weighted SDG and the node-deletion operation defined on this graph. The dual meshes are shown in Fig. 2(a).
The input of the node-deletion step is an unqualified SDG, and
the output is a subgraph of the input that contains only qualified
nodes. The simplest solution is to delete all unqualified nodes.
However, the preferred solution shall attempt to delete as few
graph nodes as possible:

(1) For the interior sides that form less-than-threshold angleswith
boundary sides, delete their corresponding unqualified nodes
in the SDG.

(2) Initialize a priority queue for the remaining unqualified nodes
in a descending order of the node weights, and repeat the
following steps until the queue is empty:
(a) Remove the head node of the queue by a node-deletion op-

eration; consequently, the weights of adjacent unqualified
nodes decrease by 1.

(b) If the nodes adjacent to the head node become qualified
ones, remove them from the priority queue; otherwise,
insert them in the right positions of the priority queue.

(3) Label the interior mesh sides dual to the deleted graph nodes
as removable.

3.5. Edge contraction of the EDG

Step 4 of the proposed DD approach inputs the EDG of the input
mesh, and outputs the EDG of the simplified mesh. The EDG is
also a weighted graph, and the weighting strategy depends on the
application purposes. For mesh improvement, the weights are all
initialized to be 1. Instead of sending the EDG that corresponds to
the input mesh for partitioning, a variant of this EDG is needed
to prevent removable sides recognized in Steps 2 and 3 from
appearing in the inter-domain boundary. Here, two types of variant
EDGs are considered.

(1) The first one is generated by penalizing the dual graph edges of
removable sideswith very largeweights [5]. Because the graph
partitioner intends to minimize the size of the cutting edge
weights [31,23,34,35], it may prevent these penalized edges
from becoming cutting edges.

(2) The second one is generated by contracting the dual graph
edges of the removable sides. For the initial EDG, each graph
edge only represents one mesh side. The graph edge is iden-
tified as contractable if the corresponding mesh side is remov-
able. However, in the intermediate process of edge contraction,
one graph edge may represent more than one mesh side. The
graph edge is identified as contractable if any of these sides are
removable. For instance, the graph edge between the nodes 13
and 2 shown in Fig. 2(b) represents the mesh sides bd and df,
and if either of the nodes is removable, the graph edge will be
contracted later.
It is evident that the setup of the first type of EDG is much sim-
pler. Nevertheless, the following consideration justifies why the
second one is selected as the default. The graph partitioner does in-
tend tominimize the weights of cutting edges, but its performance
highly relies on the input. If a small percentage of edges have very
largeweights, the partitionerwill work as expected; otherwise, the
partitioner may occasionally fail to prevent these edges from be-
coming cutting edges.When the partitioner works abnormally, the
goal of minimization of cutting edge weights may lead to an un-
desirable result because the punitive weights stray a lot from the
actual meaning of the edge weights.

3.6. A 2D example

Fig. 5 shows the DD result of a 2D pipe model. The input mesh
shown in Fig. 5(a) is generated through Delaunay triangulation
with constrained points on the model boundary. As this is a
2D mesh, Step 2 of the proposed DD flowchart is skipped over.
Mesh edges and faces are weighted by their lengths and areas,
respectively. The angle threshold βth is set to be 80° to ensure
that no interior angles of the simplified mesh are smaller than 80°,
and therefore no dihedral angles on the inter-domain boundary
(referred to as the inter-domain dihedral angle hereafter) are
smaller than 80° after decomposing the simplified mesh into 8
subdomains. Note that the subdomains have roughly equal areas
because the built-in graph partitioning tool always attempts to
balance the loads between different subdomains.

4. Parallel mesh improvement

4.1. Parallel domain decomposition

The input of a parallelmesh improvermay be a large-scalemesh
composed of many submeshes that are distributed on different
computer nodes. An option is to first assimilate the submeshes
and then partition the assimilated mesh by using a sequential
domain decomposer. However, this approach is unsuitable, if
storing the entire mesh is beyond the accessible memory size of a
single computer node or the computational scalability is a primary
focus. Instead, a parallel domain decomposer is necessary in this
circumstance.

The node-deletion and edge-contraction operations discussed
in Sections 3.4 and 3.5 need to access mesh data incident to
one mesh side. Therefore, if both operations are executed in the
input submeshes concurrently, and the sides they access are inter-
domain sides, inter-processor operations are necessary to ensure
a qualified output. To avoid implementing these time-consuming
inter-processor operations, an alternative scheme is proposed as
follows:

(1) Simplify the EDG of each submesh concurrently by labelling
inter-domain sides as boundary sides.



J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113 107
Fig. 5. A 2D example to illustrate the proposed DD approach, where no angles smaller than 80° are formed on the inter-domain boundary. (a) The input mesh.
(b) The simplified mesh. (c) The DD result of the simplified mesh.
Fig. 6. The flowchart of the proposed parallel mesh improvement approach.
(2) For those inter-domain sides with undesirable shapes or those
bounding small dihedral angles, penalize their dual EDG edges
with large weights.

(3) Repartition the EDG by ParMetis [34,35].
(4) Redistribute the submeshes to comply with the graph parti-

tioning result.

In the above scheme, an optional repartitioning step by
ParMetis needs to be executed first if the input mesh is not well
balanced or the number of inter-domain sides is too large. The
better-balanced submeshes will benefit the timing performance of
the subsequent parallel steps. Meanwhile, if the number of inter-
domains sides is minimized, the possibility of an abnormal output
due to the punitive weighting strategy is minimized as well.

