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Abstract

This paper investigates the efficiency of a high–order nodal discontinuous
Galerkin method for the numerical solution of Maxwell’s equations using hy-
brid meshes. An unstructured triangular or tetrahedral mesh is used near
curved boundaries and a structured Cartesian mesh is used to fill the re-
mainder of the domain. A quadrature–free implementation is employed for
the regular quadrilateral and hexahedral elements which, together with the
reduction in the number of internal faces, leads to a reduction in the cpu time
requirements. Numerical examples in two and three dimensions are used to
illustrate the benefits of using hybrid meshes.

Keywords: Maxwell’s equations, discontinuous Galerkin, high–order
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1. Introduction

In the area of computational electromagnetics, the Yee scheme [1] remains
the predominant technique for the solution of Maxwell’s equations in the
time domain. This is due to the simplicity of the algorithm and to its low
operation count. However, in its simplest form, this finite difference time
domain (FDTD) method requires the use of structured meshes, which creates
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difficulties when attempting to solve problems involving complex geometries.
Greater geometric flexibility can be achieved by using unstructured meshes
and this has motivated the development of hybrid solution techniques, in
which an unstructured finite element (FE) or finite volume (FV) algorithm
is combined with the standard FDTD method [2, 3, 4, 5]. However, the
linear approximation of curved boundaries, associated with standard low–
order FE or FV methods on unstructured meshes, can create non–physical
diffraction effects, especially for high–frequency problems. Highly accurate,
or exact, geometric representation is known to have a significant impact on
the quality of the numerical solution in many electromagnetic applications [6,
7]. In addition, low–order methods suffer from numerical dispersion and/or
dissipation, which compromises the accuracy of the computed solution when
electromagnetic waves have to be propagated over large distances. Finally,
the coupling between FE or FV methods and the FDTD solver requires
specific strategies to avoid instabilities when propagating the waves for a
very long time [8].

High–order methods have emerged as a promising alternative. They en-
able the high–fidelity solution of complex problems in electromagnetics, by
incorporating an accurate representation of curved geometries [9, 10] and by
reducing the levels of numerical dispersion and dissipation [11]. Different
approximation approaches have been proposed, including spectral methods,
high–order finite difference, finite volume or finite element methods and high–
order discontinuous Galerkin (DG) methods [12].

The development of high–order DG methods for the numerical solution
of Maxwell’s equations in the time domain has been a particularly active
area of research [13, 14, 15, 16, 17, 18, 19, 20, 21]. As the automatic gen-
eration of unstructured hexahedral meshes is still an open problem [22, 23],
most attention has been directed towards the use of unstructured triangular
and tetrahedral meshes, in order that fully automatic mesh generators can
be employed. In addition, triangular or tetrahedral meshes can be readily
generated in which the majority of the elements are affine. The use of affine
elements significantly improves computational performance, as element ma-
trices can be pre–computed and scaled using the constant Jacobian of the
iso–parametric mapping [24].

The work presented here focuses on the efficiency of a high–order nodal
DG method for the numerical solution of Maxwell’s equations in the time do-
main, using different types of elements. Compared to a modal DG method,
the nodal approach uses Lagrange polynomials to define the approximation.
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Then, the approximation over an element face is only dependent on shape
functions associated with nodes belonging to the face, reducing the compu-
tational cost incurred by the DG method when integrals over interior faces
are computed.

To retain the flexibility and maturity of low–order unstructured mesh
generators, a hybrid mesh approach is adopted in which an unstructured tri-
angular or tetrahedral mesh is used near curved boundaries and a structured
Cartesian mesh is used to fill the remainder of the domain. With this ap-
proach, the benefits of using affine elements can be exploited, not only for
triangles or tetrahedra but also, for the quadrilateral, hexahedral and pyra-
midal elements. Moreover, the use of quadrilateral or hexahedral meshes
results in a significant reduction in the number of internal faces, compared
to triangular or tetrahedral meshes. It can be expected that this, in turn, will
lead to a reduction in the cpu time requirements, as an important portion
of the computational cost of a DG scheme is associated with the integration
that is required over element faces. In comparison with many hybrid solu-
tion methods, that use different numerical schemes on the unstructured and
structured portions of the mesh, the proposed approach simplifies the im-
plementation and avoids the requirement for transfer of information between
schemes of different nature.

The remainder of the paper is organised as follows. Sections 2 and 3
briefly summarise the DG formulation for the Maxwell’s equations and the
different finite elements that are employed for the spatial discretisation. In
Section 4, the advantages of using affine elements are discussed and the
proposed approach of using hybrid meshes is described. Numerical examples
in two and three dimensions are used in Section 5, to compare the efficiency
of the different finite elements, and, finally, Section 6 summarises the main
conclusions of the work that has been presented.

2. Discontinuous Galerkin formulation for Maxwell’s equations

Maxwell’s curl equations, governing the propagation of electromagnetic
waves through free space, can be written in the linear dimensionless conser-
vation form

∂U

∂t
+
∂Fk

∂xk
= 0 k = 1, . . . , nsd (1)
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where nsd(= 2 or 3) denotes the number of spatial dimensions and the sum-
mation convention is employed. The unknown vector U is given by

U =

(
E
H

)
(2)

and the flux vectors, Fk, are

F1 =


0
H3

−H2

0
−E3

E2

 F2 =


−H3

0
H1

E3

0
−E1

 F3 =


H2

−H1

0
−E2

E1

0

 (3)

Here, E = (E1, E2, E3)T and H = (H1, H2, H3)T are the dimensionless electric
and magnetic field intensity vectors respectively. In two spatial dimensions,
the system of equation (1) decouples into the transverse electric (TE) and
transverse magnetic (TM) modes [25].

