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Abstract. We have included a higher order term in the approximation of the
slectron density matrix used in deriving the Boltzmann kinetic equation from the
Liouville-von Neumann equation by means of Kubo's formalism. This higher
term has been added to the Boltzmann kinetic equation as the corraction term.
In a simplified case the field effect collision rate is introduced, representing the
intracollisional field effect. The correction term gives a significant contribution to
the Boltzmann kinetic equation for an electric field strength of 2.5 MV m=", which

was determined by numerical calculation.

" 1. Introduction

The very small distances between elements produced by
vLsI technology are responsible for high electric ficlds,
and thus the motion of charge carriers needs a quantum-
mechanical description. Transport processes in high
electric ficlds were first investigated in bulk materials
[1-4]. For a long time a method based on the expansion
of the density matrix in the Liouville-von Neumann
equation was used [5]. Another approach consisted in
a generalization of the linear response method [6] to the
case of strong electric fields by means of the resolvent
superoperator technique [7]. The latest attempts at
using non-equilibrium Green functions are described in
[8,9]. In our case [10-13] the integral transport equation
[14-16] can be obtained by a set of approximations that
can be solved only by numerical methods. Recently the
Kubo formula for conductivity was derived exactly from
the quantum Boltzmann equation [17].

This paper is based on the Liouville—von Neumann
quantum-mechanical equation. By means of a method
similar to that known as Kubo's formalism, which gives
the transport equation [18, 19], we are able to find the
equation valid for electrons in strong electric fields (sec-
tion 2). In section 3 the Boltzmann kinetic equation
with correction term is derived. Using approximations
similar to those leading to the relaxation time approach
in semiconductors, we are able to find the correction
term in a form representing the intracollisional field
effect (section 4). If we simplify the problem we are
able to determine the magnitude of the electric field
when the correction term contributes significantly to
the Boltzmann equation (section S).
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2. Formulation of the problem and derivation of
the scatiering term

Let us consider a system in which electrons responsible
for electric current interact weakly with lattice vibrations
and let us ignore the electron—electron interaction.

We will introduce the Hamiltonian H = H.+ Hp+
Hr + H, where H. is the Hamiltonian of an electron
with effective mass m, Hp is the Hamiltonian of lattice
vibrations, the Hamiltonian Hy represents an interac-
tion of electrons with the applied electric field of inten-
sity £ and H; is a weak interaction of electrons with
lattice vibrations. For the moment we will not discuss
the magnitude of the electric field. The characteristic
values and functions of H. are denoted by =5 and |k),
respectively, and in the casc of operator Hy they are
Ex and |N). We will use the interaction representation
by introducing [5, 18].

We have already seen that the Boltzmann kinetic
equation [18, 19] can be obtained in an approximation
in which the drift term has its origin directly in the
expression
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but the scattering term was obtained by approximating
the cxpression
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where p(t') is an electron density matrix and the comma
indicates the interaction representation.



That is why we will be interested in a change of sit-
uation when /(') in (2) is approximated with accuracy
up to the first order in Hp, because we are interested
in linear effects of the electric field upon the interac-
tion between electrons and phonons. The validity of
the Boltzmann equation for strong electric fields will
depend on the possibility or impossibility of neglecting
in p’(¢’) terms of higher order than zeroth order in Hp.
Let o/(ty) be the density matrix of thermodynamic equi-
librium. We will replace p'(¢') in (2) by an expression
p'(t0) + pi(t, V') + pi(to, 1) in which pi(to,?') is of
zeroth order in Hg and first order in H! and p(ty,t')
is of first order in H{ and in general of nth order in
H!. We will not, however, deal with higher orders in
H{ than the second. In this way we will obtain
1
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The first term on the right-hand side of (3) has
its origin in p'(p), the second one in p{(fy, 1y + ')
and the rest in p4(ty,to + t'). In the first term from
P5(t0, ty + t') the suffices «, F are unequal and may
be F or i, in the second term the suffices «, 3, + may
be E i, i in a cyclic way.

