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Abstract. We study the optic-phonon-mediated carrier capture in a narrow GaAs quantum
well with a 100 nm separate confinement region. In a standard quantum model capture means
the carrier scattering from the energy subband above the quantum well into a subband in the
quantum well. We use the quantum model in parallel with a classical model in which a
classical carrier is captured during collisionless motion when emitting the optic phonon
inside the GaAs layer. Comparison with the experiment of Blomet al (1993Phys. Rev.B 47
2072) suggests that the quantum capture model is valid not only for electrons but also for
heavy holes in the case of very narrow (2.6 nm) quantum wells. In the case of wider quantum
wells the available experimental data support equally the quantum as well as classical hole
capture models and do not allow us to draw a definite conclusion. Finally, the effect of the
phonon confinement on the quantum capture is evaluated and discussed.

1. Introduction

Carrier capture into a quantum well is an important transport
process in semiconductor quantum well lasers [1, 2] and a
subject of time-resolved optical studies [3–6]. To model
the capture process in a laser device or in a time-resolved
experiment, it is in general necessary to consider the capture
of electrons and holes via the carrier–optic phonon [7] and
carrier–carrier [8] scattering. The latter process is important
at high carrier densities [8]; the optic-phonon-mediated
capture is important in any case and certainly dominates at
low densities.

A standard theory of the optic-phonon-mediated capture
relies on a so-called quantum capture model in which the
capture is essentially the carrier scattering from the energy
subband above the quantum well to the energy subband in the
quantum well, with the scattering probability described by the
Fermi golden rule. Figure 1 shows the subband levels in a
separate confinement heterostructure quantum well used in
the capture time measurements of [6]. The quantum capture
model predicts that the electron capture time oscillates as
a function of the quantum well width, which seems to be
confirmed experimentally [6].

However, since the quantum capture model assumes
a well defined subband structure (figure 1) with coherent
envelope functions, it is expected to fail when the
carrier coherence length is smaller than the width of the
AlGaAs/GaAs/AlGaAs region. Then, the classical capture
model, in which the carriers move across the AlGaAs barriers
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Figure 1. Energy band profile of the separate confinement
heterostructure quantum well consisting of the GaAs quantum
well between two Al0.3Ga0.7As barriers and two thick AlAs
cladding layers. The structure is undoped. The thickness of the
AlGaAs barrier isb/2= 50 nm; the energy subbands of electrons
and heavy holes are shown for a 4.3 nm quantum well.

classically, is considered to be a better alternative [1, 6]. To
interpret their experimental results, Blomet al [6] assumed
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Carrier capture into a GaAs quantum well

that the capture in the structure of figure 1 is of quantum
nature for electrons and of classical nature for (heavy) holes,
with the hole capture time given by the diffusion time through
the AlGaAs barrier.

This paper provides a rather different interpretation. In
accord with Blomet al[6], also our results support the validity
of the quantum capture model for electrons. However,
we find that the experiment indicates also the presence of
the quantum hole capture in case of very narrow (2.6 nm)
quantum wells, while for wider quantum wells the available
experimental data support equally the quantum as well as
classical hole capture models. It is also proposed that the
hole dynamics in the classical capture model is not a diffusion
process but a collisionless motion combined with the phonon
emission in the GaAs layer. Finally, the quantum capture
model is shown to be affected by the phonon confinement.

In section 2 we discuss the quantum capture model, in
section 3 the classical one. Comparison with experiment is
given in section 4 and the appendix summarizes the formulae
describing the phonon confinement.

2. Quantum capture model

We consider the electron and heavy-hole states in the structure
of figure 1 within the usual effective mass approximation,
with the material parameters properly interpolated between
GaAs and AlAs [9]. Forx = 0.305 we have a 0.3 eV
quantum well (QW) depth for electrons (the same QW depth
was assumed in the experiment of interest [6]) and a 0.13 eV
QW depth for heavy holes. In what follows we label the
energy and the envelope function of subbandi asEi andχi(z),
respectively. Let a carrier be initially in the subbandi and
let the kinetic energy of the carrier free motion (the motion
parallel with the heterointerface) beε. The scattering rate
from subbandi to subbandj , λij (ε), is a simple expression,
if one assumes the scattering by bulk (GaAs-like) polar LO
phonons. A standard Fermi golden rule based calculation
then gives [10]