In addition, if the input is a centralized mesh, i.e., a mesh stored
in the private memory space of a single computer node, it can be
repartitioned by Metis [31,23] first and then input to the proposed
parallel DD scheme.

4.2. Flowchart of the parallel mesh improvement approach

Fig. 6 presents the proposed parallel mesh improvement ap-
proach. If the input is a distributed mesh, it can be split into a good
partitionedmesh that contains no small dihedral angles and poorly
shaped faces on the inter-domain boundary by directly using the
parallel DD scheme, or as we suggest in most cases, employing the
parallel scheme after a repartitioning step using ParMetis. If the
user requires, the distributed mesh can also be merged into one
centralized mesh, and then partitioned sequentially. If the input is
a centralized mesh, a sequential DD scheme is adopted, or the par-
allel DD scheme is adopted after partitioning the centralized mesh
first using Metis.

The number of submeshes output by the proposed DD approach
is set to be equal to the number of computer cores in default. There-
fore, after DD, a simple one-to-one mapping scheme is adopted to
distribute the submeshes onto available computer cores. Any se-
quential improver can be fully reused in the subsequent step if it
respects the inter-domain mesh. Each submesh is improved indi-
vidually without communication or synchronization. The negative
effect of a fixed inter-domain boundary on element quality is min-
imized because this boundary contains no small dihedral angles
or poorly shaped faces. Moreover, the built-in graph partitioning
tool of the proposed DD scheme ensures the sizes of the output
submeshes are well balanced. Therefore, the mesh improvement
procedure can be speeded up remarkably.

4.3. The sequential mesh improver

The generic flowchart shown in Fig. 6 can be utilized to improve
any types of elements. In this study, we only consider tetrahedral
mesh improvement, for which the open-source mesh improver
Grummp (V0.3.4) is revised and incorporated.



108 J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113
Fig. 7. Two selected models. (a) The surface mesh of part. (b) Visual representation of the geometry, sources and the coarsest surface and volume meshes of the F6 aircraft
in the graphical user interface of HEDP/PRE.
Grummp is a cost-effective tetrahedral mesh improver that
combines smoothing and topological operations [17,33]. These
operations do not intend to remove redundant points or insert
points to refine the mesh. Therefore, if the input mesh conforms to
awell-graded sizing function, as those generated by a state-of-the-
art tetrahedral mesher, Grummp can improve it to an acceptable
level for simulations inmost cases. Occasionally, Grummpmay fail
whenmanypoorly shaped elementsmeet locally. To overcome this
drawback, the SPR technique [4,26] is complementarily included.
Given an empty polyhedron, the SPR routine seeks an optimal
mesh by connecting the boundary nodes of this polygon among
all the possibilities. This exhaustive search nature explains why
the SPR routine can be more successful in some cases than the
flips implemented in Grummp. However, the SPR routine is more
expensive than the flips in terms of computing time althoughmany
enhancement techniques have been suggested [4,26]. Therefore, in
the revised version of Grummp, the SPR routine only targets the
elements that survive the original Grummp and have the worst
shapes.

4.4. Parallel pre-processing pipeline

Given a CAD model and an element sizing function, it takes
the following steps to prepare a large-scale tetrahedral mesh in
parallel:

(1) Generate the surface mesh in parallel [45].
(2) Decompose the volume domain represented by the surface

mesh into many subdomains by inserting inter-domain faces
inside the domain [5].

(3) Mesh subdomains in parallel by employing a Delaunay
mesher that respects subdomain boundaries in a constrained
manner [4,5,46].

(4) Repartition the volume mesh using the proposed parallel DD
approach, and then improve the repartitioned volumemesh in
parallel.

The only sequential part of the above parallel pipeline lies in
Step 2, where the surface mesh generated in parallel is unified and
sent to a sequential DD procedure for parallel tetrahedral mesh
generation [5]. The running time of this sequential procedure is
proportional to the surface mesh size, which is lower than the
volume mesh size by several orders.

In general, the parallel pipeline runs very efficient, and only
consumes minutes to prepare a mesh containing hundreds of
millions of elements, as we will demonstrate in the next section.
5. Numerical results

All numerical experiments presented below were conducted
on the TH-1A system managed by the National Supercomputer
Center in Tianjin (http://www.nscc-tj.gov.cn/en/), China. Each
node contains two six-core CPUs whose clock frequency is
2.93 GHz, and the local memory for each node is 24 GB.

5.1. Experiments on the parallel improver

5.1.1. The selected geometries
In the experiments of this subsection, a mechanical part model

(referred to as Part hereafter) and an exterior flow simulation
model of the DLR-F6 wing–body-nacelle-pylon aircraft (referred
to as F6 hereafter) are selected, shown in Fig. 7(a) and (b),
respectively.

The volume meshes of both models are generated by either a
Delaunay mesher [4] or its parallel version [5]. Both meshers are
components of an in-house pre-processing system HEDP/PRE [44].
Grid sources are configured for F6 to generate small elements
locally that are required for a better resolution of some geometrical
and physical details. Four pairs of surface and volumemeshes with
various sizes are generated for F6 by adjusting a factor s to scale
the spacing values of sources. Accordingly, the meshes generated
with the scale factor s are named F6-s. The two smallest volume
meshes can be improved sequentially, whereas the other two can
only be improved in parallel because the data structure adopted by
Grummp is rather memory-consuming.

