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Example 1: Acoustic loads on satellites 

Arianne 5 Launch Acoustic test facility at ESTEC

http://www.space-technology.com/projects/artemis/index.html
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Pressure modelled as a summation of plane waves at each frequency
This is very time consuming - is there a more efficient approach?

Pressure p

Structural model Diffuse acoustic field

Plane wave

Satellite computational model



Example 2: High frequency structural vibrations

Thin panels – very many modes, response can be viewed
as a diffuse wave field

Stiff components – detailed FE model needed



Structure computational model

FE model – displacement dofs

SEA model – diffuse wave fields

How do we couple these very different types of model?
Again we need to compute the forces arising from the diffuse waves. 



The diffuse field reciprocity relation

Finite element model has dof x
Pressure p produces force vector f
Can we avoid summing waves to compute f ?

The diffuse field reciprocity relation states:
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E is the energy of the diffuse field
n is the modal density of the diffuse field
(for acoustics E/n is specified by the noise level)

is the dynamic stiffness matrix for radiation
into an infinite acoustic system – readily computable

∞D



Short proof of the relation (structural component)
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Express qI in terms of blocked modes

I =q Φa

where a are the modal amplitudes
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Ensemble averaging

Assume that:

-the natural frequencies are random
-The modal amplitudes a correspond to a diffuse field, i.e. they
are statistically independent and each mode stores equal energy 
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The proof is completed by noting that E[ ]= ∞D D

Thus:

Smith, P. JASA 34, 640-647, 1962
Shorter, P.J. and Langley, R.S. JASA 117, 85-95, 2005 
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Application 1: diffuse acoustic loading

∞D is the radiation dynamic stiffness of the
structure.  This can be found by using the 
boundary element method.

The diffuse field reciprocity relation
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replaces the need for a direct summation
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Example – acoustic transmission, ensemble of random cavities



Application 2: the hybrid FE-SEA method

Thin panels – very many modes, response can be viewed
as a diffuse wave field.  SEA degree of freedom Ek

Stiff components – detailed FE model needed
FE degrees of freedom q



Hybrid Equations  – the response of subsystem k

Boundary freedoms q

+

Direct Field Reverberant Field

Boundary motions generate
a “direct field” of ingoing
waves.  Associated boundary
forces written as:

( )k
dir− qD

Reflections produce the
“reverberant field”.
Associated boundary
forces written as:

( )k
revf
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Hybrid Equations continued

So the system equations are written as:

( )k
dirD can be found by considering wave radiation

into a semi-infinite system

( )k
revf is accounted for by using a diffuse field reciprocity

result:
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Final form of the Hybrid Equations

where:



Example application of the hybrid method

Test box
• frame: welded beam sections 

1”x1”x1/8”

• 5 plates of different thickness

Courtesy of General Motors
Corporation
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Example application of the hybrid FE-SEA method



• Research example: two plates coupled through 3 points

• Plate 1 is deterministic 

(long wavelength, ~ 9 modes below 100 Hz)

• Plate 2 is randomized by masses and edge springs 

(short wavelength, ~ 148 modes below 100 Hz)

• Harmonic point force on plate 1

1

2

Further Development: Variance Prediction in the Hybrid Method
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Postcript

For systems that are driven purely at the boundary, it is unlikely
that the excitation will produce a perfect diffuse field.  In this
case it has recently been found that the reciprocity relationship
must be extended:
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This extension clears up an apparent anomaly between the
reciprocity relationship and recent results concerning the variance
of the response of a random system. 

Langley, R.S. JASA submitted, 2006 


