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SUMMARY

An efficient 3D semiconductor device simulator is presented for a memory distributed multiprocessor
environment using the drift–diffusion (D–D) approach for carrier transport. The current continuity
equation and the Poisson equation, required to be solved iteratively in the D–D approach, are discretized
using a finite element method (FEM) on an unstructured tetrahedral mesh. Parallel algorithms are
employed to speed up the solution. The simulator has been applied to study a pseudomorphic high electron
mobility transistor (PHEMT). We have carried out a careful calibration against experimental I–V
characteristics of the 120 nm PHEMT achieving an excellent agreement. A simplification of the device
buffer, which effectively reduces the mesh size, is investigated in order to speed up the simulations. The 3D
device FEM simulator has achieved almost a linear parallel scalability for up to eight processors.
Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High electron mobility transistors (HEMTs) used for RF applications have been aggressively
shrunk to gate lengths approaching nanometre dimensions [1], in order to attain operating
frequencies up to 560 GHz: At this scale, random variations in doping or ternary alloy
composition may induce parameter fluctuations and can significantly degrade the RF
performance of multifinger devices. To account for these effects the 2D simulations (which
neglect a width of the devices) have to be replaced by full 3D simulations which can handle
random dopants and material variations. For instance, the device doping cannot be considered
anymore continuous and its atomistic nature should be taken into account [2]. Another
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phenomenon, which could affect particularly fast HEMTs with InGaAs channel, is the variation
of the content in ternary alloys which may occur in the channel region.

Development of adequate 3D simulators for HEMTs is therefore essential for a better
understanding of the impact of parameter fluctuations on device characteristics for design
optimization [3]. Unfortunately, 3D device simulators require large amounts of memory and
high power CPUs due to the fact that calculation time increases exponentially with the number
of discretization nodes in the simulation domain. In this work, we present an efficient 3D
parallel device simulator which utilizes the finite element method (FEM) within the drift–
diffusion (D–D) approximation to semiconductor transport and is suitable for the statistical
simulation of intrinsic parameter variations. The properties of the resulting large linear systems
necessitates the development of adequate parallel solvers since traditional methods, such as
incomplete factorizations, are very inefficient. Therefore, we have studied various domain
decomposition methods which may be employed to solve the linear systems in parallel [4].

The simulator has been developed for distributed-memory computers [5]. It employs a
multiple instruction-multiple data strategy (MIMD) under the single program-multiple data
paradigm (SPMD) which is achieved by using the message passing interface (MPI) standard
library [6]. We have chosen the MPI library due to its availability on many computer systems
which guarantees the portability of the code [7]. The capabilities of the 3D device simulator have
been tested in comparison with measured characteristics of a real 120 nm pseudomorphic
HEMT (PHEMT) with a low indium content channel of 0.2, fabricated and characterized in the
Nanoelectronics Research Centre at the University of Glasgow [8].

The paper is organized as follows. Section 2 describes the main characteristics of our 3D
simulator. Section 3 presents the domain decomposition methods which have been used to solve
the linear systems. Results obtained from the simulation of the 120 nm PHEMT are presented in
Section 4 while conclusions are drawn up in Section 5.

2. EQUATIONS AND DISCRETIZATION

The object of the semiconductor device simulations is to relate electrical characteristics of the
semiconductor devices to their physical and geometrical parameters [9, 10]. Our parallel 3D
device simulator, based on the D–D approximation [9] to the Boltzmann transport equation [9],
uses the FEM on an unstructured tetrahedral mesh allowing an accurate description of the
device geometry mainly around the gate and recesses.