This system of equations is supplemented with appropriate boundary
conditions. Three different boundary conditions are involved in the examples
considered in this work: Dirichlet, perfect electrical conductor (PEC) and
non–reflecting boundary conditions. As usual in a DG framework, Dirichlet
boundary conditions are imposed in a weak form using numerical fluxes. At
the surface of a PEC, the tangential component of the electric field vanishes
and the condition

n× E = 0

is applied, where n denotes the unit normal vector to the PEC surface. For
problems posed on unbounded domains, the computational domain is trun-
cated and a non–reflecting boundary condition is imposed at the truncated
boundary. This is achieved by the addition of an uniaxial perfectly matched
layer (UPML) [26].

The domain Ω is represented by an unstructured assembly of elements
and a DG weak formulation for equation (1) may be expressed over element
Ωe as∫

Ωe

W · ∂Ue

∂t
dΩ−

∫
Ωe

∂W

∂xk
· Fk(Ue)dΩ +

∫
Γe

W · Fn(Ue)dΓ = 0 (4)
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Here, Ue denotes the restriction of U to the element Ωe, n is the outward
unit normal vector to the boundary Γe of Ωe, Fn is the normal flux on Γe

and W is a test function. In DG methods, the discontinuous nature of the
approximation is accounted for by replacing the physical normal flux at the
boundary by a consistent numerical flux, F̃n(Ue,U

out). This numerical flux
is evaluated in terms of the trace of the solution on element Ωe and the
trace of the solution, Uout, on the other element adjacent to Γe. A natural
choice, for the linear hyperbolic system of interest here, is to employ a flux
splitting technique [27], which corresponds to an upwind approximation [17].
The normal flux Fn is decomposed into incoming flux (superscript −) and
outgoing flux (superscript +)

Fn(U) = F−
n (U) + F+

n (U)

where the incoming and outgoing fluxes are associated with the negative
and positive eigenvalues of the jacobian matrix An = ∂Fn

∂U
respectively. The

numerical flux is then computed as

F̃n(U,Uout) = F+
n (U) + F−

n (Uout) (5)

Introducing the resulting numerical normal flux into equation (4), the DG
weak formulation for element Ωe can be re–written as∫

Ωe

W · ∂Ue

∂t
dΩ +

∫
Ωe

W · ∂Fk(Ue)

∂xk
dΩ +

∫
Γe

W ·A−
n JUeKdΓ = 0 (6)

where JUeK = Ue −Uout denotes the jump in the solution across Γe. In the
evaluation of the boundary term, the expression

A−
n JUK =

1

2

(
−n× JHK + n× (n× JEK)
n× JEK + n× (n× JHK)

)

is used.

3. Discretisation in space

Triangles and quadrilaterals are employed to provide a consistent dis-
cretisation of the spatial solution domain, Ω, for two dimensional problems.
In three dimensions, consistent meshes consisting of tetrahedra, hexahedra,
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prisms and pyramids are used. Apart from the pyramid, which requires spe-
cial attention, optimal nodal finite elements of arbitrary order are readily
defined for all these shapes. For the pyramid, a recently proposed approxi-
mation space [28] is adopted. This space is well suited for both continuous
and discontinuous approximations and is optimal, i.e. the a priori error
estimate is O(hp+1) in the L 2(Ω) norm, where p denotes the order of the ap-
proximation. The approximation spaces that are employed are summarised
in Table 1.

Element Approximation Space Dimension

triangle Pp(ξ1, ξ2) = {ξi1ξ
j
2, i+ j ≤ p} 1

2
(p+ 1)(p+ 2)

quadrilateral Qp(ξ1, ξ2) = {ξi1ξ
j
2, i, j ≤ p} (p+ 1)2

tetrahedron Pp(ξ1, ξ2, ξ3) = {ξi1ξ
j
2ξ

k
3 , i+ j + k ≤ p} 1

6
(p+ 1)(p+ 2)(p+ 3)

hexahedron Qp(ξ1, ξ2, ξ3) = {ξi1ξ
j
2ξ

k
3 , i, j, k ≤ p} (p+ 1)3

prism Pp(ξ1, ξ2)⊗ Pp(ξ3) 1
2
(p+ 1)2(p+ 2)

pyramid Pp(ξ1, ξ2, ξ3)⊕
r−1∑
k=0

(
ξ1ξ2

1− ξ3

)r−k

Pp(ξ1, ξ2) 1
6
(p+ 1)(p+ 2)(2p+ 3)

Table 1: The reference elements of order p, their approximation spaces and the dimension
of these spaces.

To obtain a semi–discrete formulation, the solution, U, is approximated
as

U(ξ) '
nen∑
j=1

U j(t)Nj(ξ)

on a reference element with local coordinates ξ = (ξ1, ξ2, ξ3). Here U j(t)
denotes the value of the solution at node j, Nj is the shape function associated
with node j and nen is the total number of nodes on the element. The nodal
shape functions span the approximation spaces described in Table 1 and the
number of nodes per element is equal to the dimension of the corresponding
approximation space.

In two dimensions, a Fekete nodal distribution is adopted for the trian-
gle [29] and a tensor product of one dimensional Fekete nodal distributions
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for the quadrilateral. Figure 1 shows the reference triangle and the reference
quadrilateral, with a nodal distribution corresponding to p = 5. In three
dimensions, the nodal distributions proposed in [30] for the tetrahedron and
in [28] for the pyramid are used. A tensor product of one dimensional Fekete
nodal distributions is used for the hexahedron and a tensor product of trian-
gular and one dimensional Fekete nodal distributions is used for the prism.
Figure 2 shows the reference tetrahedron, hexahedron, prism and pyramid
with a nodal distribution corresponding to p = 3.

(a) (b)

Figure 1: Reference elements with p = 5 showing the location of the nodes: (a) triangle;
(b) quadrilateral.