5.1.2. Performance data of the DD approach
In the proposed DD approach, the thresholds αth and βth

are set to limit the interior angles of inter-domain faces and
the inter-domain dihedral angles, respectively. They have direct
impacts on the DD results. Much bigger thresholds are preferred
to provide a better shaped inter-domain boundary; however, they
also result in a smaller EDG because more edges of the EDG are
contracted. According to Definition 2, the weights of some EDG
nodes and edges increase along with edge-contraction operations.
Therefore, if too many edges are contracted, the magnitude of the
EDG decreases rapidly, and the node and edge weights become
highly imbalanced. An overly simplified EDG will set obstacles
for achieving a well-balanced partitioning, whereas this goal is
mandatory to an efficient implementation of the proposed parallel
improvement algorithm.

Here, an experiment is designed to verify whether an initial
mesh output by a tetrahedral mesher can be decomposed into
enoughwell balanced partitions. This is done by setting acceptable

http://www.nscc-tj.gov.cn/en/


J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113 109
Fig. 8. Variation of the load imbalance index against the number of partitions.

αth and βth values to ensure the inter-domain boundary has
an acceptable shape quality. Note that a general purpose mesh
improver mainly focuses on elements with worst shapes and the
dihedral angles of these elements are very small; therefore,αth and
βth are not necessary to be very high. In our experiments, αth and
βth are set to be 30° in default.

Threemeshes, i.e., Part, F6-1 and F6-0.18, are tested. The former
two meshes are generated sequentially, including 66,257 and
1,285,633 elements, respectively. The mesh F6-0.18 is generated
in parallel, including 128 submeshes and totally 185,198,575
elements. The sequential DD procedure is adopted for the former
two meshes and the parallel procedure is adopted for the last
one. By fixing αth and βth being their default values, i.e., 30°, the
variation of a load imbalance index limb against the number of
partitions (np) is drawn in Fig. 8. limb = (lmax − lmin)/lave, where
lmax, lmin and lave are the maximal, minimal and average numbers
of elements on the submeshes output by the sequential or parallel
DD procedure.

In the tests for Part and F6-1, limb remains very small
(less than 0.5%) even when np increases up to 256 and 1024,
respectively. In the test for the F6-0.18 model, more imbalances
are observed because ParMetis instead of Metis is employed for
DD. Nonetheless, limb remains an acceptable value (under 3.5%) in
this test even when np increases up to 8192, although it fluctuates
more widely due to the heuristic nature of the graph partitioning
algorithm employed in ParMetis.

The above performance data reveal that we can use at least 256,
1024 and 8192 computers cores to efficiently improve the three
meshes in parallel, respectively. In practice, so high parallelism is
more than enough. For instance, it is unnecessary to improve a
mesh of the magnitude like F6-1 using more than 128 computer
cores (about ten thousand elements are managed by one core
averagely). A sequential run consumes about one minute, and this
time cost is reduced to about one second on 128 cores. Investing
more cores is of little significance.

In addition, we compare the shape quality of the inter-domain
boundaries resulted from the proposed DD approach and the
approach that employs ParMetis directly. The input mesh is F6-
0.18, and 128 computer cores are utilized. In Table 1, the angles
αmin and βmin refer to the minimal values of interior angles of
inter-domain face and inter-domain dihedral angle, respectively.
As we expect, when the proposed approach is adopted, the angles
αmin and βmin surpass the predefined thresholds slightly. However,
when the mesh F6-0.18 is partitioned by ParMetis directly, 9043
inter-domain dihedral angles and 27,398 minimal interior angles
of inter-domain faces are smaller than 30°. Meanwhile, αmin and
βmin are very close to zero.
Table 1
Comparison of shape quality of the inter-domain boundary (input mesh: F6-0.18).

DD Mtd. #elems. #cores αmin βmin α < 30° β < 30°

Proposed 185,198,575 128 30.0 30.0 0 0
ParMetis 2.1 0.37 27,398 9043

5.1.3. Performance data of the parallel mesh improver
Because the inter-domain mesh is fixed in the improvement

procedure, a badly shaped inter-domain boundary will limit the
quality of the improved mesh remarkably. To clarify this, Table 2
lists the quality statistics of the improved meshes of the F6-0.18
model based on the DD results shown in Table 1. Because the focus
is on theworst elements, the distribution of theminimumdihedral
angles (θ ) of volume elements in the range of 0 to 24° is listed
in Table 2. A tetrahedron is classified as a low-quality element if
its θ value is smaller than 24° or as a bad element if its θ value
is smaller than 12°. The angle θmin refers to the minimal dihedral
angle of all volume elements. If the input mesh is decomposed
directly by ParMetis, the output mesh contains 848 bad elements
and 28,252 low-quality elements.Many of themare adjacent to the
inter-domain boundary. However, these two numbers are reduced
by one order if the proposed DD approach is employed, being 35
and 2365, respectively. Meanwhile, as listed in Table 1, the former
DD procedure introduces a dihedral angle of 0.37° on the inter-
domain boundary. This angle is contained in the improved volume
mesh. If not improved further, this angle will be very harmful for
simulations.

Table 2 also evaluates the stability of the parallel improver,
referring to whether it can improve the mesh quality to a
comparable level with the result of the sequential improver using
the Part model. Although the majority of elements of the two
input meshes are well shaped, a certain number of bad and low-
quality elements are generated by the Delaunay mesher. Some
elements even have dihedral angles close to zero. Remarkable
improvements are observed for both the sequential and parallel
improvers, and the meshes output by them have a comparable
level of element quality. The output mesh of the parallel improver
contains 20 bad elements and 757 low-quality elements, and θmin
is 3.32°. Likewise, the output mesh of the sequential improver
also contains 20 bad elements and its θmin is 3.32°. The number
of low-quality elements is 837, slightly bigger. This difference is
reasonable because the results are dependent on the execution
orders of local improvement operations.