The D–D approach has to be simplified as much as possible to reduce the computational time.
Therefore, because the HEMTs are n-type majority carrier devices far from a breakdown, we
can neglect the hole continuity equation, divðJpÞ ¼ �qR; which describes the transport of holes.
In this case, the D–D system of semiconductor equations reduces into the following two equations:

divðercÞ ¼ qð�nþNþDÞ ð1Þ

divðJnÞ ¼ 0 ð2Þ

These equations are scaled using a procedure described in Reference [10]. The scaled Poisson
equation can be expressed as

l2r2c ¼ ðn� CÞ; xAO ð3Þ
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where the parameter l is defined as l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eVT=qC0l0

p
; e is the dielectric constant of the material,

VT is the thermal voltage, q is the electron charge, C0 and l0 are the scaled values for
concentration and length, respectively. This equation is subjected to the following boundary
conditions:

@C
@n

����
@ON

¼ 0 ð4Þ

Cj@OD1
¼ Cb þ VðtÞD1 ð5Þ

Cj@OD2
¼ Cb �CS þ VðtÞD2 ð6Þ

where the boundary @O of the simulation domain O splits into Neumann segments @ON and
Dirichlet segments @OD: Dirichlet segments are divided in two parts: D1 are the segments
corresponding to the Ohmic contact (source and drain contacts), and D2 are the segments for
the Schottky contact (gate contact). VðtÞ is the externally applied bias, which may be different
for each of the contacts, Cb is the built-in potential, and CS is the Schottky barrier height.

The FEM is applied to discretize Equations (3)–(6), using tetrahedral elements. At the pre-
processing the solution domain representing the HEMT is triangulated into tetrahedrons. The
triangulation is carried out using the QMG program [11] and reflects the specific features of the
HEMT geometry including the T-shape gate and the gate recesses. The result is an unstructured
mesh illustrated in Figure 1. More nodes are close to the interface between different regions of
the transistor and around the gate recess because there the gradients of the electric field and the
electron concentration are the greatest.

The solution domain is then partitioned into subdomains, each assigned to an individual
processor using the program METIS [12]. The same program is subsequently used to achieve an
improved ordering of the nodes of each subdomain. Since various computations have to be
performed on the separate elements of the mesh at the matrix assembly stage, it is advantageous
to transform the elements into a reference element Tm with vertices ð0; 0; 0Þ; ð1; 0; 0Þ; ð0; 1; 0Þ and
ð0; 0; 1Þ to use the following co-ordinate transformation:

x ¼ ðx0;x1;x2Þ; x ¼ ðx0; x1; x2Þ; x ¼ xðxÞ ð7Þ

Then the FEM based on tetrahedral element is applied, using the Ritz–Galerkin
approximation. In this case, the shape functions are build from piecewise linear functions
[13]. This leads to following weak formulation of the Poisson equation:

l2
XK
j¼1

Z
Oe

ðr bjjÞ
tr bjijJej dOecj

þ
XK
j¼1

Z
Oe

ðnj � CjÞ bjj bji jJej dOe ¼ 0 8i ¼ 1; . . . ;K ð8Þ

where K is the number of vertices in %O; and bji and bjj are the shape functions for the master
tetrahedron Oe at the vertex Pj and Pi:

The discretization of the current equation (2) requires particular care and calls for the use of
special techniques such as the Scharfetter–Gummel scheme [10].
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If Je denotes the Jacobian of the map x ¼ xðxÞ of T element to the reference element Tm;
BT ðDcDÞ ¼ diagðBðcDðP0Þ � cDðP1ÞÞ; . . .Þ; where B is the Bernoulli function, and Pi; i ¼
0; . . . ; n are the vertices of the reference element Tm; and Gm is the centre of gravity of Tm; and
xGT
¼ xðGmÞ the image of Gm in the element T ; we can write:

Jn;GT
¼ mnnien;GT

ecDðP0ÞJ�te BT ðDcDÞJ
t
ere

�fn jD ð9Þ

which correspond to the value of the current density inside an element. The variables marked
with the subscript D refer to the values of the discretized variable in the nodes of the mesh.
Using the FEM, the following discretized equations are obtained:X

Oe

Z
Oe

mn;Ge
nien4;GT

expðc4ðP0ÞÞrjjJ
�t
e BT ðc4ÞJ

t
erðexpð�fni

ÞÞrji dOe ¼ 0 8i ¼ 1; . . . ;K

ð10Þ

Applying Fermi–Dirac statistics, the electron concentration in a single parabolic conduction
band approximation can be obtained as

n ¼ NcF1=2ðZcÞ ð11Þ

where Nc is the effective density of states in the conduction band Ec; F1=2 is the Fermi–Dirac
integral of order 1

2
; and Zc is given by

Zc ¼
Efn � Ec

kT
ð12Þ
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Figure 1. Tetrahedral mesh of the 120 nm PHEMT divided in three subdomains.
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Note that Zc depends on the electrostatic potential and the electron quasi-Fermi potential,
Efn: Since these variables are the unknowns in the numerical implementation of the model, an
self-consistent solution process must be established in order to guarantee coherent results.