Introducing the approximate solution into the weak form of equation (6),
the system

nen∑
j=1

MijI
dU j

dt
+

nen∑
j=1

(
Ck

ijAk

)
Uj −

nfn∑
j=1

Mf
ijA

−
n JUjK = 0 (7)

of ordinary differential equations is obtained for every node i of element
Ωe. This system is advanced in time using a standard explicit fourth–order
Runge–Kutta method with a time step small enough to guarantee that the
numerical error is dominated by the spatial discretisation error. Here, M de-
notes the element mass matrix, Ck the convection matrix in the xk direction,
Mf is the face mass matrix, I is the identity matrix and nfn is the number
of nodes per face. These matrices are defined by

Mij =

∫
Ωe

NiNjdΩ Ck
ij =

∫
Ωe

Ni
∂Nj

∂xk
dΩ Mf

ij = ΓeNiNjdΓ
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(a) (b)

(c) (d)

Figure 2: Reference elements with p = 3 showing the location of the nodes: (a) tetrahe-
dron; (b) hexahedron; (c) prism; (d) pyramid.

Using an isoparametric mapping, the integrals over element Ωe are evaluated
on the reference element, Ω̂ as

Mij =

∫
Ω̂

NiNj|J|dΩ J =
∂x

∂ξ

Ck
ij =

∫
Ω̂

Ni

( nsd∑
l=1

J−1
kl

∂Nj

∂ξl

)
|J|dΩ Mf

ij =

∫
Γ̂

NiNj‖Jf‖dΓ

(8)

where J denotes the Jacobian of the isoparametric mapping and Jf is the
Jacobian of the restriction of the isoparametric mapping to the element face
f .

The computational effort required to evaluate the element and face matri-
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ces is highly dependent upon the number of integration points used to approx-
imate the integrals. For quadrilateral and hexahedral elements, quadrature
based on the tensor product of well known one–dimensional Gauss–Legendre
rules is readily implemented for any order of approximation. Note, however,
that other quadrature formulae, with fewer integration points, exist [31, 32].
For triangles, specific quadrature rules, such as the symmetric quadrature
proposed in [33, 34], are used. Analogously, efficient specific quadrature
rules are used for tetrahedra, prisms and pyramids [34, 35].

4. Reducing the computational cost using affine elements

4.1. Comparison of affine and non–affine elements

The isoparametric transformation that relates the reference and physi-
cal coordinates is, in general, a non–linear mapping. This means that the
computation of the element and face matrices requires the evaluation of the
Jacobian of the transformation at each quadrature point. Assuming that the
cost of evaluating the Jacobian is negligible compared to the cost of comput-
ing the element matrices, the number of operations required to compute an
element mass matrix is n2

en(4neq− 1), where neq is the number of quadrature
points per element. The computation of the convection matrices requires
n2
en

(
neqnsd(2nsd + 3)− 1

)
operations and the computation of a face mass ma-

trices requires n2
fn(4nfq−1) operations, where nfq is the number of quadrature

points per face.
However, when the physical element is affine with respect to the reference

element, the isoparametric transformation is linear and the element matrices
simplify to

Mij = |J|M̂ij Ck
ij = |J|

nsd∑
l=1

J−1
kl Ĉk

ij Mf
ij =

nef∑
f=1

‖Jf‖M̂f
ij (9)

where

M̂ij =

∫
Ω̂

NiNjdΩ

is the reference element mass matrix,

Ĉk
ij =

∫
Ω̂

Ni
∂Nj

∂ξk
dΩ

9

Preprint of 
R. Sevilla, O. Hassan and K. Morgan 
The use of hybrid meshes to improve the efficiency of a discontinuous Galerkin method for the solution of 
Maxwell’s equations 
Computers & Structures, 137; 2-13, 2014



1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

p

R
at

io
 o

p
er

at
io

n
s

(a)

1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

p

R
at

io
 o

p
er

at
io

n
s

 

 

TRI
QUA
TET
HEX

(b)

Figure 3: Variation, with element order, of the ratio between the number of operations
required by the standard and the quadrature–free implementations in computing, for dif-
ferent elements: (a) the element matrices; (b) the face mass matrix.

is the reference element convection matrix, in the local ξk direction, and

M̂f
ij =

∫
Γ̂

NiNjdΓ

is the reference face mass matrix. In this case, a quadrature–free imple-
mentation can be employed [24] in which the reference element and face
matrices are pre–computed and scaled, using the constant Jacobian. This
avoids the requirement for numerical integration during the time marching
process. If all Jacobians are computed and stored, the quadrature–free im-
plementation requires n2

en operations for the computation of an element mass
matrix, nsdn

2
en(2nsd − 1) operations for the computation of the convection

matrices and n2
fn operations for the computation of a face mass matrix. Fig-

ure 3(a) illustrates the variation in the ratio of the total computational cost
of the standard and the quadrature–free implementations, when computing
the element matrices for different elements, with the order of approxima-
tion ranging from p = 1 up to p = 7. A similar comparison is shown in
Figure 3(b) for the computation of the face mass matrix. In this figures, tri-
angular, quadrilateral, tetrahedral and hexahedral elements are denoted by
TRI, QUA, TET and HEX respectively. The comparison confirms that the
standard implementation is much more expensive and that the quadrature–
free implementation becomes more efficient as the order of the approximation
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Figure 4: Variation, with element order, of the ratio of operations needed by different
finite elements in order to (a) compute the element and face matrices; and (b) evaluate
the residual of the ODE system of Equation (7).

increases, e.g. for linear hexahedra, the quadrature–free implementation re-
duces the number of operations by a factor of ten compared to the standard
implementation, while this factor increases to 100, when the order of ap-
proximation is increased to p = 4, and to 450, for the case p = 7. In two
dimensions, for both triangular and quadrilateral elements, the quadrature–
free version is ten times faster for the case p = 1 and up to 100 times faster
for an order of approximation p = 7.

