Trends in Viruses and Worms

Tom Chen
SMU
tchen@engr.smu.edu
Outline

- Viral Statistics
- What are Viruses/Worms
- Past Trends: 4 Waves
- Why Attacks Continue
- Future Super Worms?
- Some Research Issues
Virus/Worm Highlights

1979 John Shoch and Jon Hupp at Xerox

1983 Fred Cohen

1988 Robert Morris Jr

1992 Virus creation toolkits, Mutation Engine
 Concept macro virus

1995 Melissa (March), ExploreZip (June)
 Love Letter (May)

1999 Sircam (July), Code Red I+II (July-Aug.), Nimda (Sep.)

2001

2003

24+ years ...

70,000+ viruses are known, but only hundreds “in the wild” and only a few spread well enough for major damage.

Worldwide economic impact ($billions)

- Love Letter: $8.7 B
- Code Red: $2.6 B
- Sircam: $1.1 B
- Melissa: $1.1 B
- ExploreZip: $1.0 B

*estimated by Computer Economics 2001
• Viruses/worms are consistently among most common attacks

3rd most costly security attack (after theft of proprietary info and DoS)

Average loss per organization due to virus/worms ($K)

- 1997: $75K
- 1998: $55K
- 1999: $45K
- 2000: $180K
- 2001: $243K
- 2002: $283K
- 2003: $200K

What are Viruses

- Key characteristic: ability to self-replicate by modifying (infecting) a normal program/file with a copy of itself
 - Execution of the host program/file results in execution of the virus (and replication)
 - Usually needs human action to execute infected program
Virus Examples

- **Overwriting viruses**
 - Original program
 - Virus code
 - Original part

- **Prepending viruses**
 - Virus code
 - Original program

- **Appending viruses**
 - Original program
 - Virus code
 - Jump
Virus Anatomy

- **Mark (optional)**
 - Prevents re-infection attempts

- **Infection mechanism**
 - Causes spread to other files

- **Trigger (optional)**
 - Conditions for delivering payload

- **Payload (optional)**
 - Possible damage to infected computer (virtually anything)
Worms

- Worm is a stand-alone program that exploits security holes to compromise other computers and spread copies of itself through the network
 - Unlike viruses, worms do not need to parasitically attach to other programs
 - Undetectable by file scanning
 - Spread by themselves without any human action
Worm Anatomy

- Structurally similar to viruses, except a stand-alone program instead of program fragment.

- Infection mechanism searches for weakly protected computers through a network (i.e., worms are network-based).

- Payload might drop a Trojan horse or parasitically infect files, so worms can have Trojan horse or virus characteristics (so-called hybrids).

<table>
<thead>
<tr>
<th>Mark (optional)</th>
<th>Infection mechanism</th>
<th>Trigger (optional)</th>
<th>Payload (optional)</th>
</tr>
</thead>
</table>
My Computer... Worms?

- New vulnerabilities are continually published in Microsoft security bulletings, CERT advisories, Bugtraq, NIPC CyberNotes, MITRE CVEs, ...

- SANS/FBI’s Top 10 Microsoft Windows vulnerabilities (May 2003):
<table>
<thead>
<tr>
<th></th>
<th>Vulnerability Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IIS server: buffer overflows, failure to handle unexpected requests</td>
</tr>
<tr>
<td>2</td>
<td>Remote Data Services component allows remote users to run commands with administrative privileges</td>
</tr>
<tr>
<td>3</td>
<td>SQL server: buffer overflows and various other vulnerabilities</td>
</tr>
<tr>
<td>4</td>
<td>Misconfiguration of network shares allows remote users full control of a host</td>
</tr>
<tr>
<td>5</td>
<td>Null Session connections (aka anonymous logon) allow anonymous remote users to fetch data or connect without authentication</td>
</tr>
<tr>
<td>6</td>
<td>LAN Manager passwords are weakly encrypted</td>
</tr>
<tr>
<td>7</td>
<td>User accounts with no passwords or weak passwords</td>
</tr>
<tr>
<td>8</td>
<td>Internet Explorer: various vulnerabilities</td>
</tr>
<tr>
<td>9</td>
<td>Improper permission settings allow remote access to Windows registry</td>
</tr>
<tr>
<td>10</td>
<td>Windows Scripting Host automatically executes .VBS scripts embedded in a file</td>
</tr>
</tbody>
</table>
Past Trends: 4 Waves

Wave 1: Experimental

Wave 2: Cross platform, polymorphic

Wave 3: Mass e-mailers

Wave 4: Dangerous, fast, complex,...