λij (ε) = e2ωLm

8πh̄2

(
1

κ∞
− 1

κS

)∫ 2π

0
dθ
Fiijj (q)

q
(1)

q =
√

2m

h̄
[2ε − E − 2ε1/2(ε +E)1/2 cosθ ]1/2 (2)

Fiijj (q) =
∫ ∞
−∞

dz
∫ ∞
−∞

dz′ χi(z)χi(z′) e−q|z−z
′|χj (z)χj (z′)

(3)
and E = ε − Ej + Ei − h̄ωL. Herem is the carrier
effective mass,ωL is the LO phonon frequency,κS the static
permittivity and κ∞ the dynamic permittivity, all related
to the GaAs material. Note that in equation (1) only
the spontaneous emission of phonons is included since the
temperature in the experiment [6] is only 8 K.

Once we knowλij (ε), the carrier capture time (τ ) can
be evaluated as a reciprocal of the mean capture rate

1

τ
=
∑
i,j,ε

fi(ε)λij (ε)

(∑
i,ε

fi(ε)

)−1

(4)

where the summation overi (j ) includes the carrier subbands
above (below) the AlGaAs barrier andfi(ε) is the carrier
distribution.

Equation (1) is a bulk phonon approximation, which
ignores the phonon confinement resulting from the presence
of various materials. The effect of the phonon confinement
[11, 12] has not been so far considered in the structure of
figure 1 and the capture time data from that structure were
interpreted in the bulk phonon approximation [6]. Here
we consider the phonon confinement within the dielectric
continuum (DC) model [13, 14] which distinguishes the
confined and interface phonon modes. The DC model
seems to fit well the microscopic theory [15, 16] and has
already been applied in the capture rate calculations [17, 18].
Scattering rate expressions for the DC model are given in the
literature [13, 15]; we accommodate them for the structure of
interest in the appendix, where we give the scattering rates
for the confined as well as interface phonon modes. Inserting
the sum of these rates forλij (ε) in equation (4) we obtain the
capture time expression which incorporates the effect of both
confined and interface phonons.

Now we determine the carrier distributionfi(ε) by
following the authors of [6]. In their experiment electrons
and holes are excited above the AlGaAs barrier by a short
(1 ps) quasi-monoenergetic laser pulse. The matrix element
describing the optical transition from the valence subbandl

to the conduction subbandi is proportional [19, 20] to the
overlap integral

∫∞
−∞ dz χei (z)χ

h
l (z), which is close to unity

for i = l and close to zero fori 6= l. This implies that the
same number of electron and hole subbands is occupied after
the excitation and that each carrier subband is occupied by the
same number of carriers. Thus, the photoexcited distributions
are

f ei (ε) ≈ C δ(ε −Ge
i ) f hi (ε) ≈ C δ(ε −Gh

i ) (5)

whereC is the normalization constant andGe
i andGh

i are
the electron and hole excitation energies in theith subband
(Ge

i = mh(Eex−Eei −Ehi )/(me +mh) andGh
i = me(Eex−

Eei −Ehi )/(me +mh), whereEex is the laser excess energy).
We assumeEex = 36 meV [6] in numerical calculations.

In figure 2 the quantum capture time is evaluated by
using the bulk phonon model (1) as well as by using the DC
phonon model from the appendix. One sees that in the case
of electrons the results of the DC phonon model exceed the
results of the bulk phonon model roughly by a factor of one
to three. This difference deserves a more detailed discussion
as it contradicts the expectation (see p 2078 in [6]) according
to which the incorporation of the phonon two dimensionality
should have only a negligible effect on the capture process
described by assuming bulk phonons. The authors of [6]
pointed out that the overlap of the wavefunction of the
electron barrier state (initial state) with the wavefunction of
the electron bound state (final state) is significantly larger
inside the barrier layers than inside the QW layer and they
correctly argued that a major contribution to the scattering
rate comes from the phonons inside the barrier layers. Since
the barrier layers are bulklike, the expectation [6] that the
capture process is well described by assuming bulk phonons
seems to be justified. We wish to point out that these
considerations overlook the following important issue.
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Figure 2. Quantum capture time as a function of the QW width
for electrons and heavy holes. The QW widths used in the
calculations are integer multiples of the crystal monolayer width.