For the quadrature–free implementation, the computational cost of the
time marching process can be further reduced by storing the inverse of the
Jacobian of the isoparametric mapping, the determinant of the Jacobian
and the norm of the face Jacobians for each element, i.e. by storing n2

sd

+ 2 scalars per element. The required memory is, approximately, 50MB
per million elements in two dimensions and between 90MB and 100MB per
million elements in three dimensions. Of course, memory access can adversely
affect the performance of the algorithm, if the information stored at the start
of the computation does not fit into the cache memory. In addition, it is
apparent that the computational cost, understood as the number of floating
point operations, will not be directly related to cpu time, as the actual cpu
time required is highly dependent on the computer architecture.
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4.2. Hybrid meshes

The benefit of using affine elements can be clearly seen in Figure 3, by
comparing the computational cost incurred when evaluating the element and
face matrices. Triangular and tetrahedral meshes are preferred in this con-
text, as the only requirement for triangles or tetrahedra to be affine is that
their edges or faces, respectively, are planar. However, in the DG framework,
for a given number of degrees of freedom, triangular and tetrahedral meshes
possess more elements and more internal faces than quadrilateral or hexa-
hedral meshes. Since a DG method defines the approximation element by
element, the computation of numerical fluxes at internal faces represents an
important part of the overall computational cost of the algorithm.

For simple geometries, the potential computational advantages of quadri-
lateral and hexahedral elements, with the quadrature–free implementation,
can often be exploited. However, this is totally unfeasible for complex ge-
ometries. For this reason, we adopt the use of hybrid meshes, employing tri-
angular or tetrahedral elements near objects of complex geometrical shape,
with affine quadrilateral or hexahedral elements used to fill the remainder of
the computational domain.

With the outer boundary of the computational domain taken in the form
of a rectangle or a regular hexahedron, hybrid meshes of this form may
be generated using a three stage procedure [36, 37, 38]. In the first stage,
discretisation of the interior boundary curves or surfaces is performed [39] and
the region inside the rectangle or hexahedron is discretised using a uniform
structured mesh of square or cube elements. Squares or cubes within a
prescribed distance of the scatterer, or lying internal to the scatterer, are
removed in a second stage, to create a staircase–shaped surface or curve
that completely encloses the scatterer. In three dimensions, a pyramid is
constructed from each quadrilateral face of the staircase–shaped surface. In
the third stage a Delaunay algorithm with automatic point insertion [40] is
used to produce an unstructured mesh with the appropriate mesh spacing in
the region between the staircase–shaped surface and the scatterer. It is worth
noting that in a DG framework it is also possible to avoid the use of pyramids
by using non–conforming meshes, but this approach is not considered here.

4.3. Operation count for different affine elements

A comparison of the number of operations required to compute the ele-
ment and face matrices for the different finite elements with the quadrature–
free implementation is displayed in Figure 4(a), where PRI and PYR refer to
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prismatic and pyramidal elements respectively. This figure shows the vari-
ation in the ratio between the number of operations required by triangular
and tetrahedral elements and the other elements, as the order of approxima-
tion changes from p = 1 to p = 7. In two dimensions, it is assumed that
a triangular mesh is obtained from a quadrilateral mesh by splitting each
quadrilateral into two triangles. In three dimensions, when comparing hex-
ahedral and tetrahedral meshes, it is assumed that each hexahedron is split
into six tetrahedra, that each prism is split into three tetrahedra and that
each pyramid is split into two tetrahedra. The results reveal that, although
triangular and tetrahedral meshes involve more elements and internal faces
than meshes consisting of the other elements, they require fewer operations
to compute the element and face matrices in the quadrature–free implemen-
tation. In two dimensions, only quadrilateral meshes with p = 1 require
fewer operations than triangular meshes. A similar conclusion is reached
when comparing hexahedra and prisms to tetrahedra. For pyramids, fewer
operations are required not only with p = 1 and p = 2, but tetrahedra require
fewer operations for higher order approximations.

A similar comparison is performed in Figure 4(b) for the number of op-
erations required to evaluate the residual of the differential equation system
of equation (7). For each component of the solution vector, the divergence
term requires the computation of a matrix vector product of dimension nen
for each of the nsd Cartesian directions, i.e. n2

en(2nen−1) operations. The con-
tribution from the boundary integral requires the computation of the jump
of the solution and a matrix vector product of dimension nfn for each solu-
tion component, i.e. nfn

(
nfn(2nfn− 1) + 1

)
operations. The vectors obtained

from the contribution of divergence and face terms are added to the residual
vector, which is multiplied finally by the pre–computed inverse of the mass
matrix. This requires an extra matrix vector product of dimension nen. The
total number of operations per element is therefore nen

(
2nen(2nen − 1) + 1

)
and the number of operations per face is nfn

(
nfn(2nfn− 1) + 2

)
. In this case,

the results show that, for any order of approximation, the computation of
the residual vector involves fewer operations when triangular or tetrahedral
meshes are used.

It is important to remark that different approximation spaces are em-
ployed for each element, so different accuracy can be expected when using
different elements with the same number of degrees of freedom. The numer-
ical examples presented in Section 5 compare the cpu time and number of
degrees of freedom required to achieve a desired accuracy. This compari-
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son aims to identify if the expected extra accuracy introduced by the richer
spaces of the quadrilateral or hexahedral elements, compared to triangular or
tetrahedral elements, compensates for the extra computational cost observed
in Figures 4(a) and (b).

5. Performance comparison

This section evaluates the efficiency of different elements employed for the
numerical solution of the Maxwell’s equations in two and three dimensions
using a DG formulation. Simple test cases are used to show that the optimal
rate of convergence is achieved and more complex scattering applications are
used to compare the performance of the different elements. Although the
hybrid meshes employed in the scattering examples do not involve prismatic
elements, an analysis of their performance is presented for completeness. It is
worth emphasising that all the examples considered here use the same order
of approximation in all elements, but different orders could be easily handled
within the adopted DG formulation.

5.1. PEC resonator

The first example involves the propagation of an electromagnetic wave
inside a resonator consisting of two concentric PEC cylinders of diameter
d1 = 1/3 and d2 = 1. The exact solution of this problem is known [41]
and is used to enable the evaluation of the relative error in the L 2(Ω) norm
in the solution computed for the TM mode. An h–convergence study is
performed initially, to verify the optimal convergence of the DG code using
high–order triangular and quadrilateral elements. Five meshes are considered
for each element type, with an order of approximation ranging from p = 1
to p = 5. The five quadrilateral meshes are displayed in Figure 5 for p =
1 . The triangular meshes are obtained by splitting each quadrilateral in
these meshes into two triangles. The corresponding high–order meshes are
generated by placing the boundary nodes on the true geometry and adapting
the internal nodes of curved elements to obtain an optimal isoparametric
nodal distribution [42].

