

Department-of-Mechanical-Engineering

**Dynamics Research Group** 



#### Robust Reliability of Neural Networks Using Information-Gap Models

University of Bristol 20<sup>th</sup> April 2006 Prof Keith Worden Dr S.G.Pierce, Dr G. Manson

Department of Mechanical Engineering, University of Sheffield Mappin Street, Sheffield S1 3JD, UK

Aknowledgements:

EPSRC DSTL Farnborough NETLAB and INTLAB for MATLAB<sup>™</sup> The.University.of.Sheffield

Department·of·Mechanical·Engineering

**Dynamics Research Group** 



### Introduction

Background: classification of acoustic and ultrasonic signals used for structural damage detection Previous work (at Sheffield) has focussed on Neural networks Outlier analysis Sammon mapping □ Wavelet analysis □ All successful at categorising damage, but... Potential problems with signal variability & noise (environmental and instrumentation) Current work investigates robustness of neural network for a classification problem

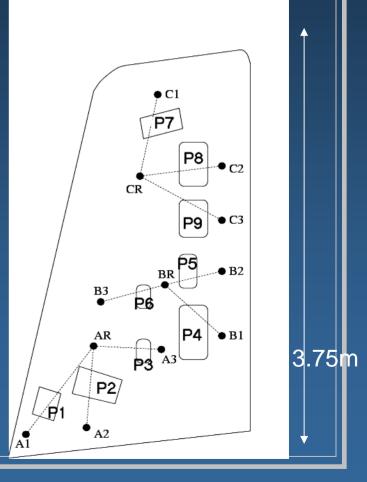
Department-of-Mechanical-Engineering

**Dynamics Research Group** 



# Background

Application area, interpretation and classification of acoustic and ultrasonic data used for health monitoring □ For example, complex signals arising from vibration / modal analysis Ultrasonic guided waves, Multiple modes Mode conversion Environmental effects □ True damage / defects Resistant to simple time domain analysis 


Department-of-Mechanical-Engineering

**Dynamics Research Group** 

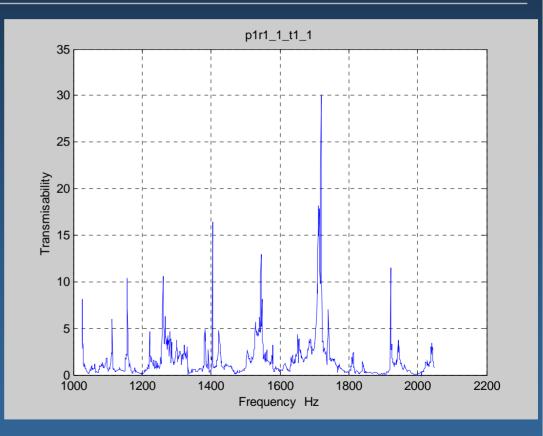


# Example data GNAT wing

- 12 accelerometers
  measuring forced
  vibration of wing
- 9 removable panels to simulate damage
- Measure transmissibilities
  between transducer pairs



1.4m


Department-of-Mechanical-Engineering

**Dynamics Research Group** 



### Raw transmissibility data

1024 spectral lines
 1024-2048 Hz



Department·of·Mechanical·Engineering

**Dynamics Research Group** 



# Outlier analysis

- Manual selection of features from the transmissibility spectra
- Reduced data set to a "best feature" corresponding to removal of a particular panel
- For each feature there were 1800 test measurements and 700 normal condition measurements
- Outlier analysis performed to generate matrix of novelty values
- Data divided into training, validation and test sets

Department·of·Mechanical·Engineering

**Dynamics Research Group** 



# ilrg

# MLP Network (implemented using NETLAB)

- 9 inputs corresponding to 9 selected features (doesn't have to be 9)
- 9 outputs corresponding to the 9 different damage conditions (panel removals)
- 1 hidden layer with variable number of nodes
- Softmax output layer
- Weight Decay regularisation