3. PARALLELIZATION

In order to deal with non-linearities in Equations (9) and (11) the Poisson and electron
continuity equations are decoupled using Gummel methods and linearized using Newton’s
algorithm. All these algorithms are implemented fully in parallel manner. The linear system
associated with the Poisson equation is well conditioned and easy to solve. However, the linear
system associated with the electron continuity equation causes significant difficulties.

In our parallel implementation, the above linear systems are solved using domain
decomposition technique [14]. The solution domain O is partitioned in p subdomains Oi as

O ¼
[p
i¼1

Oi ð13Þ

and the domain decomposition methods attempt to solve the problem on the entire domain O by
concurrent solutions on each subdomain Oi:

A subdomain of the physical solution domain is illustrated in Figure 2. Each node belonging
to a subdomain is an unknown of the whole problem. It is important to distinguish between
three types of unknowns: (i) interior nodes are those that are coupled only with local nodes,
(ii) local interface nodes are those coupled with external nodes as well as local nodes and
(iii) external interface nodes which are those nodes in other subdomains coupled with local
nodes. We label the nodes according to their subdomains, first the internal nodes and then the
interface nodes. As a result, the linear system associated with the problem has the following
structure:

B1 E1

B2 E2

:

:

Bp Ep

F1 F2 Fp C

0BBBBBBBBBBB@

1CCCCCCCCCCCA

x1

x2

:

:

xs

y

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼

f1

f2

:

:

fs

g

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ð14Þ

where for the subdomain Oi; y represents the vector of all interface unknowns, Bi represents the
equations of internal nodes, C the equations of interface nodes, Ei the subdomain to the
interface coupling seen from the subdomains and Fi represents the interface to the subdomain
coupling seen from the interface nodes.

A partitioning of the mesh into subdomains is performed using the program METIS. The
same program was subsequently used to relabel the nodes in the subdomains in order to obtain a
more suitable rearrangement to reduce the bandwidth of the matrix. The PSPARSLIB [15],
parallel sparse iterative solvers library, has been used to solve the linear system (14). A great
advantage of this library is its optimization for various powerful multicomputers. The best result
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from many domain decomposition techniques supported within this library was obtained when
using the additive Schwarz and Schur complement techniques.

3.1. Additive Schwarz technique

The additive Schwarz technique used to solve the linearized systems of equations is similar to a
block-Jacobi iteration and consists of updating all the new components from the same residual.
The basic additive Schwarz iteration can be described as follows:

1. Obtain yi;ext:
2. Compute a local residual ri ¼ ðb� AxÞi:
3. Solve Aidi ¼ ri:
4. Update solution xi ¼ xi þ di:

To solve the linear system Aidi ¼ ri; a standard ILUT preconditioner combined with GMRES
for the solver associated with the blocks is used [4].

3.2. Schur complement techniques

Schur complement techniques refer to methods which iterate on the interface unknowns only,
implicitly using the internal unknowns as intermediate variables.

Internal 
nodes

External interface nodes

Local interface nodes

Figure 2. Nodes in a subdomain.
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Consider the linear system (14), for the subdomain Oi described as

Bi Ei

Fi Ci

 !
xi

yi

 !
¼

fi

gi

 !
ð15Þ

in which B is assumed to be non-singular. From the first equation of (15) the unknown x can be
expressed as

x ¼ B�1ð f � EyÞ ð16Þ

Upon substituting this into the second equation of (15), the following reduced system is
obtained:

ðC � FB�1EÞy ¼ g� FB�1f ð17Þ

where the matrix C � FB�1E ¼ S is called the Schur complement matrix associated with the y
variable. If this system can be solved, all the interface variables y will become available, and then
the remaining unknowns can be computed using Equation (16). Because of the particular
structure of this matrix, the global linear system can be decoupled into p separate systems. The
parallelism arises from this natural decoupling.