In the third experiment, our focus is on the efficiency and
scalability of the parallel improver. Firstly, the input mesh is fixed
to be the F6-0.18 mesh generated by our in-house parallel mesher
using 128 computer cores. At least 16 computer cores are used to
improve the mesh, and the parallel efficiencies are demonstrated
by doubling the number of computer cores used and evaluated
with the timing data related to the experiment where 16 cores are
assigned.When thenumber of cores is less than 128,more than one
submesh is input to a core. For instance, if the number of cores is
16, each corewill read 8 submeshes. Table 3 details the timing data
of this experiment, where the parallel DD approach is subdivided
into eight steps and the timing performance of each step is also
detailed. The time cost of the improvement procedure dominates
the entire scheme. A super linear speedup (γ3) is observed for this
procedure. Meanwhile, because a parallel efficiency of above 0.7
is achieved by the parallel DD procedure, a nearly linear or super
linear speedup is observed for the entire scheme.

A super linear speedup for γ3 is attributed to the nonlinear
running performance of the sequential improver. In other words,
if a mesh is partitioned into submeshes, the time cost spent
in improving the original mesh is usually bigger than the total
time costs spent in improving the submeshes. Therefore, if the



110 J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113
Table 2
Element quality comparison of the sequential and parallel improvers.

Input mesh Part F6-0.18

DD Mtd. – None Proposed – Proposed ParMetis
Imprv. mode Unimproved Sequential Parallel Unimproved Parallel Parallel
#elems 66,257 61,628 60,466 185,198,575 173,189,701 173,420,641
#subdomains – 1 4 – 128 128
θmin(°) 4.4e−4 3.3 3.3 ≈0.0 5.6 0.37
0° < θ ≤ 6° 347 7 7 676,374 1 172
6° < θ ≤ 12° 997 13 13 2,067,274 34 676
12° < θ ≤ 18° 1943 37 26 3,735,560 181 3998
18° < θ ≤ 24° 3459 780 711 6,027,106 2184 23,406
θ ≤ 12° (and percentage) 1344 20 20 2,743,648 35 848

(2.0%) (0.03%) (0.03%) (1.48%) (2e−5%) (5e−4%)

θ ≤ 24° (and percentage) 6746 837 757 12,506,314 2365 28,252
(10.2%) (1.36%) (1.25%) (6.75%) (1.4e−3%) (0.016%)
Table 3
Parallel efficiencies of the parallel improver and its major steps when the input mesh is fixed and the number of computer cores varies.

Input mesh F6-0.18

General data #elems before 185,198,575 (composed of 128 submeshes initially)
#elems after 173,242,842 173,237,367 173,220,582 173,189,701
#cores 16 32 64 128

Time costs of major steps (s) Entire scheme 716.60 357.45 177.18 90.51
Domain decomposition 112.04 57.79 33.42 19.45
Quality improvement 582.13 288.15 137.83 68.03
I/O 22.43 11.51 5.93 3.03

Time costs of different steps of domain decomposition (s) First repartitioning 35.02 18.73 12.44 7.84
Build mesh structure 28.03 13.78 6.82 3.62
Shape analysis 7.22 3.66 1.82 0.90
Build SDG 3.99 1.55 0.77 0.42
Build EDG 2.62 1.27 0.64 0.32
Node-deletion 5.45 2.17 1.06 0.56
Edge-contraction 5.11 2.48 1.38 0.98
Second repartitioning 24.60 14.15 8.49 4.81

Parallel efficiencies Entire scheme with I/O (γ1) – 1.00 1.01 0.99
Domain decomposition (γ2) – 0.97 0.84 0.72
Quality improvement (γ3) – 1.01 1.06 1.07
submeshes are well distributed and improved in parallel without
any communication or synchronization costs, a super linear
efficiency is possible.

To test the scalability further, the number of computer cores is
fixed at 16, but the four meshes of the F6 model with various sizes
are selected, which contain 1,285,633, 6,653,586, 53,206,270 and
185,198,575 elements, respectively. To improve them, the parallel
improver consumes 4.4, 23.1, 216.0 and 714.9 s, respectively.
The velocity values, referring to how many elements the parallel
improver can manage per core per second, are 18,439, 17,996,
15,395 and 16,192, respectively. No evident decline is observed
when the mesh size grows. It varies under a reasonable range
considering the timing performance of a mesh improver always
depends on the input mesh to some extent.

5.1.4. Performance comparison with existing algorithms
In this experiment, we re-implement two parallel mesh im-

provers for the comparison purpose, following the ideas suggested
in [21,29], respectively.

The first mesh improver takes the following steps to improve a
distributed mesh [21]:

(1) Input the distributed mesh, and then repartition the mesh by
ParMetis for load balancing.

(2) Improve the redistributed submeshes in parallel with their
inter-domain interfaces fixed.

(3) Collect two layers of elements near inter-domain interfaces
into a single mesh.

(4) Improve this single mesh sequentially.
Here, the first layer of elements refers to those containing
at least one inter-domain mesh vertex, and the second layer of
elements refers to those sharing at least one mesh vertex with the
first layer of elements.

Table 4 reports the timing performance data of the first mesh
improver. The input is the F6-0.18 mesh (with 128 submeshes).
The single mesh formed by collecting elements near inter-domain
interfaces contains 26,362,570 elements. A sequential run of the
revised Grummp on this mesh consumed 1231.52 s. As a result,
the entire mesh improvement process consumed 1320.87 s, which
is about 14.6 times slower than the proposed algorithm.