The wavefunction of the confined phonon modes in
the DC model is zero at the AlGaAs/GaAs interface (and
therefore strongly suppressed in the vicinity of the interface)
whereas the bulk phonon wavefunction is not. Additionally,
the wavefunction overlap of the initial (barrier) and final
(bound) electron states is only significant in the vicinity of
the AlGaAs/GaAs interface due to the exponential decay
of the bound wavefunction. Therefore, the scattering via
the confined phonon modes is inherently weaker than the
scattering via the bulk phonon modes and does not approach
the latter even in case of the bulklike barrier layers. As a
result, the DC model based capture time exceeds the bulk
model based capture time (figure 2). On the other hand,
the interface phonon modes are exponentially localized near
the interface and the scattering by these modes tends to
compensate the suppression of the confined phonon mode
scattering. As a result, the DC model based capture time also
depends on the level of this compensation and, in principle,
can become even smaller than the bulk model based capture
time (this is what we see in figure 2(b) in some cases).

It is worth mentioning that if we insert into our scattering
rate formulae just the wavefunction of the lowest bound state,
we recover the well known [15] results for the intrasubband
scattering rateλ11(ε) in the lowest subband of the GaAs QW
(see figure 3). This simple situation is easy to understand:
at small QW widths theλ11(ε) from the DC phonon model
exceeds theλ11(ε) from the bulk phonon model due to the
dominant role of the interface modes; at large QW widths the
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Figure 3. Electron scattering rate in the lowest QW subband,
λ11(ε), as a function of the QW width forε = 100 meV.

effect of the interface modes becomes weak and the effect of
the confined modes approaches the bulk phonon effect.

3. Classical capture model

In [6] the classical capture time of holes was determined as
a diffusion time through the AlGaAs barrier,

τ = (b/2)2/(2D) (6)

whereD is the diffusion constant.D was determined from
the hole mobility (µh) in doped AlGaAs bulk samples and
the resulting hole capture time wasτ = 12.5 ps [6], which
corresponds toD = 1 cm2 s−1 andµh = 1440 cm2 V−1 s−1.
Let us examine the applicability of these estimates.

Sinceµh = 1440 cm2 V−1 s−1 is the hole mobility in
the doped AlGaAs, we believe that it strongly underestimates
the actual hole mobility in the undoped AlGaAs barriers. It
is known that in undoped GaAs layers the hole mobility is as
high as 20 000 cm2 V−1 s−1 at 10 K and 54 000 cm2 V−1 s−1

at 4.2 K ([21], pp 391, 394). In the undoped Al0.3Ga0.7As
layer at 8 K the hole mobility should be similar, perhaps
slightly reduced by the alloy scattering but still one order of
magnitude higher than 1440 cm2 V−1 s−1. For µh of the
order of 10 000 cm2 V−1 s−1 we estimate the hole mean free
path` to be several times larger than the width of the AlGaAs
barrier (b/2= 50 nm). This invalidates the diffusion concept
(6) which is valid only for` � b/2, and also suggests
that the hole motion in the AlGaAs barriers is essentially
collisionless. A further important aspect not involved in
equation (6) is the fact that the classical carrier can cross the
GaAs QW without being captured, if the QW width is smaller
than the optic-phonon-limited mean free path [22]. Below
we present a simple microscopic theory which includes these
aspects.

Under the collision-free conditions the hole transit time
across the AlGaAs barrier is given by

τt = b/2

[2Gh/(πm)]1/2
(7)

whereGh is the hole excitation energy in the AlGaAs barrier
(equation (7) is the Bethe formula [22] written for a flat band
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structure). Let us write the capture rate as

1

τ
= 1

τt
(1− e−w/`ph). (8)

The factor 1− exp(−w/`ph) represents the probability that
the carrier emits a phonon when moving classically across
the GaAs layer, i.e.̀ph is the optic-phonon-emission-limited
mean free path taken for the bulk GaAs. We express`ph

as `ph = vh τh, wherevh is the z-component of the hole
velocity after the injection into the QW and 1/τh is the optic
phonon emission rate evaluated as in the bulk GaAs. For
polar phonons [23]

1

τh(ε)
=
√
m

2

e2ωL

4πh̄

(
1

κ∞
− 1

κS

)
1√
ε

ln

∣∣∣∣√ε +
√
ε − h̄ωL√

ε −√ε − h̄ωL

∣∣∣∣
(9)

whereε is now the carrier kinetic energy after the injection
into the QW. The holes also undergo the nonpolar optic
phonon scattering via the emission rate [24]

1

τh(ε)
= (2m)3/2D2

0

4πh̄3ρω0

√
ε − h̄ω0 (10)

where D0 is the deformation potential of the nonpolar
interaction,ρ is the mass density,vL is the velocity of sound
andω0 is the nonpolar optic phonon frequency (values of
these parameters are given in [25]).