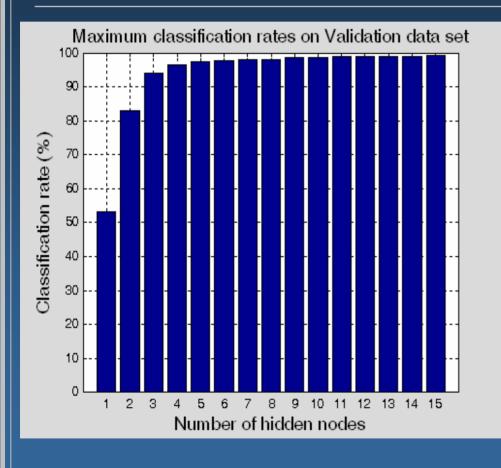


University of Bristol 20th April 2006

**Dynamics Research Group** Department-of-Mechanical-Engineering



#### **Conventional Network Training** and Performance


- Multiple network structures (100 independent) networks) trained on the training data with hidden nodes = 1 to 15
- Validation data used to select best performing network
- Test data used to assess network performance

**Department**·of·Mechanical·Engineering

**Dynamics Research Group** 



Network performance (validation data set)



- Performance judged on validation data set
- n\_hidd=4 gave (highest)
  97.3 % correct
  classification rate on
  validation set
- Sparse data therefore overtraining danger

**Dynamics Research Group** 



Department·of·Mechanical·Engineering

#### Network Performance (4 hidden nodes)

|                            | TRAINING |     | VALIDATION |      | TEST |      |
|----------------------------|----------|-----|------------|------|------|------|
|                            | min      | max | min        | max  | min  | max  |
| Classification<br>Rate (%) | 96.1     | 100 | 90.7       | 97.3 | 87.7 | 93.6 |
| Network<br>Number          | 25       | 4   | 21         | 85   | 48   | 71   |

**Dynamics Research Group** 



Department · of · Mechanical · Engineering

#### Network performance (test data set)

| _ | Classification rate=92.9293 % |    |    |    |    |    |    |    |    |
|---|-------------------------------|----|----|----|----|----|----|----|----|
|   | 61                            | 1  | 0  | 0  | 1  | 1  | 2  | 0  | 0  |
|   | 2                             | 60 | 2  | 0  | 1  | 1  | 0  | 0  | 0  |
|   | 1                             | 0  | 58 | 3  | 0  | 2  | 0  | 2  | 0  |
|   | 0                             | 0  | 0  | 63 | 1  | 1  | 0  | 1  | 0  |
|   | 1                             | 2  | 0  | 2  | 61 | 0  | 0  | 0  | 0  |
|   | 0                             | 0  | 4  | 1  | 0  | 61 | 0  | 0  | 0  |
|   | 0                             | 0  | 0  | 0  | 0  | 0  | 66 | 0  | 0  |
|   | 0                             | 0  | 0  | 1  | 0  | 0  | 3  | 61 | 1  |
|   | 0                             | 0  | 0  | 0  | 0  | 0  | 2  | 3  | 61 |

Test data: nhidd=4; ncyc=85

Performance of test data through best network (#85) selected from validation data



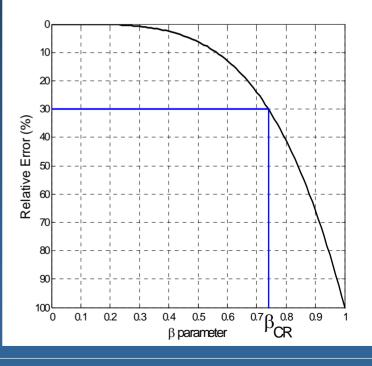
Department · of · Mechanical · Engineering

**Dynamics Research Group** 



#### Evaluation of network "robustness"

- We are interested in how a particular network will perform when the input data becomes noisy
- However real test data noise may be statistically very different to the noise encountered during the training phase; we want to have confidence in network classification performance under these conditions
- For example in a safety critical application we need a quantitative evaluation of the likelihood of misclassification
  - Probabilistic techniques can provide confidence bounds, but these are not guarantees, only probabilities
  - Info-gap analysis provides a definite bound to a given level of input uncertainty, useful if we specify that a particular misclassification is unacceptable in all cases


Department of Mechanical Engineering

**Dynamics Research Group** 



#### Quantifying network reliability

- With each network, we associate an input set  $I(\beta)$  composed of all possible inputs to the network. The size of uncertainty is described by the  $\beta$  parameter.
- Given the set of inputs, we compute the response set  $R(\beta)$  of all network outputs
- The network reliability is related to how large  $\beta$  can be before a point in the failure set is reached
- Critical value  $\beta_{CR}$  defines attaining the failure set
- Large  $\beta_{CR}$  value is desirable, network is <u>robust</u>