Figure 6 show the L 2(Ω) norm of the relative error in the third com-
ponent of the electric field, E3, as a function of the characteristic mesh size
h. Each symbol represents an order of approximation and each point repre-
sents a level of mesh refinement. A solid line is used for triangular meshes
and a dashed line for quadrilateral meshes. The optimal convergence rate of
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(a) (b) (c) (d) (e)

Figure 5: The five quadrilateral meshes, with p = 1, employed for the PEC resonator with
(a) 16 elements; (b) 64 elements; (c) 256 elements; (d) 1024 elements; (e) 4096 elements.

O(hp+1) is obtained in all cases. It is observed that, for the same character-
istic mesh size, the additional terms that appear in the approximation space,
Qp, for quadrilateral elements, with respect to the approximation space, Pp,
used for triangular elements, introduce significant advantages when the coars-
est mesh is considered but, as the mesh is refined, this advantage disappears.
On the coarsest mesh, the accuracy obtained with quadrilateral elements
with p = 4 is almost the same as that obtained with triangular elements
with p = 5.

Triangular and quadrilateral meshes can also be compared in terms of
the number of degrees of freedom (ndof) and the cpu time required to reach a
desired accuracy. It is important to note here that the quadrilateral meshes
contain only non–affine elements, whereas the triangular meshes contain both
non–affine elements and affine elements. This means that this comparison is
aimed at illustrating the superiority of the quadrature–free implementation.

The comparison in terms of ndof is displayed in Figure 7(a), which shows
that quadrilateral elements are more efficient only for coarse levels of mesh
refinement. Obviously, for the same characteristic mesh size, h, triangular
meshes have more degrees of freedom than quadrilateral meshes because, in a
DG framework, the interior edge nodes are duplicated when a quadrilateral
is split into two triangles. A comparison of the variation in the cpu time
required to reach a desired accuracy is represented in Figure 7(b). For coarse
meshes, quadrilateral elements not only reduce the number of degrees of
freedom but also reduce the cpu time required to reach a desired accuracy
when compared to triangular elements. For approximations of order p = 1
to p = 3, triangular and quadrilateral meshes offer the same performance as
the mesh is refined but, for higher order approximations, triangular meshes
turn out to be more efficient. The percentage of affine elements in triangular
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Figure 6: For the PEC resonator, h–convergence, on triangular (TRI) and quadrilateral
(QUA) meshes, of the L 2(Ω) norm of the relative error in H1.

meshes clearly dominates as the mesh is refined and the quadrature–free
implementation shows better performance, e.g. at the fourth level of mesh
refinement, the accuracy obtained by quadrilateral and triangular elements
with p = 5 is almost identical, while the triangular mesh requires four times
less cpu time.

As expected for a problem with a smooth solution, the linear approxi-
mation is clearly outperformed by higher order approximations, not only in
terms of a reduction in the number of degrees of freedom but, more impor-
tantly, in terms of the cpu time required to reach a desired accuracy, e.g. the
cpu time required by quadrilateral elements with p = 1 to reach an accuracy
of 5 × 10−3 is more than 140 times higher than the cpu time required with
p = 2 and more than 860 times higher than the cpu time required with p = 3.

5.2. Scattering by a 15λ PEC cylinder

The next example considers the scattering, by a circular PEC cylinder,
of an incident plane TM wave, generated by a source located in the far field.
The diameter of the cylinder is 15λ, where λ is the wavelength of the incident
wave. This problem has an analytical solution [43] and the relative error of
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Figure 7: PEC resonator: L 2(Ω) norm of the relative error in H1 as a function of (a) the
number of degrees of freedom; (b) the cpu time.

the scattering width (RCS) [26] is used to measure the accuracy of numerical
simulation. The truncated boundary, forming the interface between the free–
space and the absorbing PML, is taken to be a square. The outer boundary
of the PML is also taken to be a square and the thickness of the PML is
set equal to λ. A set of hybrid meshes is generated, composed of triangular
elements near the scatterer and affine quadrilaterals elsewhere. Figure 8
shows the first five, of a series of 14, meshes employed, with the order of
approximation ranging from p = 1 to p = 7.

(a) (b) (c) (d) (e)

Figure 8: Scattering of a plane TM wave by a PEC circular cylinder: the first five hybrid
meshes used to discretise the truncated domain and the PML.

The main properties of a representative selection of five of the 14 meshes,
together with the properties of the triangular meshes formed by subdivision of
each quadrilateral into two triangles, are summarised in Table 2. The number
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of elements, nel, and the percentage of affine elements, nAffel , is given for both
the triangular and the hybrid meshes and the percentage of quadrilateral
elements, nQel, is also detailed for the hybrid meshes.

Mesh nel % nAffel % nQel Mesh nel % nAffel

HYB 1 152 82 50 TRI 1 228 88

HYB 2 516 88 71 TRI 2 884 93

HYB 5 3076 95 88 TRI 5 5788 97

HYB 9 9744 97 93 TRI 9 18840 99

HYB 14 23352 98 96 TRI 14 45700 99

Table 2: Scattering of a plane TM wave by a PEC circular cylinder: properties of five
representative hybrid and triangular meshes.

To compare the performance of triangular and hybrid meshes, Figure 9 (a)
shows how the ratio between the ndof required with triangular meshes and
the ndof required with hybrid meshes, to reach relative errors of 10−1, 10−2,
10−3 and 10−4 in RCS, varies as the element order is increased. Each point in
this figure, corresponding to a given order of approximation, is obtained by
dividing the cpu time required by the first triangular mesh and by the first
hybrid mesh which achieve the desired accuracy. It is important to remark
that triangular and hybrid meshes may achieve the required accuracy with
different levels of mesh refinement. This means that the ratios shown in this
figure are not necessarily obtained with the same level of mesh refinement.