Finally, the classical capture model (8) can further
be improved if we take into account the possibility of
quantum reflection (transmission) at the GaAs/AlGaAs
heterointerface. This modifies equation (8) as

1

τ
= 1

τt
TB→W

[
1− exp

(
− w

vhτhTW→B

)]
(11)

whereTB→W is the carrier transmission probability at the
heterointerface when the carrier passes from the barrier layer
(B) into the well layer (W ), and TW→B is the same for
the motion from the well layer into the barrier layer. For
the heterointerface modelled by a rectangular potential step
(figure 1),TB→W andTW→B are given by the known textbook
formulae [26]. In conditions considered by us the coefficients
TB→W andTW→B cause only a small (about 10%) reduction
of the capture rate.

In figure 4 the classical hole capture time (11) is
presented together with the 12.5 ps time constant of [6].

4. Comparison with experiment and discussion

In [6] experimental data were extracted in terms of the
ambipolar capture time, which is defined as

1

τamb
= 1

2

(
1

τ electron
+

1

τ hole

)
(12)

whereτ electronandτ holeare the electron and hole capture times
in a flat band model. Equation (12) roughly incorporates the
fact that the space charge effects tend to equalize the electron
and hole capture rates so that the actual carrier capture rate
is their average [6].
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Figure 4. Classical hole capture time as a function of the QW
width.
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Figure 5. Ambipolar capture time (equation (12)) for two different
quantum models of electron capture, the bulk phonon model and
the DC model. The capture of holes is assumed to be classical,
with τ hole= 12.5 ps. Experimental data of [6] are also shown.

We start by reproducing the calculation of [6] in which
τ hole is the classical diffusive capture time (12.5 ps) and
τ electron is given by the quantum capture model with bulk
polar optic phonons (equation (1)). The resulting ambipolar
capture time is shown in figure 5 by full triangles. It fits
reasonably well the experimental data (open circles) from
four QW samples with different QW widths, which were
interpreted in [6] as proof for the oscillating electron capture
time. However, in the light of the discussion of section 3,
the fit should not be viewed as a proof that the hole capture
is governed by the diffusion concept (6). In fact, for a more
realistic mobility estimate, say forµh = 10 000 cm2 V−1 s−1,
equation (6) gives a much smallerτ than 12.5 ps and the fit no
longer exists [27]. In other words, the fit withτ hole= 12.5 ps
should be viewed as an empirical fit, not as a microscopic
interpretation of the hole capture.

Figure 5 also shows the results (full circles) obtained
with τ electron calculated from the DC phonon model. One
sees that the effect of the DC phonon model is not negligible,
but the fit of experimental data is deteriorated. This is a
further motivation to refine the modelling ofτ hole. Thus, in
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Figure 6. Ambipolar capture time (equation (12)) as a function of
the QW width. Figure (a) shows the calculation which involves the
classical hole capture according to equation (11) and the quantum
electron capture within the DC phonon model. Figure (b) shows
the calculation based on the quantum hole capture and quantum
electron capture, both treated within the DC phonon model.
Experimental data of [6] are shown by open circles.

what follows we keep the DC model for the quantum electron
capture and speculate only about theτ hole modelling.

First we calculateτamb for τ hole given by equation (11).
Results are shown in figure 6(a) by full circles and by full
triangles (in the former case the holes are scattered only
by polar phonons (equation (9)), in the latter case also by
nonpolar phonons (equation (10))). The agreement with
experiment is quite good at QW widths of 5, 7 and 9 nm;
however, at the QW width of 2.6 nm the theory significantly
overestimates the measured value. The overestimation is due
to the exponential factor in the formula (11), or in other
words, owing to`ph � w there is a high probability that
the classically moving hole crosses the GaAs layer without
emitting a phonon. Finally, we calculateτambby using the DC
phonon model of quantum capture both forτ electronandτ hole.
In figure 6(b) the result is compared with experiment and the
agreement is very good especially at small QW widths.

