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Nonequilibrium and ballistic transport, and backscattering in
decanano HEMTs: a Monte Carlo simulation study
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Abstract

High electron mobility transistors (HEMTs) based on III–V semiconductor materials have been investigated as
these devices are scaled down to gate lengths of 120, 90, 70, 50 and 30 nm. A standard Monte Carlo (MC) method
coupled with the solution of Poisson’s equation is employed to simulate a particle transport. The average particle
velocity and the field–momentum relaxation time are studied in detail along the pseudomorphic HEMT (PHEMT)
channel for two possible approaches to scaling. Nonequilibrium and ballistic transport dominate at gate lengths of 120
and 70 nm. However, velocity saturation is observed in the 50 nm gate length PHEMT which is due to strong scattering
including backscattering. In addition, single and double delta doping designs are also compared. Our work indicates
that the 70 nm double doped PHEMT is the most suitable design to further increase the device transconductance.
© 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

High electron mobility transistors (HEMTs) can be further scaled down into decanano dimensions in
an effort to attain better performance in RF applications. However, as dimensions of the HEMTs are
reduced, nonequilibrium and, particularly, ballistic transport starts to play an important role. This paper
investigates electron transport in a set of scaled pseudomorphic HEMTs (PHEMTs) with a low indium
content channel. The simulations have been carried out with our Monte Carlo (MC) device simulator which
uses finite elements to solve Poisson’s equation in the device and an enhanced electron MC transport
model to simulate the carrier dynamics.
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The basic principles of MC method used to simulate the carrier transport are briefly repeated inSection 2.
In Section 3the salient features of our MC device simulator are outlined. The study itself is explained in
Section 4where transport characteristics for two scaling approaches are presented. Conclusions are left
to Section 5.

2. Monte Carlo method for transport simulation in semiconductors

MC methods[1] are widely used in various fields of physics including nuclear physics, solid-state
physics and statistical physics in general. When applied to carrier transport in solids, MC provides exact
numerical solution of the Boltzmann transport equation (BTE) without necessity to solve BTE directly.
MC method does not really solve BTE but the obtained distribution functionf (k, t) is identical with the
distribution function satisfying BTE[2,3]. This method is one of the most popular simulation technique,
because it enables us to obtain exact numerical solutions of BTE using relatively simple and very effective
program algorithms when compared with direct numerical techniques. Simultaneously, MC provides
satisfactory microscopic interpretation of simulated processes. The essence of MC method is to simulate
motion of an ensemble of carriers ink space as well as inr space. The motion of each carrier is governed
by semiclassical equations of motion and by stochastic collisions with various perturbations (phonons,
ions, other carriers). These collisions cause instantaneous transitions between unperturbed Bloch states
with transition probabilities given by Fermi’s golden rule. Using these probabilities the carrier free-flight
time, the scattering channel, and the final states after scattering can be generated by random numbers.
During the simulation any physical quantity which is dependent onk andr can be calculated.

Historically, the stationary carrier transport in homogeneous bulk semiconductors was first investigated
by a single-particle MC simulation[4]. Over the several years nonparabolicity effects[5], diffusion [6],
high-field transport with Pauli exclusion principle[7], and transient and inhomogeneous transport[8]
were comprehensively included in the MC formalism.

More complicated effects such as the space charge, carrier–carrier interactions, and recombination can
be studied by a many-particle (ensemble) MC method[9–11]. Introduction of carrier–carrier scattering
into the ensemble MC method is formidable task. Simulations including two-particle carrier–carrier scat-
tering due to the screened Coulomb interaction[12,13] as well as carrier–plasmon interaction were
developed to examine many-body carrier dynamics[12]. Thus, ensemble MC enables us to simu-
late single-particle scattering processes (carrier–phonon, carrier–plasmon and carrier–ion scattering)
together with two-body collision processes (carrier–carrier scattering). Another way to include inter-
carrier Coulomb interactions is the molecular dynamics technique[14]. Although this technique is fully
classical, it involves both short- and long-range Coulomb interactions and makes no assumptions on
the screening (RPA, static screening, etc.). The technique has to be coupled with the MC simulation of
“single-particle scattering” processes[14].

The starting point of the MC program is the definition of the physical system of interest including
the parameters of the material and the values of physical quantities such as a lattice temperatureT

and an electric fieldF . The choice of the dispersion relationE(k) usually depends on the simulated
transport problem. For weak fields the parabolic dispersion law is used, whereas the nonparabolic law
�k2/(2m) = E(1+αE) has to be used for high electric fields[4,10]. For extremely high electric fields it
is necessary to calculate the band structure by pseudopotential methods[15]. At this level we also define
parameters that control the simulation such as the duration of each subhistory, the desired precision of a
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result, etc. The next step in the program is the preliminary calculation of each scattering rate as a function
of the electron energy. This step will provide information on the maximum value of these functions which
will be useful for optimising the efficiency of the simulation.