For lower order approximations, hybrid meshes are more competitive, e.g.
to achieve an error of 10−1 with p = 1, hybrid meshes use approximately 70%
of the degrees of freedom required by triangular meshes. As the order of the
approximation is increased, this difference becomes less significant, e.g. with
p = 4 and p = 5, hybrid meshes require 90% of the number of degrees of
freedom employed by triangular meshes. For p > 6, the number of degrees
of freedom required by triangular meshes to give an error of 10−1 is slightly
lower than the number required using hybrid meshes. This shows that the
advantage of using hybrid meshes is highly dependent upon the order of the
approximation employed. A similar comparison, in terms of the cpu time
required, may be gained from Figure 9 (b).
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Figure 9: Scattering of a plane TM wave by a PEC circular cylinder showing how the ac-
curacy level achieved varies with the element order and: (a) the ratio between the number
of degrees of freedom with triangular meshes and the number required with quadrilateral
meshes; (b) the ration between cpu time required by triangular and quadrilateral meshes.

The results show that higher order approximations reduce substantially
both the ndof and the cpu time required to reach a desired accuracy when
compared to lower order elements. It is worth emphasising that, for this
example, this is not only true for high fidelity computations but also for
lower desired accuracy levels, e.g. to achieve an error of just 10−1, using
hybrid meshes and p = 1, the computation requires 203 904 degrees of free-
dom, whereas only 49 068 degrees of freedom are required with p = 5. This
reduction in the number of unknowns is also accompanied by a significant
reduction in cpu time, as the computation with p = 5 is 90 times faster than
the computation with p = 1. The results also reveal that the cpu time re-
quired to obtain a relative error in the RCS of between 10−2 and 10−3 does
not change significantly when the order of approximation is increased from
p = 5 to p = 7. This suggests that there is an optimum value for the or-
der of the approximation, if the minimum cpu time required to compute the
solution with a given accuracy is of interest.

5.3. Scattering by a 100λ PEC NACA0012 aerofoil

The next example involves the scattering of a plane incident electromag-
netic TE wave by a PEC NACA0012 aerofoil. The chord length of the aerofoil
is equal to 100λ. The singularity introduced into the solution at the sharp
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(a) (b)

(c) (d)

Figure 10: Scattering of a plane TE wave by a PEC NACA0012 aerofoil: the first four
hybrid meshes used to discretise the truncated domain and the PML.

trailing edge, the relatively high frequency of the incident wave and the vari-
ation in the curvature of the aerofoil near the leading edge make the accurate
computation of the scattered field a challenging task for this problem. As
an analytical solution is not available, a reference numerical solution is used
to measure the accuracy of the computed results. The reference solution,
using a spatial discretisation with approximately 35 nodes per wave length,
is computed on a mesh with more than 40 000 elements and an order of a ap-
proximation p = 7. Solutions computed on an additionally refined mesh pro-
duced variations of the order of 10−6 in the RCS, which is almost two orders
of magnitude lower than the errors in the computations that are compared
in this example. A set of 11 hybrid meshes are used, with the corresponding
triangular meshes obtained by splitting each quadrilateral into two triangles.
Figure 10 shows the first four hybrid meshes and the main properties of some
of the 11 meshes, and the corresponding triangular meshes, are summarised
in Table 3. Figure 11 shows the contours of the transverse component of the
magnetic field that has been computed on the second mesh using an order
of a approximation p = 7. The estimated error in the RCS is 1× 10−2 using
less than one element per wavelength.

Figure 11: Scattering of a plane TE wave by a PEC NACA0012 aerofoil: numerical
solution, H3, computed on the second hybrid mesh with p = 7.
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Mesh nel % nAffel % nQel Mesh nel % nAffel

HYB 1 412 76 47 TRI 1 604 83

HYB 2 1498 87 71 TRI 2 2562 92

HYB 5 8774 94 88 TRI 5 16472 97

HYB 8 22130 96 92 TRI 8 42542 98

HYB 11 41476 97 94 TRI 11 80592 99

Table 3: Scattering of a plane TE wave by a PEC NACA0012 aerofoil: properties of five
representative hybrid and triangular meshes.

To compare the performance of triangular and hybrid meshes, Figure 12 (a)
shows the variation in the ratio between the ndof required by a triangular
mesh and the ndof required by a hybrid mesh in order to reach relative accu-
racy levels of 10−1, 10−2, 10−3 and 10−4 in the RCS, as the element order is
increased. The comparison in terms of the cpu time required is displayed in
Figure 12 (b). The use of hybrid meshes is preferable for low order approxi-
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Figure 12: Scattering of a plane TE wave by a PEC NACA0012 aerofoil showing how
the accuracy level varies with the element order and the ratio of (a) number of degrees of
freedom and (b) cpu time required by triangular and hybrid meshes.

mations whereas higher order approximations require less degrees of freedom
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and cpu time when using triangular meshes. It is worth remarking that trian-
gular meshes are computationally more efficient for p > 5 for both examples,
but the differences in cpu time are less important for this example.

Even though the solution to this example includes a singularity at the
trailing edge, higher order approximations are able to reduce the ndof and
the cpu time required to reach a desired accuracy compared to lower order
approximations. With linear elements, it is very difficult to converge the
RCS to an acceptable level of accuracy, e.g. the error in the RCS computed
on the finest mesh with p = 1 and 490 632 degrees of freedom is more than
10−1, whereas equivalent accuracy can be obtained with p = 7 and just
60 624 degrees of freedom. This implies a factor of seven reduction in the
cpu time. The efficiency of high–order approximations in this example is
mainly attributed to two reasons. Firstly, dispersion and dissipation errors
in wave propagation problems are known to be best overcome by using higher
order approximations [11]. Secondly, accurate geometry representations are
crucial in the computation of accurate RCS patterns [44] and approximat-
ing the boundary with linear elements introduces singularities into the nu-
merical solution that can dramatically affect the accuracy of the computed
solution [45].