The program has been parallelized and tested on an IBM Netfinity 5500 parallel computer
using the message-passing standard library MPI.

4. RESULTS AND DISCUSSION

We have applied the 3D D–D parallel device simulator to model the behaviour of a 120 nm
PHEMT fabricated and measured at Glasgow University [16]. The flexible tetrahedral finite
element mesh and parallelism of the simulator are fully exploited to depict the complex
geometry of this device and to accurately capture electrostatic effects associated with the gate
and the recess geometry (see Figure 3). The structure of the studied 120 nm PHEMT has been
modelled using a tetrahedral mesh consisting of 29 012 nodes and 147 682 elements.

The structure of the simulated T gate PHEMT is schematically depicted in Figure 3. The
device consists of a 30 nm heavily Si-doped (4� 1018 cm�3) nþ GaAs cap layer; an Al0:3Ga0:7As
etchstop layer; a 7� 1012 cm�2 Si delta doped layer on top of a 7 nm Al0:3Ga0:7As spacer layer
which separates the delta doping from an 10 nm In0:2Ga0:8As channel. The whole device
structure is grown on top of a 500 nm GaAs buffer. The dimensions and doping concentrations
in the different layers of the simulated device are collected in Table I.

Figure 4 illustrates the distribution of the electrostatic potential at the zero bias. The critical
regions where the potential can change abruptly are around the gate and below the recess
regions. Here, the number of nodes has to be very large in order to correctly sample the
potential gradients. The corresponding semilogarithmic plot of the electron density, at the zero
bias, is shown in Figure 5.

Figures 6 and 7 show the simulated ID–VG characteristics at a drain bias of 0:1 and 0:3 V;
respectively. The ID–VG characteristics directly obtained from the 3D D–D simulator does not
include the contact resistance and therefore the drain current is higher than the experimental
results at large gate voltages. In order to validate the corresponding intrinsic ID–VG

characteristics obtained from the 3D D–D simulator we have compared them with carefully
calibrated results obtained from ensemble Monte Carlo simulations [8] which for the purpose of
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this comparison does not include the surface potential pinning at the recess region surface. This
allows for a fair comparison since the 3D D–D simulator does not allow at this stage the
inclusion of the interface charge. In order to compare intrinsic I–V characteristics obtained
directly from any device simulator with experimental data, external resistances of the source and
drain have been included at post-processing state [17]. Therefore, both Figures 6 and 7 show
also the calibrated Monte Carlo results which include external resistances of the source and
drain (3:0 O and 2:97 O; respectively, obtained experimentally [8]) compared to the experimental
measurements. Since the results obtained from the 3D D–D simulator (crosses and open
triangles) are in an excellent agreement with the intrinsic Monte Carlo results (open circles) we
are confident that they will give the same agreement with the experimental data (full circles) as it
is the case for the Monte Carlo results.

Table I. Dopings and dimensions of PHEMT.

Neff ðcm�3Þ DX ðmmÞ DY ðmmÞ DZ ðmmÞ

Cap layer 4:0� 1018 0.690 100.0 0.030
Spacer up 1:0� 1014 1.6 100.0 0.017
Delta doping 1:75� 1019 1.6 100.0 0.002
Spacer down 1:0� 1014 1.6 100.0 0.007
Channel 2:0� 1014 1.6 100.0 0.010
Buffer 1:0� 1014 1.6 100.0 0.500