Steady-state transport can be simulated by the single-particle simulation but the simulation time must
be long enough so that a sufficiently representative number of particle states is sampled. The choice of
simulation duration is a compromise between the need for ergodicity (t → ∞) and the need for efficient
use of computer time. The longer the simulation time, the less influence the initial conditions will have
on average results. However, in order to avoid the undesirable effects of an inappropriate initial choice
and to obtain better convergence, an elimination of the first part of the simulation from statistics may
be advantageous. When the simulation aims for a study of the transient phenomenon and/or transport
processes in an inhomogeneous system (e.g. electron transport in a very small device), which is exactly
our case, then it is necessary to simulate many electrons. In this case the distribution of the initial electron
states for the particular physical situation under investigation must be taken into account and the initial
transient becomes an essential part of a result.

The subsequent step is the generation of time of free flight. The electron wave vector,k, changes
continuously during the free flight due to an applied electric fieldF . Thus, ifλ[k(t)] is the scattering
probability for an electron in the statek during the small time interval dt then the probability that the
electron, which already suffered a scattering event at timet = 0, has not yet suffered further scattering
after timet is

exp

[
−

∫ t

0
dt ′λ[k(t ′)]

]
(1)

which, generally, gives the probability that the interval(0, t) does not contain a scattering event. Conse-
quently, the probabilityP(t) that the electron will suffer its next scattering event during dt is

P(t)dt = λ[k(t)]exp

[
−

∫ t

0
dt ′λ[k(t ′)]

]
dt. (2)

The free-flight timet can be generated from the equation

r =
∫ t

0
dt ′P(t ′), (3)

wherer is a random number between 0 and 1. Once the electron free flight has terminated a scattering
mechanism has to be selected. The weight of theith scattering mechanism (whenn scattering mechanisms
are present) is given by

Pi(k) = λi(k)

λ(k)
, λ(k) =

n∑
i=1

λi(k). (4)

After generating the random numberr between 0 and 1 and testing inequalities
j−1∑
i=1

λi(k)

λ(k)
< r <

j∑
i=1

λi(k)

λ(k)
, j = 1, . . . , n (5)

we accept theith mechanism if thej th inequality is fulfilled. It should be noted that the discussed
selection of the free-flight time and the scattering channel can be substantially simplified by introducing
a self-scatteringλ0 [16].
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Once the scattering mechanism that caused the end of the electron free flight has been determined, a
new state,kf , must be chosen as the final state of the scattered electron. If the free flight ended with the
self-scattering,kf must be taken as equal toki , the state before scattering. When, in contrast, the true
scattering has occurred thenkf must be generated stochastically according to the differential cross section
of that particular mechanism.

The last step of a simulation is the collection of statistical averages. In the ensemble MC simulation of
the steady-state transport the time average is performed as follows. IfN is the whole number of simulated
particles we may obtain the ensemble average value of the quantityQ(k) (e.g. the drift velocity, the mean
energy, etc.) during the single history of durationt as

〈Q(k)〉 = 1

t

∫ t

0
dt ′

1

N

N∑
j=1

Q[kj (t
′)] = 1

t

1

N

∑
i

∫ ti

0
dt ′

N∑
j=1

Q[kj (t
′)], (6)

wherej is the particle index. The integral inEq. (6)over the timet has been separated into the sum
of integrals over all free flights of durationti . When the steady state is investigated,t should be taken
sufficiently long so that〈Q〉 in (6) represents an unbiased estimator of average of the quantityQ over the
electron gas.

In the ensemble MC simulation of transient effects it is also possible to compute the instantaneous
mean value〈Q(t)〉 as

〈Q(t)〉 = 1

N

N∑
j=1

Q[kj (t)], (7)

whereQ(k) can be the electron energyE(k), group velocityv(k), etc.

3. Monte Carlo device simulations

Our MC device simulator uses quadrilateral finite elements[17] to represent the complex geometry of
PHEMTs. A highly adaptive mesh allows us to accurately calculate electrostatic effects caused by the gate
and recess geometries. The MC module includes electron scattering with polar optical phonons; inter-
and intra-valley non-polar optical phonons; acoustic phonons and ionized and neutral impurity scattering.
Alloy scattering and strain effects[18] are also taken into account in the InGaAs channel.

Following [19], all scattering rates and the generation of final states are modified with the form factor
G (overlap integral) given by

G(Ei, Ef ) = (1 + αiEi)(1 + αf Ef ) + 1/3αiEiαf Ef

(1 + 2αiEi)(1 + 2αf Ef )
, (8)

where an electron with initial energyEi leaves with final energyEf after scattering and whereαi andαf

are the non-parabolicity parameters for the electron in its initial and final valleys, respectively. Note that
nonparabolic dispersion is used to represent the band structure and to calculate the scattering rates.