The first term on the right-hand side of (3) is zero
[18} and neither of the third terms contributes [18]. The
scattering term of the Boltzmann equation [df /di]s
can be obtained [18,20] from the second term. If the
drift term is now expressed and the scattering term
approximated in the way determined in (3) the term
takes the form

RO~ (k17 )l = [ (=B Vas (k1)) at
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Correction to the Boltzmann kinetic equation

where f’ is the diagonal operator and additional terms
have the forms

Af’f=(ril)3 f 'y / at” f At [[['(t0),

He(to + t")), H{(1o + t)], H{ (1o + t)] (5a)
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The additional terms (5a)—(5c¢) were not included in the
Bolizmann kinetic equation.

3. Derivation of Boltzmann kinetic equation with
correction term

If we assume the thermal equilibrium of phonons then
the matrix density satisfies the relation

(EN[p(O)IK'N') = (R F(OIRYP(N)én N (6)

where P(N) is the Boltzmann factor.

We will first analyse the contribution (5a). If we
use the operator Hy in the form: Hp = —¢E - r,
relation (6) is performed and the matrix elements of
the commutator [ f, Hg] are performed then we obtain
(EN|Ap|kN) = rs Z (kN|H;|k' N} (k' N'| Hi|k N)

kN
X [E-Vi f(k,t0) P(N)~E - Vi f(k', t0) P(N")]

t—tg 1 t" 1
Xf dt’f di”'/ d#" cos (_(tm + I t’)
U] [} ] h
X(Ek—é’:kl-l-EN— EN!)). (7)

The three-fold time integral appearing in (7) can be
expressed as
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I =/ / t”] dtm cOoS [(tm " # )w]
0
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in which
1
W= —,—i-(e:k —ep+ Exy— En).
The function sin[w(t - t)]/w behaves like 7&(w)
for large (1 — ty). It is more convenient to write the

integral (8) in a different form. To do so we will express
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the second derivative of the function sin(wax)/w with
xr =1t— 1. We have

i
sinwz sinwzx T COS wxT
=2 -2

w

2?sin wx
- . (10
w2 (10

w3 w?

If these terms appear in our physical problem then
due to time averaging the second term on the right-hand
side of (10) vanishes and the third term corresponds to
non-Markovian processes having only a negligible effect.
Then for sufficiently large ¢ — %y integral J (8) can be
replaced by the term

I={1—ty) (é —%5"(@) (11)

in which the second derivative from the delta function
appears and we use & = t — 1.
For (5a) we then obtain

(kNIAAIEN) = 75 3 (6N Hilk! N'Y &' N'| Hilk N)

kN
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Now we will deal with the remaining contributions

from equation (4). We use the electron—-phonon inter-
action operator H; in the form

Hi =) (Vaige?™ + V7ale em)
¢
in which V; is a coupling parameter and d,, &l are
respectively the annihilation and creation operators for
a phonon with frequency wq. Summing up the contri-
butions (5b) and (3c},
{kN|ApylkN) + (kN|Appg k)

we obtain the same integral as (8) and (11). In conclu-
sion we may express the summed terms as

. 3
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ZD(kak’stN')N’) = quP(N)é(kf—k+ q)

q

+ VN P(NY6(K — k — q). (14)
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From (12) and (13) it can be seen that the contribu-
tions (5a), (56) and (S5c) may be added to the Boltzmann
kinetic equation and one can write

/to d# (df(d’;i)+ Vi (k) [af(k tu)]

In order that equation (15) should always be satisfied
the integrand must be zero. Since we are interested in
a stcady state this nceds

Tovai) = [0 4 [2IC) g

h ot

where f(k,tp) is denoted simply by f(k) and the last
term on the right-hand side of (16) is given by

a k, 2 I8N
[ f(at tu)] =h_3,§, (e(kN|H;ikN)
x (K N'|Hi|k NM)E - Vi f(k, to) P(N)
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x (k' N'| Hi[k Ny + (kN|Hi|k’N’)(k’N’1HF|kN)]

x ZD(L K,q,N, N’)) ((j 6”( ))
)

This term includes effects appearing due to a strong
electric field in the process of collision. As will be seen
later the correction term (17) to the Boltzmann kinetic
equation corresponds to an intracollisional field effect.
Besides we will show that all three contributions (5a),
(5b) and (5¢) are in a certain approximation the same.