Super worms?
Wave 1

1979 John Shoch and Jon Hupp - Xerox worms

1983 Fred Cohen

1986 Brain virus

1987 Christma Exec virus

1988 Robert Morris worm

1989 Wank worm

1990 Stoned virus
Wave 1 - Early Ideas

- 1949 John von Neumann postulated “self-reproducing automata” - computing machines that could build copies and pass on their programming

- 1975 John Brunner’s novel “The Shockwave Rider” described a global computer network and a self-replicating, network-crawling “tapeworm” program
Wave 1

- 1971 Bob Thomas (BBN) wrote “creeper” program that moved around ARPAnet and displayed message on computer screens challenging people to catch it
 - An annoyance more than serious program
 - In response, others wrote “reaper” programs to chase and delete “creeper” programs (first antivirus)
Wave 1 - First Worms

- 1979 John Shoch and Jon Hupp at Xerox PARC coined “worm” after network-based “tapeworm” monster in John Brunner’s “The Shockwave Rider”
 - Experimented with worms for overnight diagnostics on internal Ethernet LAN
 - Worms programmed with limited lifetimes and suicide response to special “kill” packet
Wave 1 - First Viruses

- One worm mysteriously got out of control and crashed several computers
- 1983 Fred Cohen (PhD student at USC) conceived, wrote and demonstrated first documented virus
- 1986 Brain virus written by 2 Pakistani programmers used stealth to try to fool DOS utilities looking for its presence
Wave 1 - Christmas Tree

- 1987 Christma Exec virus spread by email, promising to display a Christmas tree graphic, but secretly emailed copies of itself to user’s list of outgoing mail addresses, using user’s name (to entice recipients to open the attachment)

- Early example of social engineering attack
Wave 1 - Internet Worm

Nov. 2, 1988 Robert Morris Jr (Cornell student) released worm that disabled 6,000 computers - 10% of Internet at the time

- Programming bug caused worm to re-infect already infected computers, until they crashed
- Brought worms/viruses to public awareness
Wave 1 - Internet Worm

- First to use combination of attacks to spread
 - Buffer overflow of Unix “finger” daemon: caused victim computers to run a shell code
 - Debug mode of “sendmail” program: caused victims to run set of commands to copy the worm
 - Cracked password files: guessed common words from a dictionary
Wave 1 (cont)

- 1989 WANK (worms against nuclear killers) worm spread through DECnet by guessing default accounts and passwords (often not changed), spreading anti-war propaganda

- Stoned, Jerusalem, other viruses - mostly targeted to DOS
Wave 1 Trends

- Most viruses are limited to DOS and spread slowly by diskettes
- Experiments with worms (Xerox, Morris) hard to control
- Beginnings of stealth viruses and social engineering attacks
Wave 2

- 1992: Polymorphic generators (MtE, SMEG, NED), virus construction toolkits (VCL, PS-MPC)
- 1994: Pathogen, Queeg polymorphic viruses
- 1995: Concept macro virus
- 1996: Boza, Tentacle, Punch viruses for Windows
- 1997: Bliss virus for Linux
- 1998: CIH virus, HLLP, DeTroie virus
• Encryption attempts to hide a recognizable signature (code pattern) from file-scanning antivirus software by scrambling virus body

 - But decryption routine (prepended and unencrypted) is constant (detectable)

• Polymorphism continually permutes appearance - no more than few bytes common between generations
Wave 2 - Polymorphism

- 1992 Dark Avenger’s user-friendly Mutation Engine (MtE) let anyone add polymorphism to any virus
 - Followed by others: TPE, NED, DAME
 - Created high risk of false alarms for antivirus

- 1994 Pathogen and Queeg: complicated viruses created by Black Baron’s SMEG
Wave 2 - Toolkits