The University of Sheffield

Department · of · Mechanical · Engineering

**Dynamics Research Group** 



# Interval number sets

- Use interval numbers to define an input set to the network under test
  - $\square$  x is a point on the number line bounded by *b*, a
  - □ The interval number [a,b] is defined

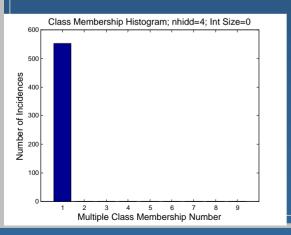
$$[a,b] = \left\{ x \mid a \le x \le b \right\}$$

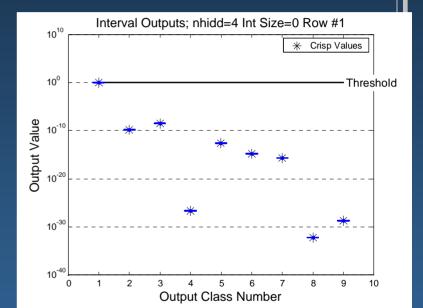
□ So the network inputs are interval numbers

 $[x_{ia}, x_{ib}] = [(x_i - \beta), (x_i + \beta)]$ 






The University of Sheffield


Department · of · Mechanical · Engineering

**Dynamics Research Group** 

#### Worst case error and opportunity for classification problems

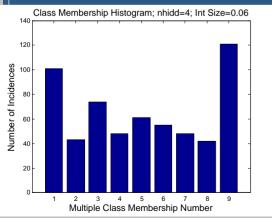
- Interval size =0 (degenerate with CRISP outputs)
- Output prediction
  Single class membership

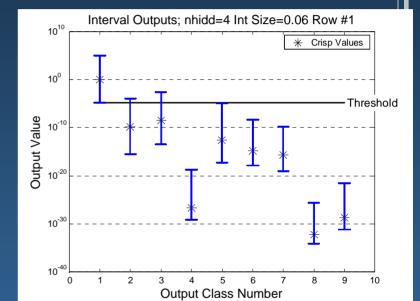




University of Bristol 20th April 2006

Target = class 1


Department of Mechanical Engineering


**Dynamics Research Group** 



# Worst case error and opportunity for classification problems

- □ Interval size =0.06
- Output prediction
  - 3 class membership
  - Threshold set as the minimum of the interval with the greatest maximum





Target = class 1

Department-of-Mechanical-Engineering

**Dynamics Research Group** 



# Definitions for interval classification problems

□ As output interval size increases • More likely for output set to contain target Best case classification rate increases However, multiple class membership leads to increasing uncertainty in classification Worst case classification rate decreases □ Define **WORST CASE** as percentage number of total hits minus number of hits with multiple class membership Could account for class membership number (not done here), i.e. it's miss-classification probability increases with class membership number OPPORTUNITY measures the improvement (headroom) over the crisp classification rate

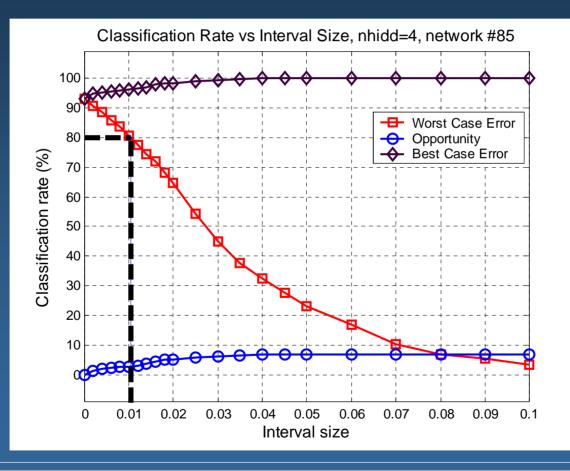
Department-of-Mechanical-Engineering

**Dynamics Research Group** 



Definitions for interval classification problems




WORST CASE = The percentage number of total hits minus number of hits with multiple class membership
 OPPORTUNITY = Best case - crisp classification rate

Department-of-Mechanical-Engineering

**Dynamics Research Group** 



#### Classification rate against interval size (robustness of a single network)



Department-of-Mechanical-Engineering

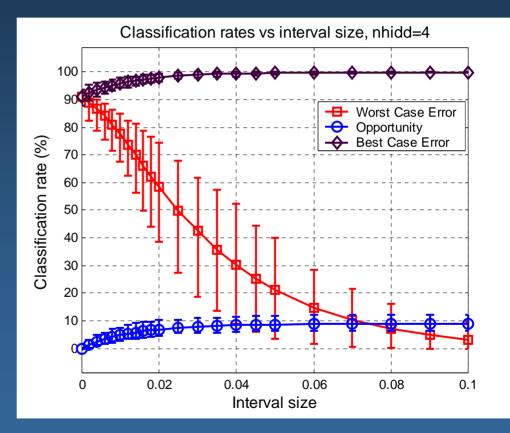
**Dynamics Research Group** 



#### Interval based network selection

 Previous example used interval propagation to investigate robustness of a particular network
 HOWEVER...