4. Term corresponding to the intracollisional field
effect

We will first deal with the first contribution (12). We
will assume that for large numbers of phonons N, N'
the relation P(N) = P(N') is approximately valid and
we will use the relations

STNP(N) =Y (Ng+ DP(N) = Ny +1
q q

and

S NP(N) = Y (NP(N) =N, (18)
q q

where N is the distribution function for phonons.
Finally, with the use of (18), we will obtain for
the first term (17) (or for term (12) in the Boltzmann



equation) the expression

df(k,1 2e !
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where Vg is a parameter characterizing the type of
clectron—phonon interaction.

Now we will deal with the remaining terms of (17).
We will again consider only the term having its origin in
the contribution (5b) since the last term coming from
the contribution (5¢) can be dealt with in the same
manner.

We will get
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When relation (18) is used the term (20) takes the
same form as the term (19). Also the term (5¢) leads
finally to the form (19). Thus we have

[af(k> =[3f(k)] _[Bf(k)]
ot | sk 9t Junse Bt ] se
(21)

where the terms express the corrections to the Boltz-
mann kinetic equation coming from the contributions
(5a), (3b) and (5c).

For our further treatment it will be more convenient
to utilize equation (21) and write the correction term
to the Boltzmann equation in the form

af(k be ! At 1 ATt
x E- P(N) [Vaf(k) — Vi f(k)]
(G- ). @

The probability that inelastic scattering takes place is
proportional to 1/w? where the frequency w is defined

by (9).

Correction to the Boltzmann kinetic equation

5. Determination of the electric field strength

In order to find the magnitude of electric field in the
correction term representing the significant term in the
Boltzmann kinetic equation, we will use the simplest
case (see appendix A), which can be used for heavily
doped silicon. When further approximations are made
we will pet

[Bf(k)

Bt LF = Valf(k) = fo(k)Tem  (23)

where f is the equilibrium distribution function and
I'rr is a field scattering rate:

eg = & (k N|Hi|k' N'}k' N'|H|k N - E - P(N)

thJ

) (1 Vi (w(k’)gf?)) (Lz - %5"@0))

Vig ('f)(k)%?) «

(24)
where the same notation is used as in (9):
W = (1/&) (Ek -— Egt + EN — ENr)

and (k) in (24) is a linear function of the acting forces
and ¢ = e = e(k), &' = epr = (k).

If we assume elastic collisions of the conduction
clectrons with the scattering system and the validity of
the parabolic dispersion law then for the field scattering
rate (24) we obtain (see appendix B):

6Qmle B [Im 2/m
FFR = 1;-2_]15? o dql‘/ql (ZNq + 1)q

y (m q+2k’__ Akq )

g —2k| q¢%-—4k?
in which ¢ = k& — &' is assumed due to the elastic
electron-phonon scattering, the boundaries gn;, and
dmax Of the integral (25) are determined by the laws of
conservation of energy and momentum.

(25)

The function
flq) _ g+ 2k 4k q
¢ M TR | T Toae (25)

appearing in (25) plays a similar role in the field scatter-
ing rate to the delta function in the standard relaxation
time. This exact result was given by a Bardeen self-
consistent calculation for the free electron model [22],
which is based on the scattering effect of a displace-
ment of the bare ions. Its graphical form can be seen
in figure 1.