The second mesh improver follows the idea suggested in [29].
It performs the first mesh improvement pass as the first improver
does, but performs the second mesh improvement pass very
differently [29]. After the first mesh improvement pass, the second
mesh improver redistributes resulting submeshes by adding two
layers of elements to each domain (idomn) from the neighbouring
domains (jdomn) for which idomn < jdomn, and the redistributed
submeshes are then improved in parallel with the inter-domain
boundary fixed.

Table 4 also reports the timing performance data of the second
mesh improver by using the same input as the test for the first
mesh improver. In the step of redistributing elements near inter-
domain interfaces, many elements are sent from the processes
with high rank values to neighbouring processes with small rank
values. As a result, the processes with small rank values usually
have to treat many more elements than the processes with high
rank values. In this test, it was observed that the largest submesh is
placed on the processwhose rank value is 3 after the redistribution
step. This submesh contains about 3,251,625 elements, nearly 2.4



J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113 111
Table 4
Timing performance (unit: second) of the re-implemented parallel mesh improvers following the ideas suggested by Ito et al. (namely the first improver) [21] and Löhner
(namely the second improver) [29], respectively. The inputmesh is the F6-0.18mesh (containing 128 submeshes). 128 computer coreswere employed inmesh improvement.

Algorithm Ito et al. [21] Löhner [29]

Entire scheme 1320.87 247.61
Mesh repartitioning 7.96 7.85
The first mesh improvement pass 69.21 69.05
Collection of elements (for the first improver) or redistribution of elements (for the second improver) near inter-domain interfaces 12.18 14.90
The second mesh improvement pass (executed in sequential for the first improver while in parallel for the second improver) 1231.52 155.81
Table 5
Quality of elements produced by the mesh improvement techniques suggested by
Ito et al. [21] and Löhner [29]. The input mesh is the F6-0.18 mesh (containing 128
submeshes). 128 computer cores were employed in mesh improvement.

Algorithms Ito et al. [21] Löhner [29]

θmin(°) 5.6 5.6
0° < θ ≤ 6° 1 1
6° < θ ≤ 12° 38 36
12° < θ ≤ 18° 198 182
18° < θ ≤ 24° 3543 3026
θ ≤ 12° 39 37
θ ≤ 24° 3780 3245

times larger than the average size of the redistributed submeshes.
This process was therefore the busiest one during the secondmesh
improvement pass, consuming 155.81 s. As a result, the entire
mesh improvement process consumed 247.61 s, which is about
5.3 times faster than the first mesh improver, but about 2.7 times
slower than the proposed algorithm.

Element quality is another concern in this comparison. Table 5
lists the quality data of the improved meshes by two mesh im-
provers mentioned above. It was observed that both mesh im-
provers could improve the quality of the F6-0.18 mesh to the
comparable level as the proposed algorithm, in terms of the value
of the minimal dihedral angle and the numbers of bad and low-
quality elements (see Table 2 for the quality data produced by the
proposed algorithm). However, it is worth of noting that, during
the secondmesh improvement pass, the firstmesh improver needs
to fix the boundary of the single mesh, and the second mesh im-
prover needs to fix the inter-domain boundary of the redistributed
mesh. The possibility exists that bad or low-quality elements may
survive in the final mesh if features that might negatively impact
element quality are contained in these boundaries, although this
undesirable situation did not happen in this test.

5.2. Experiments on the overall parallel pipeline

The entire pipeline of preparing the F6-0.18mesh is parallelized
by combining the parallel improver with the parallel surface and
volume meshers we developed previously [5,45]. 128 computer
cores are involved in this experiment for the entire pipeline. The
surface mesher takes 12 s to get a mesh containing 1,318,726
triangles. The volume mesh generation includes two steps, as
we mention in Section 4.4. The first step is the only sequential
part of the parallel pipeline. It decomposes the volume domain
represented by the surface mesh into many subdomains, and
consumes 125 s in this experiment. The second step generates
volumemeshes on all subdomains in parallel. It runs very fast, and
only consumes 10 s. Averagely, the Delaunay mesher generates
144,686 elements per core per second. The timing data of the
parallel improver has been listed in Table 3, totally 90.51 s are
consumed. Excluding the proposed DD step, the improvement of
128 submeshes consumes about 68 s. Averagely, the improver
manages 21,277 elements per core per second, slower than the
Delaunay mesher by nearly seven times.

The sequential generation of the surface mesh takes about
10 min. If we assume the Delaunay mesher and the improver
maintain a speed of 144,686 and 21,277 elements per core per
second, then they take 1280 and 8704 s to generate and improve
the F6-0.18 mesh, respectively. Roughly speaking, it takes 3 h
to prepare this mesh sequentially. The real cost might be larger
because it remains an issue to enhance a sequential mesher or
improver to obtain a linear timing performance when the mesh
size increases to the magnitude of F6-0.18. As a comparison, the
proposed parallel pre-processing pipeline consumes about 238 s
to prepare this mesh on 128 computer cores, achieving a speedup
value of about 45.

Finally, two additional mesh examples for outflow simulations
are selected to show that the developed system is robust and appli-
cable to geometries of a complication level experienced in indus-
try. The first example is a fully loaded F16 aircraft model. Fig. 9(a)
presents a volumemesh of the F16 aircraftmodel generated in par-
allel, where the elements painted in different colours were gen-
erated on different computer cores. The second example is the
London Tower Bridge model. This model is the benchmark model
adopted by the 23rd International Meshing Roundtable for mesh-
ing contest (imr.sandia.gov/23imr/MeshingContest.html). Fig. 9(b)
presents the surface mesh, volume mesh and the pressure map on
the surface of the bridge model. Here, the pressure is induced by
a crosswind at the speed of 34 m/s. 32 computer cores participate
in the entire processes of producing both meshes, which contain
30,185,079 and 40,247,936 tetrahedral elements, respectively. The
twopre-processing processes consume154 and191 s, respectively,
of which parallel mesh improvement consumes 79 and 97 s, re-
spectively.