5.4. Electromagnetic wave propagation in a cube

This three dimensional example involves the propagation of an electro-
magnetic wave inside a cube. The exact solution of this problem is taken as
in [46] and is used to determine the relative error in the L 2(Ω) norm of the
computed solution. Initially, an h–convergence study is performed to verify
the optimal convergence of the three dimensional DG code, using high–order
tetrahedral, hexahedral, prismatic and pyramidal elements. For each element
type, five structured meshes, containing only affine elements, are considered
and the computation is performed for an order of approximation ranging
from p = 1 up to p = 5. Figure 13 shows the variation in the error in H3 as
the characteristic mesh size h changes. Each symbol represents an order of
approximation, each point represents a level of mesh refinement and different
line styles are used for tetrahedra, hexahedra, prisms and pyramids, denoted
by TET, HEX, PRI and PYR respectively. The optimal convergence rate
of O(hp+1) is obtained in each case. For the same characteristic mesh size,
the extra terms appearing in the approximation spaces, for hexahedral, pris-
matic and pyramidal elements, compared to the approximation space used
for tetrahedral elements, introduce significant advantages for both coarse and
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Figure 13: Wave propagation in a cube: h–convergence of the L 2(Ω) norm of the relative
error in H3.

fine meshes. For a given characteristic mesh size, the least accurate approxi-
mation is provided by tetrahedral elements. Similar accuracy is obtained by
prismatic and pyramidal elements, and the most accurate results are provided
by hexahedral elements. For higher order approximations, the difference in
accuracy between the elements used here is significant. Hexahedra provide
more accurate results than tetrahedra, with the improvement being less than
one order of magnitude for p = 1 and about two orders of magnitude for
p = 5.

To compare the performance of the different elements, Figure 14 shows
the ratio between the ndof required by tetrahedra and hexahedra, prisms and
pyramids, to reach a relative error in the L 2(Ω) norm of 10−1, 10−2, 10−3

and 10−4. The results clearly indicate that, in all cases, hexahedral, pris-
matic and pyramidal elements are able to reduce the ndof to reach a required
accuracy compared to tetrahedral elements and the best performance is al-
ways obtained by hexahedral elements. In addition, the results reveal that
the benefit of using hexahedral, prismatic or pyramidal elements instead of
tetrahedral elements is more pronounced as the order of the approximation
is increased. For instance, to achieve an accuracy of 10−2, linear hexahedral
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Figure 14: Wave propagation in a cube showing how the accuracy level varies with the
element order and the ratio of number of degrees of freedom required by tetrahedral and
(a) hexahedral, (b) prismatic and (c) pyramidal meshes.

meshes need four times less degrees of freedom than linear tetrahedral meshes
and, for the same accuracy, hexahedral meshes with p = 5 reduce the number
of degrees of freedom by a factor of 25 compared to tetrahedral meshes.

The comparison in terms of cpu time is displayed in Figure 15. It is ob-
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Figure 15: Wave propagation in a cube showing how the accuracy level varies with the
element order and the ratio of cpu time required by tetrahedral and (a) hexahedral, (b)
prismatic and (c) pyramidal meshes.

served that the reduction in ndof is translated into a corresponding reduction
in computational cost. For an order of approximation up to p = 4, hexahe-
dral elements provide the same accuracy as tetrahedral elements by reducing
the cpu time by a factor of at least ten. For an order of approximation p = 5,
hexahedral elements remain more efficient, reducing the cpu time by a fac-
tor of a seven. Similar performance is observed for prismatic and pyramidal
finite elements, although the former are slightly more efficient. It is worth
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remarking on the different behavior obtained in two and three dimensions.
In two dimensional examples, meshes of quadrilateral elements have been
shown to be marginally better in terms of cpu time than meshes of triangu-
lar elements. However, in this three dimensional example the improvement
in cpu time attained by using hexahedral elements is more than a factor of
five.

Finally, the performance of low and higher order approximations is briefly
discussed. Again, as expected for a problem with smooth solution, the use of
higher order approximations implies that a desired accuracy can be obtained
with fewer degrees of freedom compared to low order approximations. For
instance, the computation with tetrahedral linear elements in the finest mesh,
with almost 5 million degrees of freedom, provides an error comparable to
the computation with tetrahedral elements and p = 4 in the first mesh, with
less than 25 000 degrees of freedom. Similar conclusions are obtained for
other finite elements, e.g. to achieve an error of 10−3, hexahedral elements
with p = 2 employ almost 100 times more degrees of freedom than hexahedral
elements with p = 5. The results also show that higher order approximations
are able to reduce the cpu time required to reach a desired accuracy when
compared to lower order approximations. For instance, the cpu time required
to achieve an accuracy of 10−2 can by reduced by a factor of 30 when using
tetrahedral elements with p = 3 compared to linear tetrahedral elements.
Similar performance is obtained when comparing other linear elements with
their corresponding higher order equivalents, but it is apparent that there
is an optimal order of approximation depending on the desired accuracy.
For instance, to achieve an error of 5× 10−2, quadratic hexahedral elements
are slightly more efficient than cubic hexahedral elements, but for higher
fidelity results, say 5 × 10−3, cubic elements are more efficient. However, it
is important to remark that for any degree of accuracy, even for very low
accuracy levels, the use of higher order elements (i.e. p > 1) is advantageous
in terms of reducing the ndof and, more importantly, the cpu time for a
required accuracy. This example also gives an indication of the maximum
speed up that can be achieved when using hybrid meshes instead of pure
tetrahedral meshes.

5.5. Scattering by a 2λ PEC sphere

The final example involves the scattering of a plane incident electromag-
netic wave by a PEC sphere of diameter 2λ. This problem has an analytical
solution [43] and the relative error of the radar cross section (RCS) is used
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to measure the accuracy of numerical simulation. The truncated bound-
ary, forming the interface between the free–space and the absorbing PML,
is taken to be a cube. The outer boundary of the PML is also taken to be
a cube and the thickness of the PML is set equal to λ. Using the proce-
dure described in Section 4.2, two hybrid meshes are generated, composed of
tetrahedral elements near the scatterer, a transition region of affine pyramids
and affine hexahedrons elsewhere. The unstructured curved portion of the
mesh is obtained following the procedure described in [47].