The points ¢ = 42k are its singular points and
correspond to singular points of the delta function in the
standard relaxation time. In the region 0 < ¢ < +2k,
which represents the first Brillouin zone, this function
broadens the energetic spectrum of the electron. When
the wavevector ¢ — Foo then (26) goes to 0.
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Figure 1. Graph of the function (29).

The influence of the correction term with field scat-
tering rate (25) increases linearly from the electric ficld.
Assuming the weak interactions of the electrons with
phonons we obtain [25] for the scattering term (16):

m dma
(252 = - [ savaP@Ra+ e

27)

If the distribution functions f and f; in (23) and (27)
are approximated by an arbitrary exponential function
from k we are able to find the magnitude of the electric
field for which the correction term gives a contribution
comparable to the scattering term in (16). We found
the value 2.49 MV m~! by numerical calculation.

6. Conclusion

The Boltzmann kinetic equation has been generalized to
describe transport in a strong electric field in semicon-
ductors. The correction term involving the field effect
scattering rate represents the intracollisional field effect
[7,24] which can be seen from the bechaviour of the
function (26) in figure 1. This behaviour indicates a
certain quasiclasticity (or inelasticity) of the electron—
phonon collisions in the high electric ficld in spite of the
fact that elastic collisions were assumed when deriving
the field effect scattering rate.

We have succeeded in deriving a form of the field
cffect scattering rate which resembles that appearing in
a standard relaxation time.

Using a numerical calculation we have succeeded in
determining the electric field which gives a correction
representing a significant term in the Boltzmann kinetic
equation. Assuming convenience of the relaxation time
of the electrons with phonons in the scattering term,
we obtain the value 2.49 MV m~! for this electric field.
The contribution of our correction term from this value
is of the same order as from the scattering term in the
form (27).

This enables us to compare our result with those of
Khan et af [14] and Barker and Ferry [25]. They claim
that the Boltzmann equation fails in electric fields ex-
cceding approximately a few MV m~! in conventional
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semiconductors. Obviously, the validity of our Boltz-
mann kinetic equation with the correction term is re-
stricted by the scattering of electrons on phonons.

Unfortunately, we cannot compare our result (26)
with the important work of Chen and Su [17], but our
result is certainly not a mere approximation (e.g. first
order) of their result.
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Appendix A. Introduction of field effect scattering
rate

We will assume that we know nothing about the mag-
nitude of the electric field and that the electron distri-
bution function f(k) may be written in the form

f(k) = fo(k)+ fi(k) = fo(k)+v- 1!’)(’&) (A 1)

where fy is the equilibrium distribution function, f; and
4 are a linear functions of the applied forces and the
notation ¢ = £(k), e’ = (k') is introduced.

When the gradient of (A.1) is taken we get

Vi f(k) = Ve fo(k) + Vi fi(k)
= Va k) + T (v (0 22 A2

Now we will take expression (12) and we will use
the notation

[af(k)]
at | nsr
= C(EN)[E Vi f(k) = E- Vi f(K)P(N) (A3}

C(kN) = T3 (RN |H| NYK'N'|Hi|kN)

kiN!
1
X | — =
wz

ﬂé”(w)) : (A4)
When (A.2) is inserted into (A.3) we get
C(kN)E - [Vif(k) = Ve f(R)] P(N}
_ 3 fo
= C(kNE - [kau(k) + Vi (1’ . ﬂ’(k)g)
- Ve solk) = O (o w0 50 [Py,
(A.5)

(A.2) can be written in the form

VL (k) ~ fol)] = Vi (- pIL). (a6



In order to be able to further modify (A.4) we will
assume that Vi fo(k) =~ Vi fo(k'), ie. the gradients of
the equilibrium distribution functions are approximately
equal. Using these assumptions and inserting (A.5) into
{A.4) we obtain

C{kN)E - [Vif(k) ~ Vi f(K')] P(N)
- C(kN)E[V,. (v : d;(k)af“)