Results of figure 6 agree with the conclusion of [6]
that the oscillatory behaviour of the experimental data
implies the presence of the quantum electron capture (if the
quantum electron capture were replaced by the classical one,
agreement with experiment would be lost). However, the
results of figure 6 show that the experiment indicates also

the presence of the quantum hole capture at least in the
case of the narrowest (2.6 nm) QW sample, for which the
classical hole capture is too slow (owing to`ph � w) but
the quantum hole capture model works well. For wider QWs
the available experimental data support equally the quantum
as well as classical hole capture models. For a definite
conclusion a larger number of experimental data points would
be desirable. For example, if the hole capture is of quantum
nature, experiment should manifest a significant capture time
enhancement at the QW width of∼3.4 nm and possibly also
at the QW width of 6.2 nm (note the predicted maxima in
figure 6(b)). On the other hand, if the hole capture is of
classical nature, experiment should confirm that there are no
other capture time maxima except for those already observed
(19 ps at 2.6 nm, 15 ps at 7 nm).

Which of the two hole capture models can be justified
theoretically? The Fermi golden rule based quantum capture
model is expected [1, 2, 6] to fail if the carrier coherence
length is smaller than the width of the AlGaAs/GaAs/AlGaAs
region and such failure has indeed been quantitatively proven
by means of a sophisticated theory beyond the Fermi golden
rule [28]. Is the failure present also in our situation? Assume
first that except for the optic phonon emission no other
scattering process is operative. Since the carrier excitation
energy is smaller than the optic phonon energy, the only
possible scattering process is the transition into the energy
state below the AlGaAs barrier, i.e. the carrier capture
process. Thus the hole capture time represents directly the
hole coherence time. If it is much longer than the timeτtransit

necessary for the hole to overcome the distance between the
AlAs sidewalls (∼100 nm), then the hole should have time
enough to create a standing-wave-like wavefunction and the
quantum capture model should be justified. Indeed, if we
take τtransit ≈ 2τt , whereτt is given by equation (7), we
obtainτtransit≈ 3 ps, which is mostly well below the capture
time values in figures 4 and 6.

Can one ignore other coherence-breaking processes?
The acoustic phonon scattering gives two orders longer time
constants and can be neglected. Further, the measured
capture times [6] are independent of the excitation density
in the range 3× 1015–2× 1017 cm−3, which suggests that
the carrier–carrier scattering effect is unimportant (it is a
density dependent process). However, it is also possible
that the carrier–carrier scattering breaks the hole coherence,
but its density dependence [8] is not seen in the observed
[6] capture time data due to the compensation by other
density-dependent processes (screening of phonons, space
charge). This issue needs a further investigation, which
should rely on the ‘non-golden-rule’ quantum capture theory
[28] in order to simulate the loss of the phase coherence and
the corresponding transition between quantum (golden rule
based) and classical (diffusion theory based) capture regimes.
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Appendix. Carrier scattering rate within the DC
phonon model

The treatment of the phonon confinement effect within the
DC theory distinguishes the confined and interface phonon
modes. We start with the discussion of the confined modes.
The scattering effect of these modes can be treated in each
of the layers of figure 1 separately, because the potential of
the confined modes of each layer vanishes at the interfaces
[13]. The carrier–polar optic phonon scattering rate due to
the confined modes in the GaAs layer reads [15]

λij (ε) = e2ωL

2w

(
1

κ∞
− 1

κS

)
×
∑
n

|Fij (n)|2{[(
nπ
w

)2 h̄2

2m +E + ε
]2 − 4Eε

}1/2 (A1)

where

Fij (n) =
∫ w/2

−w/2
dz χi(z) cos

(
nπ

w
z

)
χj (z) (A2)

for n = 1, 3, 5, . . . , and

Fij (n) =
∫ w/2

−w/2
dz χi(z) sin

(
nπ

w
z

)
χj (z) (A3)

for n = 2, 4, 6, . . . . Other symbols are defined as in
equation (1).

In the AlxGa1−xAs layers the situation is more
complicated owing to the presence of the GaAs-like and
AlAs-like phonon branches [29], the phonon frequencies of
which additionally depend onx [9]. In what follows we
label the longitudinal and transversal phonon frequencies
in the GaAs-like phonon branch asωGL(x) and ωGT (x),
respectively, and similarly we useωAL(x) andωAT (x) for the
AlAs-like phonon branch. Let us consider the AlxGa1−xAs
layer on the right-hand side of the GaAs QW. In that layer, the
confined modes of the phonon branchβ (β = GaAs, AlAs)
give the scattering rate contribution

λ
β

ij (ε, x) =
e2

b κ∞
Cβ(x)