T-shape gate

AlGaAs etch stop

AlGaAs spacer

InGaAs channel

GaAs buffer

Source

Drain

n+ GaAs cap

n+ GaAs cap

Delta doping

Figure 3. Structure of the PHEMT.
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Figures 8 and 9 compare simulations of a large device with the realistic substrate (300 nm)
and a simplified device with the shallow substrate (50 nm buffer) against experimental data. The
reduction of the device substrate to 50 nm can substantially increases the speed of the
simulation. The figures indicate that in the device with reduced substrate the drain current is
correctly reproduced above a device pinch-off gate bias but below the pinch-off the drain current
is significantly lower than the experimental results. Therefore, a realistic buffer width of 300 nm
has to be taken into account to represent properly this part of the characteristics. Figure 8 also
illustrates that a simulation of the drain current below the pinch-off at a low drain bias of 0:1 V
is very difficult even with the realistic substrate mesh since the resulting current still
underestimates the real current by a factor of 3: However, at a drain bias of 0:3; the simulation
using the realistic substrate mesh gives an excellent agreement with experimental data even
below the pinch-off as demonstrated in Figure 9.

In order to study the scalability of the simulator we have measured the number of MFLOPS
(million of floating point operations per second) using a different number of processors on the
IBM Netfinity 5500 parallel computer. The results are shown in Figure 10. The parallel
performance obtained in the simulations clearly indicates that the 3D D–D simulator has a very
good scalability up to eight processors.
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Figure 4. Electrostatic potential at both gate and drain voltages of 0:0 V:
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Figure 6. ID–VG characteristics at a drain bias of 0:1 V for the 120 nm PHEMT on a linear scale. The
buffer approximated by a 50 nm width (open triangles) is compared to a more realistic width of 300 nm
(crosses) and to the intrinsic Monte Carlo results (open circles). The calibrated Monte Carlo data (open
diamonds) represent the intrinsic results with included external resistances and can be directly compared to

experiments (full circles).
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Figure 5. Electron density at both gate and drain voltages of 0:0 V:
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5. CONCLUSIONS

In this work, we have described an efficient 3D device simulator which can be used for statistical
investigations of intrinsic parameter fluctuations in compound HEMT. Both the computational
and the numerical aspects of the parallel implementation of the simulator has been studied in
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Figure 8. The ID–VG characteristics at VD ¼ 0:1 V on a logarithmic scale. The small depth substrate
approximation (50 nm buffer) shown by open triangles underestimates the sub pinch-off region when
compared to experimental data given by full circles. The realistic substrate mesh (300 nm buffer) shown by
crosses gives a much better agreement with experimental results even still underestimates the real current in

the sub pinch-off region.
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Figure 7. The ID–VG characteristics as in Figure 6 but at a drain bias of 0:3 V: Again, results from the 3D
D–D parallel device simulator (crosses and open triangles) are compared with intrinsic Monte Carlo data
(open circles). The calibrated Monte Carlo data (open diamonds) and experimental data (full circles) are

also shown.
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details. The 3D parallel simulations are essential tool for studying effects of fluctuations, both in
doping and in material composition, when these devices are scaled into deep submicron
dimensions.

The simulator has been employed to model I–V characteristics of the 120 nm gate length
PHEMT with a low indium content of 0:2 in the channel. We have demonstrated that the 3D
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Figure 10. Parallel performance of the 3D D–D simulator.
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Figure 9. The ID–VG characteristics at VD ¼ 0:3 V on a logarithmic scale. The results using the 50 nm
buffer approximation (open triangles) are compared with those using the 300 nm buffer realistic substrate
(crosses) and with the experimental data given by full circles. The small depth substrate approximation
again underestimates the real current by an order of magnitude. However, the realistic depth substrate

gives an excellent agreement with experiments.
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parallel D–D device simulator can be accurately calibrated against ensemble Monte Carlo
simulations or experimental data. When the thickness of the device substrate is reduced in order
to speed up the 3D simulations the resulting drain current remains in excellent agreement with
the reference Monte Carlo results above the pinch-off. However, to reproduce the drain current
below the pinch-off a realistic buffer depth must be considered.

The simulator has been implemented to run effectively on memory-distributed parallel
computers. Furthermore, the parallel implementation which makes the use of the message
passing standard libraries (MPI) ensures both excellent portability and scalability. Various
solvers of linear systems have been tested with the aim of selecting those that are the best
adapted for linear system arising from the discretization of the semiconductor equations. The
scalability of the 3D parallel D–D simulator has been found to be practically linear up to eight
processors.
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