B
Ve (v' - mg-gg) ] P(N)
= C(kN)E| Vs (v : w(k)%)

P(N)

( Vi (uf-w(k-')%é?))
x|1-—

Vi (- (k) 2)
= Vi [f(k) — fo(k)]Trr

and

I'm = C(kN)E- | 1-
R ( Vi (v (k) %)

(A7)

Appendix B. Further approximations of field effect
scattering rate

We will start from the field effect scattering rate and
we will further assume: (i) validity of the parabolic
dispersion law and (ii) elasticity of the electron—phonon
collisions. Then (A.7) can be written as

B kpV. (Tf’(k)%'?)

T = C(kN)E (1 -

(B.1)
in which C(kN) is defined by (A.4) and the linear
function 3 of an applied force depends directly on ¢
as a consequence of the assumptions (i) and (ii). (B.1}
can be written in the following way:

N
TR = C(JL-N)EM
kg
- %:1 S (kN | Hilk! N') (k! N'| Hk Ny
k!N

P(N)

kg — kj 1 T o
X E—?EP(N) (; — 56 (w)) (B.2)

where kg and k% are particular components of the elec-
tron wavevector in the direction of the applied electric
field and w is defined by (9).

Assumption (ii) means that the phonon wavevector
satisfies the relation gz = kg — ki and for (B.2) we

Correction to the Boitzmann kinetic eguation

obtain
be 2. 9E [ . h
I'm = = V| E={Ng————
FR hz Zq:l q| kE q(s"+q_5k)2
v i T -
—(Ng+ l)m - (ENqé"(s;H_q—sk)
4 (Mg + 1)6"(enq - e,.))]. B3)

In (B.3) V is a characteristic parameter of the electron—
phonon interaction and 4.4 = e(k + g) €tc.

To simplify the computation of (B.3) we will intro-
duce the notation:

g = Ti - T B4)

Ge 1 9E [ £ hi
= — V. = -
. h? ;| 4 E"’E (Nq(5k+q—5k)2

(N, + 1)——(%_:1_ Ek)z)

3erm 2 (2] 54 -
i = 357 B [Fa8"(onsa = 0)

- (Nq + 1)6"(ep—gq — Ek)] .

First we will evaluate the expression Tj;. Instead of
the sum we will compute an integral:

S — (297)3de" (B.5)

where € is the volume of the crystal. Then on the right-
hand side of (B.5) we will use the parabolic dispersion
law:

_ 3 298
8nihiz fd 9lVel"E=
oo (2 (g2 4 2

X | Vg m(q +2k-q)

W0 (@) o

2m

After introducing spherical coordinates we obtain

3emQE (7 ! 2 5
Tlt—m A dq/_ldz-[Vq|qz
X [Nqé” (i‘qz + z) ‘(Nq+1)5” (2—% - z) ] =0.

(B.7)

From the properties of the second derivative of the
delta function we can say that 7y does not contribute,
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Now we turn back to (B.4) and again replace the
sum by an integral and use the parabolic dispersion law.
Then we arrive at

3eQm?’E 3 29E
| — Vo< X
= ]d alVal' 22

No+1

N, .
- ) B.
" ((q”+2k'q)2 (qz—lk-q)z) G

In analogy with (B.7) we introduce spherical co-
ordinates and the vectors kg, gg. After substituting
cos ) = z we get

6eQQm?E ™ L 2 3
T] = W dq‘/;ldzlvql qz
y Ng NG+t
(q® +2kqz)®  (g*—2kgz)?
GCQmZE had 2 -
= =gz [ deVel"2Ng + 1)
d q+ 2k 4kq
xag. (qln - q2_4k2> (B.9)
or
6etmiE [ 2 e
= IR, dq|Vg|"(2Ng + g
q+ 2k 4kq
1 — . B.10
x(“‘q—zk’ & — 4k2 (B.10)
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