The distributions of interior angles of the tetrahedral elements
for the F16 aircraft and Tower Bridge models are presented in
Fig. 10(a) and (b), respectively. It is observed that the adopted
Delaunay mesher always generates a certain number of elements
with extremely small or large interior angles (close to 0° or 180°)
due to the issues of sliver elements and boundary constraints. After
improvement, both meshes are improved evidently.

6. Conclusions

A novel domain decomposition approach for tetrahedral mesh
improvement is proposed in this study. Given a tetrahedral
mesh generated by the state-of-the-art mesher, the proposed
DD approach is able to decompose it into many partitions of
similar sizes. Moreover, the inter-domain boundary is ensured
to contain no small dihedral angles and poorly shaped faces.
An enhanced open-source improver, i.e., Grummp, is reused to
improve each partition in parallel by fixing the inter-domain
boundary. As expected, the parallel algorithm can improve the
mesh quality to a comparable level with its sequential counterpart.
Meanwhile, because the DD procedure is parallelized efficiently,
plus the improvement procedure involves no communications, the
efficiency of the parallel improver is very high. For instance, if
applying the sequential improver on a mesh containing about 170
million elements, the time cost is roughly estimated to be at least
8000 s, which is reduced to only 90 s by the parallel improver
when 128 computer cores are employed. Furthermore, the parallel
improver also enables us to set up a parallel preprocessing pipeline
for large-scale simulations. It reduces the time for preparing a

http://www.imr.sandia.gov/23imr/MeshingContest.html


112 J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113
Fig. 9. Twomesh examples for outflow simulations. (a) A mesh of the F16 aircraft model. (b) A mesh of the London Tower Bridge model and the pressure map on the bridge
surface (the pressure is induced by a crosswind at the speed of 34 m/s). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 10. The distributions of interior angles of the tetrahedral elements for the initial meshes and the meshes after quality improvement on (a) the F16 aircraft model and
(b) the London Tower Bridge model.
mesh that contains hundreds of millions of elements from hours
(for a sequential pipeline) to minutes.

Acknowledgments

The authors appreciate the joint support for this project by
the National Natural Science Foundation of China (Grant Nos.
11172267, 11432013, U1630121, 11402229), Science Challenge
Project of China (No. JCKY2016212A502) and Zhejiang Provincial
Natural Science Foundation (Grant Nos. LR16F020002, Y1110038
and LQ14A020003). The authors also appreciate Dr. HongtaoWang
in Zhejiang University for his help in accessing a parallel computer.
The first author acknowledges the joint support from Zhejiang
University and China Scholarship Council and the host of Professor
Oubay Hassan and Professor Kenneth Morgan for his visiting
research at Swansea University, UK.

References

[1] C.D. Antonopoulos, F. Blagojevic, A.N. Chernikov, N.P. Chrisochoides, D.S.
Nikolopoulos, Algorithm, software, and hardware optimizations for Delaunay
mesh generation on simultaneous multithreaded architectures, J. Parallel
Distrib. Comput. 69 (2009) 601–612.

[2] C.D. Antonopoulos, F. Blagojevic, A.N. Chernikov, N.P. Chrisochoides, D.S.
Nikolopoulos, A multigrain Delaunay mesh generation method for multicore
SMT-based architectures, J. Parallel Distrib. Comput. 69 (2009) 589–600.

[3] M. Brewer, L.F. Diachin, P. Knupp, T. Leurent, D. Melander, The mesquite mesh
quality improvement toolkit, in: 12th International Meshing Roundtable,
Santa Fe, NM, USA, 2003, pp. 239–250.

[4] J. Chen, D. Zhao, Z. Huang, Y. Zheng, S. Gao, Three-dimensional constrained
boundary recovery with an enhanced Steiner point suppression procedure,
Comput. Struct. 89 (2011) 455–466.
[5] J. Chen, D. Zhao, Z. Huang, Y. Zheng, D. Wang, Improvements in the reliability
and element quality of parallel tetrahedral mesh generation, Internat. J.
Numer. Methods Engrg. 92 (2012) 671–693.

[6] N. Chrisochoides, D. Nave, Parallel Delaunaymesh generation kernel, Internat.
J. Numer. Methods Engrg. 58 (2003) 161–176.

[7] G. Compère, J.F. Remacle, J. Jansson, J. Hoffman, Amesh adaptation framework
for dealing with large deforming meshes, Internat. J. Numer. Methods Engrg.
82 (2010) 843–867.

[8] J.P. D’Amato, M. Vénere, A CPU–GPU framework for optimizing the quality of
large meshes, J. Parallel Distrib. Comput. 73 (2013) 1127–1134.

[9] H.L. de Cougny,M.S. Shephard, Refinement, derefinement, and optimization of
tetrahedral geometric triangulations in three dimensions. 1995 (unpublished
manuscript).

[10] E.B. De l’Isle, P.L. George, Optimization of tetrahedral meshes, IMA Vol. Math.
Appl. 75 (1995) 97–128.

[11] L.F. Diachin, P. Knupp, T. Munson, S. Shontz, A comparison of two optimization
methods for mesh quality improvement, Eng. Comput. 22 (2006) 61–74.