Can also use interval propagation to select the most robust network from many possibilities


**Dynamics Research Group** 



Variation across
 100 networks
 showing mean
 (centre markers)
 and range

The-University-of-Sheffield

Department-of-Mechanical-Engineering

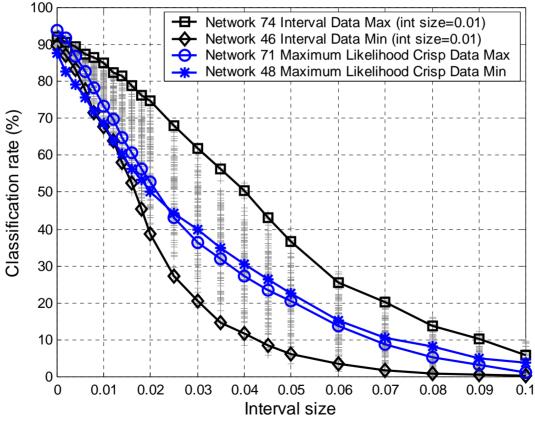


**Dynamics Research Group** Department-of-Mechanical-Engineering





#### Interval Output Variability Across Multiple Networks


Best network performance depends on interval size

| Interval Size | Mimimum Wo | rst Case Error | Maximum Worst Case Error |                |  |
|---------------|------------|----------------|--------------------------|----------------|--|
|               | Value      | Network Number | Value                    | Network Number |  |
| 0             | 87.71      | 48             | 93.60                    | 71             |  |
| 0.002         | 82.49      | 48             | 92.26                    | 10             |  |
| 0.004         | 78.96      | 48             | 89.90                    | 93             |  |
| 0.006         | 75.59      | 48             | 88.72                    | 93             |  |
| 0.008         | 71.38      | 46             | 86.36                    | 57             |  |
| 0.010         | 67.68      | 46             | 84.85                    | 74             |  |
| 0.012         | 62.46      | 80             | 82.32                    | 57             |  |
| 0.014         | 56.40      | 31             | 81.31                    | 74             |  |
| 0.016         | 50.00      | 31             | 78.79                    | 74             |  |
| 0.018         | 43.94      | 31             | 76.77                    | 93             |  |
| 0.020         | 38.72      | 46             | 74.58                    | 74             |  |
| 0.025         | 27.44      | 46             | 68.01                    | 74             |  |
| 0.030         | 18.86      | 26             | 61.78                    | 74             |  |
| 0.035         | 13.47      | 26             | 57.41                    | 93             |  |
| 0.040         | 8.75       | 26             | 52.53                    | 93             |  |
| 0.045         | 5.89       | 26             | 44.44                    | 93             |  |
| 0.050         | 3.54       | 26             | 40.07                    | 93             |  |
| 0.060         | 1.52       | 26             | 28.62                    | 93             |  |
| 0.070         | 0.51       | 26             | 21.72                    | 93             |  |
| 0.080         | 0.34       | 26             | 16.33                    | 49             |  |
| 0.090         | 0.00       | 100            | 12.29                    | 49             |  |
| 0.100         | 0.00       | 66             | 9.76                     | 21             |  |

**Dynamics Research Group** Department-of-Mechanical-Engineering

#### Interval Improvement Over Best Crisp Network

Worst Case Error Classification Rate vs Interval Size, nhidd=4,



The.University.of.Sheffield

Department·of·Mechanical·Engineering

**Dynamics Research Group** 



# Conclusions

- Standard MLP used for classification problem
- Low frequency (1-2 kHz) vibration data from GNAT wing
- Non-probabilistic approach provides a conservative (Robust) estimate of worst case error due to input perturbations
  - □ Interval based Information-Gap technique provides...
    - Single network robustness quantification
    - Multiple network selection procedure
      - □ Significant improvement over crisp network training