• 1992 Virus Creation Lab: user-friendly virus construction toolkit allowed “script kiddies” to generate hundreds of viruses with little programming skill
 - Followed by PS-MPC and other toolkits
 - Antivirus companies flooded with thousands of (lame) viruses
 - Best known example: 2001 Anna Kournikova VBScript email virus
Wave 2 - Win32 Viruses

- 1995 Concept macro virus for Word for Windows95
 - Macro viruses: easy to write and cross-platform (mostly targeted to MS Office)
- 1996 Boza, Tentacle, Punch, other viruses target Windows95
- 1997 Bliss: first virus for Linux
Wave 2 (cont)

- 1998 CIH (Chernobyl) destructively overwrites PC hard disks with random data and overwrites flash ROM BIOS firmware - PCs cannot boot up
- 1998 HLLP.DeTroie virus: first to transmit private data from infected PCs to virus creator
Wave 2 Trends

- Most viruses target Windows
- Macro viruses go cross-platform
- Large-scale autogeneration of viruses and easy polymorphism
Wave 3

1999
- Happy99 worm

- Melissa macro virus

- PrettyPark, ExploreZip worms

2000
- BubbleBoy virus, KAK worm

- Love Letter worm

- Hybris worm

2001
- Anna Kournikova worm
Wave 3 - Mass E-mailers

- Jan 1999 Happy99 worm spread as e-mail attachment “happy99.exe”, displayed fireworks on screen for New Years Day 1999
 - Secretly modifies WSOCK32.DLL to e-mail second message (with worm) after every message sent
Wave 3 - Melissa

- March 1999 Melissa macro virus set new record, infecting 100,000 computers in 3 days
 - Launched MS Outlook and mailed itself to 50 addresses in address book
 - Infected Word normal.dot template
Wave 3 - PrettyPark

- Mid 1999 PrettyPark worm spread as e-mail with an attachment “PrettyPark.exe” showing icon of South Park character
 - Installs itself into system folder and modifies registry to ensure it runs
 - Emails itself to addresses in Windows address book
 - Sends password data to certain IRC servers
Wave 3 - ExploreZip

- June 1999 ExploreZip worm appeared to be WinZip file attached to e-mail
 - If executed, it displayed an error message but secretly installs itself into System directory
 - E-mails itself via Outlook or Exchange to recipients in unread inbox messages, and replies to all incoming messages with a copy of itself
Jan 2000 KAK worm was an embedded VBScript in HTML e-mail message with no visible text

- Previewing or opening message in Outlook executes the script
- Worm copies itself into Windows start-up folder, and attaches itself as a signature in all outgoing e-mail
Wave 3 - Love Letter

- May 2000 Love Letter worm demonstrated social engineering attack, pretending to be e-mail love letter
 - Attachment appears to be text but is VBScript that infects Windows and System directories and various file types
 - E-mails itself via Outlook to everyone in address book, infects shared directories, tries to spread by IRC channels
Wave 3 - Dynamic Plug-ins

- Oct 2000 Hybris worm spread by e-mail, modifying WSOCK32.DLL file to send itself as a second message to same recipient after every normal message sent
- Connected to a newsgroup to download encrypted plug-ins (code updates)
 - Potentially very dangerous - worm can get new instructions or payload at any time
Wave 3 Trends

- Mass e-mailing becomes most popular infection vector
 - Attacks increase in speed and scope
- Social engineering becomes common
- Worms begin to become dangerous (data theft, dynamic plug-ins)
Wave 4

2001
- Ramen, Davinia worms

2002
- Lion, Gnutelman worms
- Sadmind worm
- Sircam, Code Red I, Code Red II worms
- Nimda worm
- Badtrans, Klez, Bugbear worms

2003
- Gibe worm
- Slapper worm
- Winevar worm
- Lirva, Sapphire/Slammer worms

2004
- Fizzer worm
- Blaster, Welchia/Nachi, Sobig.F worms
Wave 4 - Linux Worms

- Linux is targeted by Ramen worm (Jan 2001) and Lion worm (March 2001)
- Lion is dangerous
 - Steals password data, installs rootkit “t0rn” (hides presence of worm from “syslogd” and other system utilities), installs distributed DoS agent “TFN2K”, installs backdoor root shells, listens on certain ports for remote instructions
Wave 4 - More Vectors