Figure 16 shows a view of the two hybrid meshes, where the transition
between tetrahedral and hexahedral elements using pyramids is displayed.
The first mesh has 3 834 tetrahedra, 5 232 hexahedra and 452 pyramids and
the second mesh has 25 339 tetrahedra, 42 769 hexahedra and 1 596 pyra-
mids. It is anticipated that the savings obtained when using hybrid meshes
for electromagnetic scattering problems will be related to the percentage of
tetrahedral and hexahedral elements in the mesh. In the first mesh 40% of
the elements are tetrahedra while 36% of the elements are tetrahedral in the
second mesh. To compare the performance of tetrahedral and hybrid meshes,
two tetrahedral meshes are generated by considering the hybrid meshes of
Figure 16 and splitting each pyramid into two tetrahedrons and each hexahe-
dra into six tetrahedra. The total number of elements in the corresponding
tetrahedral meshes is 36 130 and 285 145 respectively.

As expected, the results reveal that the accuracy of the numerical solution
computed on the hybrid mesh is almost identical to the accuracy on the
corresponding tetrahedral mesh. As the error is measured in the RCS, the
accuracy is controlled by the solution in the unstructured region, which is
common to both tetrahedral and hybrid meshes. For instance, on the coarsest
mesh and with p = 1, the L 2 norm of the RCS error in the horizontal plane
is 8.0 × 10−2 for the hybrid mesh and 8.6 × 10−2 for the tetrahedral mesh.
With hybrid meshes, the cpu time is reduced by a factor of 2.8 and the
degrees of freedom by a factor of 2.4. Similar conclusions are reached when
the order of the approximation is increased. Using p = 3 in the coarsest
mesh, the L 2 norm of the RCS error in the horizontal plane is 2.6×10−4 for
both the hybrid and the tetrahedral meshes. With hybrid meshes, the cpu
time is reduced by a factor of 1.8 and the degrees of freedom by a factor of
1.7. Figure 17 shows the contours of the first component of the electric field,
E1, computed on the coarse hybrid mesh of Figure 16 using an order of a
approximation p = 4.

Similar conclusions are obtained for the second mesh. With p = 1, the
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(a) (b)

Figure 16: Scattering of a plane wave by a PEC sphere: a view of the two hybrid meshes
used to discretise the truncated domain and the PML.

L 2 norm of the RCS error in the horizontal plane is 2.3×10−2 for the hybrid
mesh and 2.4× 10−2 for the tetrahedral mesh. With hybrid meshes, the cpu
time is reduced by a factor of 2.8 and the degrees of freedom by a factor of
2.5. Similar conclusions are derived for p = 2. The L 2 norm of the RCS error
in the horizontal plane is 1.5× 10−4 for both the hybrid and the tetrahedral
meshes. With hybrid meshes, the cpu time is reduced by a factor of 2.2 and
the degrees of freedom by a factor of 2.0.

It is worth noting that a large difference in cpu time saving is observed
when comparing this example to the previous example. This is due to the
use of hybrid meshes instead of meshes with only one element type. With
40% of the elements in the coarsest hybrid mesh being tetrahedra, the cpu
time is mainly controlled by the computations required on the unstructured
portion of the mesh. It is apparent that the saving in cpu time associated
with the use of hybrid meshes is highly dependent on the geometry under
consideration. For geometries such as cylinders or spheres, where the maxi-
mum and minimum distance from a point in the scatterer to the PML region
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Figure 17: Scattering of a plane wave by a PEC sphere: numerical solution, E1, computed
on the coarse hybrid mesh with p = 4.

is similar, the percentage of elements in the unstructured part of the mesh
is expected to be very high. For geometries in which a significant variation
on the distance to the PML region is expected, such as a complete aircraft
configuration, this percentage is expected to be much lower. This means
that, for complex configurations the saving in cpu time will be significantly
higher as many more hexahedral elements will be used to fill the truncated
domain.

6. Concluding remarks

The efficiency of a high–order DG solver for the solution of Maxwell’s
equations in the time domain using hybrid meshes has been studied. Geo-
metric flexibility is achieved by using an unstructured mesh around complex
geometric objects and computational efficiency is then improved by using a
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Cartesian mesh of affine quadrilaterals or hexahedrons to fill the remainder of
the domain. The proposed approach benefits from the efficient quadrature–
free implementation in the majority of the domain as all elements, apart from
a number curved elements, are affine.

The optimal rate of convergence has been verified, for triangular and
quadrilateral elements in two dimensions and for tetrahedral, prismatic, pyra-
midal and hexahedral elements in three dimensions, using numerical exam-
ples with smooth analytical solutions. The efficiency of using hybrid meshes
has been analysed using more complex electromagnetic scattering applica-
tions in two and three dimensions. The results show that the saving in cpu
time is highly dependent on the order of the approximation and the percent-
age of Cartesian elements in the hybrid mesh. In two dimensions, it has been
found that for low to moderate degrees of approximation, i.e. p < 5, hybrid
meshes are able to produce the same accuracy with a small reduction in cpu
time and in the number of degrees of freedom. For very high–order approxi-
mations, the results indicate that it is best to consider triangular meshes. In
three dimensions, the performance improvement offered by hybrid meshes is
more significant, as the cpu time and the number of degrees of freedom can
be reduced by a factor of two. The saving in cpu time is directly related to
the percentage of tetrahedral elements in the hybrid mesh and, therefore, to
the geometry under consideration. When a hexahedral mesh is compared to a
tetrahedral mesh, it has been found that, to obtain the same accuracy, hexa-
hedral elements are between seven to 15 times more efficient than tetrahedral
elements.
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