×
∑
n

|Fij (n)|2{[(
nπ
b

)2 2h̄2

m
+Eβ + ε

]2 − 4Eβε
}1/2

β = GaAs,AlAs (A4)

where

Fij (n) =
∫ w

2 + b
2

w
2

dz χi(z) cos

[
nπ

b
(b+w−2z)

]
χj (z) (A5)

for n = 1, 3, 5, . . . ,

Fij (n) =
∫ w

2 + b
2

w
2

dz χi(z) sin

[
nπ

b
(b+w−2z)

]
χj (z) (A6)

for n = 2, 4, 6, . . . ,

CGaAs(x) = ωGL(x)
[
1− ωGT

2(x)

ωGL2(x)

]
ωAT

2(x)− ωGL2(x)

ωAL2(x)− ωGL2(x)
(A7)

CAlAs(x) = ωAL(x)
[
1− ωAT

2(x)

ωAL2(x)

]
ωAL(x)

2 − ωGT 2(x)

ωAL2(x)− ωGL2(x)
(A8)

EGaAs = ε − Ej + Ei − h̄ωGL(x), EAlAs = ε − Ej + Ei −
h̄ωAL(x) and the parametersκ∞ andm are related [9] to the
Al xGa1−xAs material. (Derivation of the equations (A7) and
(A8) can be found in [29].) Owing to the symmetry of the
problem, equation (A4) holds also for the AlxGa1−xAs layer
on the left-hand side of the QW. Once the ratesλGaAs

ij (ε, x)

andλAlAs
ij (ε, x) are known, we obtain the resulting scattering

rateλAlGaAs
ij (ε, x) from the interpolation formula [15]

λAlGaAs
ij (ε, x) = (1− x)λGaAs

ij (ε, x) + xλAlAs
ij (ε, x). (A9)

Finally, the scattering by phonons in the AlAs layers can be
ignored, because the wavefunction penetration into them is
negligible.

Now we briefly summarize the theory of [30], which we
use to calculate the scattering by interface modes. Unlike
the confined modes, now the structure of figure 1 cannot be
separated into three independent regions. The scattering rate
due to the interface modes reads

λij (ε) = e2

4πh̄2

∑
m

∑
l=s,a

∫ 2π

0
dφ

([
∂

∂ω
κW(ω)

]

−κ
W(ω)

κB(ω)

[
∂

∂ω
κB(ω)

])−1 ∣∣∣∣ ∫ b/2

−b/2
dzHij (l, φ, z)

∣∣∣∣2
(A10)

where
∑

m is the sum over all interface modes. The interface
modes can be symmetric (s) and antisymmetric (a). The
functionHij is given as

Hij (s, φ, z) = PWχi(z) cosh[QW(φ)z]χj (z) (A11)

Hij (a, φ, z) = PWχi(z) sinh[QW(φ)z]χj (z) (A12)

PW =
√

mW

QW(φ) sinh[QW(φ)w]
(A13)

for |z| 6 w/2, and as

Hij (s, φ, z)

= PBχi(z) sinh[QB(φ)/2(z +w − 2|z|)]χj (z) (A14)

Hij (a, φ, z) = PBχi(z) sgn(z)

× sinh[QB(φ)/2(z +w − 2|z|)]χj (z) (A15)

PB =
√

mB cosh[QB(φ)w/2]

QB(φ) sinh[QB(φ)w] sinh[QB(φ)b/2]
(A16)

for w/2< |z| 6 b/2.
Frequenciesω for the symmetric interface modes can be

obtained from the equation

κW(ω) tanh[Qγ (φ)w/2] + κB(ω) = 0 (A17)

for the antisymmetric modes from the equation

κW(ω) coth[Qγ (φ)w/2] + κB(ω) = 0 (A18)
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whereγ isW for the QW region andB for the barrier regions.
The wavevectorsQγ are defined as

Qγ (φ) =
√

2mγ

h̄
(ε +E − 2

√
εE cosφ)1/2 (A19)

whereE = ε − Ej + Ei − h̄ω, and the dielectric functions
κW(ω) andκB(ω) as [30]

κW(ω) = κW∞
ω2 − (ωL)2
ω2 − (ωT )2 (A20)

κB(ω) = κB∞
[ω2 − ωAL(x)2][ω2 − ωGL(x)2]

[ω2 − ωAT (x)2][ω2 − ωAT (x)2]
(A21)

whereωT is the transversal phonon frequency in the GaAs.
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