- Feb 2001 Gnutelman/Mandragore worm infects users of Gnutella peer-to-peer networks
 - Disguises itself as a searched file
- Blended attacks:
 - May 2001 Sadmind worm targets Sun machines and Microsoft IIS web servers
 - July 2001 Sircam spreads by e-mail and network shares
Wave 4 - A Modern Worm

- July 12, 2001 Code Red I version 1 worm targeted buffer overflow vulnerability in Microsoft IIS servers
 - Tried to install DoS agent targeted to “www.whitehouse.gov”
 - Programming bug caused worm to probe same set of IP addresses instead of generate random addresses, so spread was slow
Wave 4 - Code Red

• Week later, Code Red I version 2 fixed programming bug and spread much faster
 - Infected 359,000 computers in 14 hours (peak rate of 2,000 computers per minute)

• Aug 4, Code Red II used same exploit, spawning 300 parallel threads on each machine to probe for new victims
 - Probing caused DoS-like congestion
Wave 4 - New Sophistication

- Sept 2001 Nimda worm used blended attack via 5 vectors:
 - E-mailed itself using its own SMTP engine
 - Infected MS IIS web servers via buffer overflow exploit
 - Infected network shares
 - Added Javascript to web pages, infected any web browser
 - Backdoors left by Code Red and Sadmind
Wave 4 (cont)

- Nimda infected 450,000 computers in 12 hours
 - Spreading rate caused DoS-like congestion
 - Extensively modified registry and System directory to conceal its presence and make hard to remove
 - Created backdoor administrative account for remote control
Wave 4 - Armored Worms

- “Armored” worms attack and disable antivirus programs
 - Klez (Oct 2001), Bugbear (Oct 2001), Winevar (Nov 2002), Avril (Jan 2003) look for common antivirus processes and stop them, scan hard drive for key antivirus files and delete them
 - Winevar also masquerades as a Trojan version of an antivirus program
Wave 4 - Dangerous

- Worms become more dangerous
 - Gibe worm (March 2002) pretends to be e-mailed Microsoft security bulletin and patch, but secretly installs backdoor
 - Badtrans (Nov 2001), Bugbear, Lirva, Fizzer (May 2003) worms install keystroke logging Trojan horses
 - Lirva e-mails password data to virus writer, and downloads Back Orifice to infected PCs (gives complete remote control)
Wave 4 - Proof-of-Concepts

- Jan 2003 Sapphire/Slammer worm demonstrated that simple worm (in only one 404-byte UDP packet) could spread very fast
- Targeted Microsoft SQL servers, hit 90 percent of vulnerable hosts within 10 minutes (120,000 machines)
- At peak rate, infection doubled every 8.5 seconds - reached peak rate of 55,000,000 scans/sec after only 3 minutes
Wave 4 - Proof-of-Concepts

- Aug 12, 2003 Blaster targeted DCOM RPC vulnerability on Win2000 and WinXP - demonstrated majority of PCs are vulnerable
 - Infected 400,000 computers but not nearly the maximum potential spreading rate due to novice programming
 - Carried DoS agent targeted at “www.windowsupdate.com”
Wave 4 - Proof-of-Concepts

- Aug 19, 2003 Sobig.F was 6th variant of Sobig, spread by e-mail among Windows PCs
 - At peak rate, Sobig.F was 1 out of every 17 e-mail messages
 - Produced 1 million copies within 24 hours
 - Preprogrammed stopping date and empty payload suggests intention as proof-of-concept
Wave 4 Trends

- New infection vectors (Linux, P2P, IRC, IM,...)
- Blended attacks (combined vectors)
- Dynamic code updates (via IRC, web,...)
- Dangerous payloads
- Active attacks on antivirus software
- Fast and furious spreading
Wave 4 Trends

- Shorter time between discovery of vulnerability and a worm exploiting it
- Series of variants of a worm appear quickly
 - Most likely different authors - coordinated efforts?
Why Attacks Continue

• Worm outbreaks continue regularly despite antivirus software, firewalls, intrusion detection systems, e-mail filters

• Sometimes portrayed as escalating conflict between virus writers (innovating) and antivirus developers (catching up), but problem is larger involving entire computer industry
Why Attacks Continue