The transport model has been verified by simulating drift velocities and average energies in bulk
materials[20]. The MC device simulator itself has been painstakingly calibrated against a real 120 nm
gate length PHEMT designed and fabricated within our department. The calculatedID–VD characteristics
agree very well with experimental data as shown in[20]. The MC simulator may be then used to study
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Fig. 1.ID–VG characteristics and transconductance for the fully scaled PHEMTs.

Fig. 2.ID–VG characteristics and transconductance for the lateral-only scaling PHEMTs.

different approaches to PHEMT scaling. The first is a full scaling when the device is scaled in both lateral
and vertical directions in respect to gate lengths of 90, 70, 50 and 30 nm and the second is a device scaling
in the lateral directions only while the vertical directions are kept to be the same. The comparison of the
device transconductance fromFig. 1 with the transconductance fromFig. 2 tells us that only the fully
scaled PHEMTs exhibit a dramatic improvement in the performance although external parasitics exert
limitations [20]. In addition, we also investigate fully scaled PHEMTs in which a second delta doping
layer has been introduced into the device structure[21]. Placement of the second delta doping below the
channel improves the device linearity whereas placing the second delta doping above the original delta
layer, near to the gate, can further improve the transconductance[22].

4. Nonequilibrium and ballistic transport

The detailed study of nonequilibrium transport in scaled PHEMTs requires monitoring the velocity of
each carrier through the device during the MC simulation thus enabling the determination of the average
particle velocity. Electron transport in the channel beneath the gate has a highly nonequilibrium character
[23]. The average particle velocity achieves its peak value here and is much larger than its bulk saturation
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Fig. 3. Average particle velocity along the channel of fully scaled PHEMTs atVG = 0.0 V andVD = 1.5 V. The inset depicts
the peak velocity vs. inverse gate length.

velocity. A sharp drop in the velocity is observed when electrons reach the extremely high field at the
recess region on the drain side of the device (seeFigs. 3 and 4).

We compared the average particle velocity along the InGaAs channel for fully (Fig. 3) and laterally
(Fig. 4) scaled PHEMTs at the same applied gate and drain biases of 0.0 and 1.5 V, respectively. These
biases correspond to the device in the saturation region. The average particle velocity rapidly increases
when the PHEMT is fully scaled from 120 to 70 nm. However,Fig. 3 shows that the velocity saturates
with the further scaling of the devices to gate lengths of 50 and 30 nm. Nevertheless, the lateral-only
scaling of PHEMTs does not deliver much improvement in the average particle velocity as shown in
Fig. 4. Thus it seems that lateral-only scaling is not able to deliver any increase in device performance
and therefore only the full scaling really benefits device performance.

Fig. 4. Average particle velocity along the channel of lateral-only scaling PHEMTs atVG = 0.0 V andVD = 1.5 V. The inset
shows the peak velocity vs. inverse gate length of the devices.
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Fig. 5. Average particle velocity along the channel of double doped PHEMTs when the second delta doped layer is below the
channel atVG = 0.0 V andVD = 1.5 V. The peak velocity vs. inverse gate length is extracted in the inset.

Comparison of the average particle velocity in the single and double doped structures is not so straight-
forward even we compare both devices in the saturation region. The double doped PHEMTs atVG = 0.0 V
andVD = 1.5 V have lower pinch off and hence their ‘electrostatic’ stage is not the same as in the single
doped device. The average velocity through the channel of the 120 nm double doped PHEMT inFigs. 5
and 6is lower than in the 120 nm single doped PHEMT. However, in 70 nm devices the velocity becomes
larger indicating that these PHEMTs are the most suitable candidates for the second delta doping layer
design. There is an increase of only 4% in the peak velocity in those devices with an additional delta
doping below the channel (seeFig. 5) and this rises to 16% in the devices with the second doping layer
above the original doping (seeFig. 6). Both double doped devices keep their larger channel velocity at
the 50 nm gate length but at the 30 nm gate length the single doped fully scaled PHEMT is slightly faster.
These observations suggest that the second delta doping layer placed below the channel, which increases

Fig. 6. Average particle velocity along the channel of double doped PHEMTs when the second delta doped layer is above the
original doping near to the gate atVG = 0.0 V andVD = 1.5 V. The inset shows again the peak velocity.
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the carrier sheet density in the device by about 70%, does not much improve the electron transport in the
channel. These devices also exhibit a larger device linearity but show no improvement in transconduc-
tance. The double doped PHEMT with the additional delta doping close to the gate exhibits an increase
in the transconductance compared to the single doped structure. This is consistent with the larger average
channel velocity in this device.