[12] Q. Du, D. Wang, Recent progress in robust and quality Delaunay mesh
generation, J. Comput. Appl. Math. 195 (2006) 8–23.

[13] J.M. Escobar, R. Montenegro, G. Montero, E. Rodríguez, J.M. González-Yuste,
Smoothing and local refinement techniques for improving tetrahedral mesh
quality, Comput. Struct. 83 (2005) 2423–2430.

[14] G. Foucault, J.C. Cuillière, V. François, J.C. Léon, R. Maranzana, Generalizing
the advancing front method to composite surfaces in the context of meshing
constraints topology, Comput.-Aided Des. 45 (2013) 1408–1425.

[15] L.A. Freitag, M. Jones, P. Plassmann, A parallel algorithm for mesh smoothing,
SIAM J. Sci. Comput. 20 (1999) 2023–2040.

[16] L.A. Freitag, M.T. Jones, P.E. Plassmann, The scalability of mesh improvement
algorithms, in: M. Heath, A. Ranade, R. Schreiber (Eds.), Algorithms for Parallel
Processing, in: The IMAVolumes inMathematics and its Applications, vol. 105,
Springer, New York, 1999, pp. 185–211.

[17] L.A. Freitag, C. Ollivier-Gooch, Tetrahedralmesh improvement using swapping
and smoothing, Internat. J. Numer. Methods Engrg. 40 (1997) 3979–4002.

[18] P.L. George, H. Borouchaki, Back to edge flips in 3 dimensions, in: 12th
International Meshing Roundtable, Santa Fe, NM, USA, 2003, pp. 393–402.

http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref1
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref2
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref4
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref5
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref6
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref7
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref8
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref10
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref11
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref12
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref13
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref14
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref15
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref16
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref17


J. Chen et al. / J. Parallel Distrib. Comput. 107 (2017) 101–113 113
[19] P.L. George, H. Borouchaki, E. Saltel, ‘Ultimate’ robustness in meshing
an arbitrary polyhedron, Internat. J. Numer. Methods Engrg. 58 (2003)
1061–1089.

[20] P.L. George, F. Hecht, E. Saltel, Automatic mesh generator with specified
boundary, Comput. Methods Appl. Mech. Engrg. 92 (1991) 269–288.

[21] Y. Ito, A.M. Shih, A.K. Erukala, B.K. Soni, A. Chernikov, N.P. Chrisochoides,
K. Nakahashi, Parallel unstructured mesh generation by an advancing front
method, Math. Comput. Simulation 75 (2007) 200–209.

[22] B. Joe, Construction of three-dimensional improved quality triangulations
using local transformations, SIAM J. Sci. Comput. 16 (1995) 1292–1307.

[23] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph parti-
tioning, in: Proceedings of the 1998ACM/IEEE Conference on Supercomputing,
San Jose, CA, USA, 1998, pp. 1–13.

[24] B. Klingner, J.R. Shewchuk, Aggressive tetrahedralmesh improvement, in: 16th
International Meshing Roundtable, Seattle, WA, USA, 2007, pp. 3–23.

[25] R.W. Lewis, Y. Zheng, D.T. Gethin, Three-dimensional unstructured mesh
generation: part 3. volume meshes, Comput. Methods Appl. Mech. Engrg. 134
(1996) 285–310.

[26] J. Liu, B. Chen, S. Sun, Small polyhedron reconnection for mesh improvement
and its implementation based on advancing front technique, Internat. J.
Numer. Methods Engrg. 79 (2009) 1004–1018.

[27] S.H. Lo, Volume discretization into tetrahedral-II. 3D triangulation by
advancing front approach, Comput. Struct. 39 (1991) 501–511.

[28] S.H. Lo, Delaunay triangulation of non-uniform point distributions by means
of multi-grid insertion, Finite Elem. Anal. Des. 63 (2013) 8–22.

[29] R. Löhner, Recent advances in parallel advancing front grid generation, Arch.
Comput. Methods Eng. 21 (2014) 127–140.

[30] R. Löhner, P. Parikh, Generation of three-dimensional unstructured grids by
the advancing front method, Internat. J. Numer. Methods Fluids 8 (1988)
1135–1149.

[31] METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering. Feb-
07–2013. URL: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

[32] M. Misztal, J. Bærentzen, F. Anton, K. Erleben, Tetrahedral mesh improvement
using multi-face retriangulation, in: 18th International Meshing Roundtable,
Salt Lake City, UT, USA, 2009, pp. 539–555.

[33] C. Ollivier-Gooch, GRUMMP, Jan-21–2012.
URL: http://tetra.mech.ubc.ca/GRUMMP/.

[34] ParMETIS - Parallel Graph Partitioning and Fill-reducingMatrix Ordering. Feb-
07–2013. URL: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

[35] K. Schloegel, G. Karypis, V. Kumar, Parallel multilevel algorithms for multi-
constraint graph partitioning, in: 6th International Euro-Par Conference on
Parallel Processing, Munich, Germany, 2000, pp. 296–310.

[36] E. Shaer, Z. Cheng, R. Yeh, G. Zagaris, L. Olson, Simple and effective GPU-
based mesh optimization. Research Notes of the 20th International Meshing
Roundtable, Paris, France, 2011.

[37] J.F. Shepherd, C.R. Johnson, Hexahedral mesh generation constraints, Eng.
Comput. 24 (2008) 195–213.

[38] J.R. Shewchuk, Delaunay refinement mesh generation (Ph.D. thesis), Carneigie
Mellon University, Pittsburgh, PA, USA, 1997.