- Attacks will continue as long as computers have vulnerabilities that can be exploited
 - Software is written in an insecure manner, e.g., vulnerable to buffer overflows
 - When vulnerabilities are announced, many people do not apply patches (too inconvenient, too frequent, sometimes unstable)
Why Attacks Continue

• Who is held accountable?
 - Software vendors have acknowledged their responsibility to produce secure software but have avoided accountability (financial liability)
 - New lawsuits charge MS monolithic IT culture creates weakness
 - Virus writers are the criminals, but hard to identify and prosecute
Why Attacks Continue

- Viruses/worms are hard to trace to creator from analysis of code, unless there are accidental clues left
 - Most skilled virus writers are too good to get caught
 - Prosecuted get light sentences: Robert Morris - 3 years probation, $10,000 fine; Onel de Guzman for LoveLetter - released due to lack of laws in Philippines; Jan De Wit for Anna Kournikova - 150 hours community service
Why Attacks Continue

- Government cracking down on virus writers to set an example?
 - Teenager Jeffrey Lee Parson was just arrested for writing Blaster.B variant
 - Dan Dumitru Ciobanu was arrested in Romania for writing Blaster.F variant
- Government increasing sentence limits in November
Future Super Worms?

- General epidemic model predicts the rate of spreading as

\[
\frac{d}{dt} S = -bSI
\]

\[
\frac{d}{dt} I = bSI
\]

- \(b \) = infection rate parameter
- \(S \) = number susceptibles
- \(I \) = number infected
Super Worms (cont)

- But observed worm outbreaks tend to slow down more quickly than predicted.
Super Worms (cont)

• Epidemics naturally slow down when many become infected (then infectives tend to contact already infected)

• Worm outbreaks slow down for same reason

• Second factor is network congestion caused by heavy random probing
 - Worms effectively work against themselves
Super Worms (cont)

- Super worms (aka Warhol worms, flash worms, pulse worms) seek to saturate vulnerable population within few seconds or few minutes, not hours
- Possible if probing to new victims is efficient and coordinated, then spreading rate may be sustained
 - Network does not become congested with high volume of inefficient probes
Super Worms (cont)

- Coordinated probing is theoretically possible in several ways (not seen yet)
 - A hitlist of vulnerable hosts is pre-scanned and programmed into worm initially
 - Address range is continually divided whenever worm copies itself (each worm covers a separate address subrange)
 - Worms are coordinated centrally (eg, via IRC channel) - can also download updates
Some Research Issues

- Fast worms must be contained ("quarantined") automatically, cannot depend on manual methods (e.g., patching)

- Network infrastructure must be equipped to
 - Automatically detect worm outbreaks
 - React to quarantine new worms
Research (cont)

- Worm detection
 - New worms will have unknown signature, but worms typically exploit known vulnerabilities
 - Vulnerability exploited by Code Red I was known for a month; Sapphire/Slammer targeted vulnerability known for 6 months
 - Although known, people did not patch PCs so worms were successful
• Worm writers use known vulnerabilities because easier than discovering new security holes, and they want to ensure worms will spread

- Hence may be possible to recognize new worm by detecting attempts to exploit known vulnerabilities (behavior recognition approach)
Research (cont)

- If new worm is detected, how to quarantine?
 - Routers may be equipped with advanced packet filtering to selectively block worm traffic
 - How many routers and where? We have been looking at epidemiology and metastasis models for answers
In epidemic theory, “herd immunity” is a concept that entire population can be protected by immunization of sufficient fraction (but not all) of population.

- Applied in medicine to eliminate smallpox
- Concept implies certain number of advanced routers at key locations may be sufficient to protect entire Internet from new epidemics
- Epidemic models may point to key router locations
Conclusions

- Worm outbreaks continue to be commonplace, innovations continue
 - Past worms have tended to be proof-of-concepts, but future worms may be more dangerous as well as fast
 - In past, dangerous worms were slow enough to stop, future worms may be too fast
Conclusions

- Virus research has been little compared to scope/importance of problem
 - Outbreaks are so commonplace, they have become viewed as routine costs
 - But more research is needed

- Also, research has focused exclusively on “microscopic level (virus code)” - no “macroscopic level (network level) research