The device gate length of decanano PHEMTs becomes comparable to the inelastic mean-free path of
carriers. Hence, electrons travelling through the gate region should have a high probability of passing
through this region ballistically. To study ballistic transport in the scaled devices we monitor particles in
the gate-controlled-channel region[23] and then calculate the field–momentum (F–m) relaxation time
as the reciprocal ofλFm given by

λFm = e

�

|F |
|k| , (9)

whereF is the electric field vector at the particle position andk is the particle wavevector. This relaxation
time represents the time during which the absolute particle momentum is relaxed due to the effect of
the electric field at the particle position. The meanF–m relaxation rate is found by averaging theF–m

relaxation rate,λFm, over the number of particles passing through the gate-channel region and over some
time of interest.

The meanF–m relaxation time can be compared among different devices in order to assess the typical
transport situation in a selected region of a device. When theF–m relaxation time increases a large number
of carriers can travel ballistically due to high electric fields and the small amount of scattering. On the
other hand, a decrease in this relaxation time clearly indicates that carriers undergo many scattering events
in the selected device region even if high electric fields are present. Using the field–momentum relaxation
time as one of the device characteristic parameters can, with the help of all the other information acquired
by MC simulation, expose the ballistic limit[24] which is anticipated as a result of the scaling process.

Fig. 7 shows the meanF–m relaxation time as a function of the inverse gate length for both scaling
approaches applied to PHEMTs and GaAs HEMTs. Because only the fully scaled PHEMTs exhibit an

Fig. 7. Field–momentum relaxation time as a function of the inverse gate length in the single doped PHEMTs for the two scaling
approaches.
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improvement in transconductance we will focus on them first. TheF–m relaxation time maximum is
observed at the 90 nm gate length device inFig. 7 in accordance with the behaviour of the average
velocities in the channel and then the relaxation time decreases at 50 nm, finally saturating at 30 nm. This
can be explained as follows. The gate-fringing effect plays a significant role in particle kinetics[25]. The
impact of this effect on particles increases when the gate length is scaled down. The huge electric fields in
the recess region surround the gate and, consequently, the particles are accelerated by these fringing fields
when leaving the gate region on the drain side. The acceleration by the gate-fringing effect[25], however,
is limited in devices with gate lengths less than 90 nm. This limitation is imposed at high energies by
the increased scattering with phonons which may result in backscattering[24]. Consequently, the mean
field–momentum relaxation time starts to drop rapidly and then saturates when the gate length is scaled
from 50 to 30 nm. The saturation of theF–m relaxation time occurs as the field particle acceleration and
the energy losses due to the increased intervalley scattering and backscattering become balanced. Both
intervalley scattering and backscattering adversely affect device performance and neutralise the benefits
of ballistic transport.

The behaviour of theF–m relaxation time for the lateral-only scaling PHEMTs differs from those
which are fully scaled. Here, theF–m relaxation time consistently increases with increasing mean value
of the electron wave vector in the channel due to less scattering. Nevertheless, although the ballisticity of
the transport improves during the lateral-only scaling, device performance deteriorates because the gate
has already lost control over the carriers in the channel.

Fig. 8compares theF–m relaxation times of the single doped PHEMTs with the double doped structures
for both placements of the additional delta doping layer. The double doped PHEMTs clearly suffer much
more scattering up to the 70 nm gate length. But from 50 nm, transport in the double doped PHEMTs
with the second doping layer placed above the original doping becomes more ballistic that transport in
the single doped PHEMTs. Nevertheless, theF–m relaxation time for the double doped structures with
the second doping layer placed below the channel remains greater than that for the single doped ones
indicating reduced scattering.

Fig. 8. Field–momentum relaxation time as a function of the inverse gate length for single and both double doped PHEMT
structures.
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5. Conclusions

We have carried out self-consistent device simulations of PHEMTs solving the non-linear Poisson
equation and simulating particle transport for the solved potential via the MC method. The performance
of PHEMTs has been investigated when these devices are scaled down in respect to gate lengths of 120,
90, 70, 50 and 30 nm. Two approaches for device scaling have been studied: the full scaling in both lateral
and vertical directions and lateral-only scaling. The monitored average velocities and field–momentum
relaxation times have revealed that only the full scaling of PHEMTs can improve their performance.
However, the desired ballistic transport hits a ballistic limit at the 50 nm gate length even for these
fully scaled devices. In addition, double doped fully scaled PHEMTs with two possible placements of
the second delta doping layer have been also examined. Their average velocities and field–momentum
relaxation times have answered the question why the 70 nm gate length PHEMT is the most suitable
device for the placement of the additional delta doping layer.
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