[39] J.R. Shewchuk, Two discrete optimization algorithms for the topological
improvement of tetrahedral meshes. 2002 (unpublished manuscript). Mar-
05–2014. URL: https://www.cs.berkeley.edu/~jrs/papers/edge.pdf.

[40] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM
Trans. Math. Softw. 41 (2015) 11:1–11:36.

[41] S. Soner, C. Ozturan, Generating multibillion element unstructured meshes on
distributed memory parallel machines, Sci. Program. 2015 (2015) Article ID
437480.

[42] S. Song, M. Wan, S. Wang, D. Wang, Z. Zou, Robust and quality boundary
constrained tetrahedral mesh generation, Commun. Comput. Phys. 14 (2013)
1304–1321.

[43] N.P.Weatherill, O. Hassan, Efficient three-dimensional Delaunay triangulation
with automatic point creation and imposed boundary constraints, Internat. J.
Numer. Methods Engrg. 37 (1994) 2005–2039.

[44] L. Xie, Y. Zheng, J. Chen, J. Zou, Enabling technologies in the problem solving
environment HEDP, Commun. Comput. Phys. 4 (2008) 1170–1193.

[45] D. Zhao, J. Chen, Y. Zheng, Z. Huang, J. Zheng, Fine-grained parallel algorithm
for unstructured surface mesh generation, Comput. Struct. 154 (2015)
177–191.

[46] J. Zheng, J. Chen, Y. Zheng, Y. Yao, S. Li, Z. Xiao, An improved local remeshing
algorithm for moving boundary simulations, Eng. Appl. Comput. Fluid Mech.
10 (2016) 405–428.
Jianjun Chen received the B.Eng. degree in civil engi-
neering from Nanjing Institute of Civil Engineering and
Architecture, China, the M.Eng. degree in computational
mechanics and Ph.D. degree in computer science from
Zhejiang University, China. He has been working at Zhe-
jiang University since 2006 and is currently a full profes-
sor at School of Aeronautics and Astronautics. From 2012
to 2014, he conducted a visiting research in Swansea Uni-
versity, UK. His main research interests include high per-
formance computing, mesh generation and computational
engineering and science.

Dawei Zhao received the B.Eng. degree in computer
science from China University of Mining and Technology
and Ph.D. degree in computer science from Zhejiang
University, China. The subject of his Ph.D. thesis is parallel
mesh generation.

Yao Zheng received the B.Sc. degree in Mathematics from
Hangzhou University, China, theM.Sc. (Eng) degree inMe-
chanics from Harbin Institute of Technology, China, and
the Ph.D. degree fromUniversity ofWales Swansea, UK. At
present he is a Cheung Kong chair professor (2001-) and
the vice dean (2014-) of Faculty of Engineering with Zhe-
jiang University, China, and is directing Center for Engi-
neering and Scientific Computation (2002-), Zhejiang Uni-
versity. Also he is the founding deputy dean (2007–2013)
of School of Aeronautics and Astronautics, Zhejiang Uni-
versity. He had been a Senior Research Scientist for NASA

Glenn Research Center, Cleveland, Ohio, USA (1998–2002). His main research inter-
ests include high performance computing, and aerospace computing engineering.

Yan Xu received the B.Eng. degree and Ph.D. degree in
civil engineering from Zhejiang University, China. He has
been working at Zhejiang University since 2011 and is
currently an associate professor at School of Aeronautics
and Astronautics. From 2007 to 2008, he conducted a
one-year visiting research in Tokyo University, Japan.
His main research interests include high performance
computing, computational science and engineering, and
architectural/aerospace structure engineering.

Chenfeng Li is currently an Associate Professor at the Col-
lege of Engineering of Swansea University, UK. He received
his B.Eng. andM.Sc. degrees fromTsinghuaUniversity, Bei-
jing in 1999 and 2002, respectively, and received his Ph.D.
degree from Swansea University in 2006. His research in-
terests include computational solid mechanics, computa-
tional fluid dynamics, and computational graphics. He is
the Editor-in-Chief of Engineering Computations.

Jianjing Zheng received the B.Eng. degree in engineering
mechanics and Ph.D. degree in computer science from
Zhejiang University, China. At present, he is a postdoctoral
research fellow at Zhejiang University. His main research
interests include computational fluid dynamics, mesh
generation and high performance computing.

http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref19
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref20
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref21
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref22
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref25
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref26
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref27
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref28
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref29
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref30
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://tetra.mech.ubc.ca/GRUMMP/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref37
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref38
https://www.cs.berkeley.edu/%7Ejrs/papers/edge.pdf
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref40
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref41
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref42
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref43
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref44
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref45
http://refhub.elsevier.com/S0743-7315(17)30130-2/sbref46

	Domain decomposition approach for parallel improvement of tetrahedral meshes
	Introduction
	Related work
	The domain decomposition approach
	Basic terms and definitions
	The domain decomposition flowchart
	Shape analysis of mesh sides
	Node deletion of the SDG
	Edge contraction of the EDG
	A 2D example

	Parallel mesh improvement
	Parallel domain decomposition
	Flowchart of the parallel mesh improvement approach
	The sequential mesh improver
	Parallel pre-processing pipeline

	Numerical results
	Experiments on the parallel improver
	The selected geometries
	Performance data of the DD approach
	Performance data of the parallel mesh improver
	Performance comparison with existing algorithms

	Experiments on the overall parallel pipeline

	Conclusions
	Acknowledgments
	References


