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Abstract Eigenvalue problems play a crucial role in the stability and dynamics of engineering
systems modeled using the linear mechanical theory. When uncertainties, either in the param-
eters or in the modelling, are considered, the eigenvalue problem becomes a random eigenvalue
problem. Over the past half a century, random eigenvalue problems have received extensive
attentions from the physicists, applied mathematicians and engineers. Within the context of
civil, mechanical and aerospace engineering, significant work has been done on perturbation
method based approaches in conjunction with the stochastic finite element method. The per-
turbation based methods work very well in the low frequency region which is often sufficient
for many engineering applications. In the high frequency region however, which is necessary
for some practical applications, these methods often fail to capture crucial physics, such as
the veering and modal overlap. In this region one needs to consider the complete spectrum of
the eigenvalues as opposed to the individual eigenvalues often considered in the low frequency
applications. In this paper we consider the density of the eigenvalues of a discrete or discretised
continuous system with uncertainty. It has been rigorously proved that the density of eigen-
values of random dynamical systems reaches a non-random limit for large systems. This fact
has been demonstrated by numerical examples. The implications of this result for the response
calculation of large stochastic structural dynamical systems have been highlighted.

1 Introduction
The predictions from high-resolution numerical models may sometimes exhibit significant

differences with the results from physical experiments due to uncertainty. Such uncertainties
include, but are not limited to (a) parameter uncertainty (e.g, uncertainty in geometric pa-
rameters, friction coefficient, strength of the materials involved); (b) model uncertainty (aris-
ing from the lack of scientific knowledge about the model which is a priori unknown); (c)
experimental error (uncertain and unknown errors percolate into the model when they are
calibrated against experimental results). When substantial statistical information exists, the
theory of probability and stochastic processes offer a rich mathematical framework to repre-
sent such uncertainties. In a probabilistic setting, the data (parameter) uncertainty associated
with the system parameters, such as the geometric properties and constitutive relations (i.e.
Young’s modulus, mass density, Poisson’s ratio, damping coefficients), can be modeled as ran-
dom variables or stochastic processes using the so-called parametric approach. These uncertain-
ties can be quantified and propagated, for example, using the stochastic finite element method
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[5, 6, 15, 16, 20, 24, 30, 31, 34, 35, 40, 42, 43, 49]. Recently, the uncertainty due to modelling
error has received attention as this is crucial for model validation [21–23]. The model uncer-
tainty problem poses serious challenges as the parameters contributing to the modelling errors
are not available a priori and therefore precludes the application of a parametric approach to
address such issues. Model uncertainties do not explicitly depend on the system parameters.
For example, there can be unquantified errors associated with the equation of motion (linear
or non-linear), in the damping model (viscous or non-viscous [8, 9]), in the model of structural
joints. The model uncertainty may be tackled by the so-called non-parametric method such as
the statistical energy analysis [25–29, 44] random matrix approach [1–3, 7, 38, 46–48].

The equation of motion of a damped n-degree-of-freedom linear dynamic system can be
expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

where f(t) ∈ Rn is the forcing vector, q(t) ∈ Rn is the response vector and M ∈ Rn×n, C ∈ Rn×n

and K ∈ Rn×n are the mass, damping and stiffness matrices respectively. In order to completely
quantify the uncertainties associated with system (1) we need to obtain the probability density
functions of the random matrices M, C and K. Using the parametric approach, such as the
stochastic finite element method, one usually obtains a problem specific covariance structure
for the elements of system matrices. The nonparametric approach [1–3, 7, 46–48] on the other
hand results in a central Wishart distribution for the system matrices. In a recent paper [4]
it was shown that a single Wishart matrix with properly selected parameters can be used for
systems with both parametric uncertainty and nonparametric uncertainty. The calculation of
the statistics of dynamic response can be expressed in terms of the eigenvalues and eigenvectors
of a random matrix. This paper is focused on the density of eigenvalues of such random systems.

The outline of the paper is as follows. In section 2 dynamic response of linear stochastic
systems is discussed. A brief overview of random matrix models in probabilistic structural
dynamics is given in section 3. The density of the eigenvalues are discussed section 4. In section 5
the accuracy of the proposed results regarding the density of the eigenvalues are numerically
verified. Based on the study taken in the paper, a set of conclusions are drawn in section 6.

2 Uncertainty quantification of dynamic response
Assuming all the initial conditions are zero and taking the Laplace transform of the equation

of motion (1) we have [
s2M + sC + K

]
q̄(s) = f̄(s) (2)

where ¯(•) denotes the Laplace transform of the respective quantities. The aim here is to obtain
the statistical properties of q̄(s) ∈ Cn when the system matrices are random matrices. The
undamped eigenvalue problem is given by

Kφj = ω2
j Mφj , j = 1, 2, . . . , n (3)

where ω2
j and φj are respectively the eigenvalues and mass-normalized eigenvectors of the

system. We define the matrices

Ω = diag [ω1, ω2, . . . , ωn] ∈ Rn×n and Φ = [φ1, φ2, . . . , φn] ∈ Rn×n (4)

so that
ΦT KeΦ = Ω2 and ΦT MΦ = In (5)

where In is an n-dimensional identity matrix. Using these, Eq. (2) can be transformed into the
modal coordinates as [

s2In + sC′ + Ω2
]
q̄′ = f̄

′ (6)

where and (•)′ denotes the quantities in the modal coordinates:

C′ = ΦT CΦ, q̄ = Φq̄′ and f̄
′ = ΦT f̄ (7)
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For simplicity let us assume that the system is proportionally damped with deterministic modal
damping factors ζ1, ζ2, . . . , ζn. Therefore, when we consider random systems, the matrix of
eigenvalues Ω2 in equation (6) will be a random matrix of dimension n. Suppose this random
matrix is denoted by Ξ ∈ Rn×n:

Ω2 ∼ Ξ (8)

Since Ξ is a symmetric and positive definite matrix, it can be diagonalized by a orthogonal
matrix Ψ r such that

ΨT
r ΞΨ r = Ω2

r (9)

Here the subscript r denotes the random nature of the eigenvalues and eigenvectors of the
random matrix Ξ. Recalling that ΨT

r Ψ r = In, from equation (6) we obtain

q̄′ =
[
s2In + sC′ + Ω2

]−1
f̄
′ (10)

= Ψ r

[
s2In + 2sζΩr + Ω2

r

]−1
ΨT

r f̄
′ (11)

where
ζ = diag [ζ1, ζ2, . . . , ζn] ∈ Rn×n (12)

The response in the original coordinate can be obtained as

q̄(s) = Φq̄′(s) = ΦΨ r

[
s2In + 2sζΩr + Ω2

r

]−1
(ΦΨ r)T f̄(s)

=
n∑

j=1

xT
rj

f̄(s)
s2 + 2sζjωrj + ω2

rj

xrj .
(13)

Here

Ωr = diag [ωr1 , ωr2 , . . . , ωrn ] (14)
and Xr = ΦΨ r = [xr1 ,xr2 , . . . ,xrn ] (15)

are respectively the matrices containing random eigenvalues and eigenvectors of the system.
The Frequency Response Function (FRF) of the system can be obtained by substituting s = iω
in Eq. (13). In the next section we discuss the derivation of the random matrix Ξ.

3 Wishart random matrix model
We start with the fact that the baseline model of the system under consideration is known.

Since proportional damping model is assumed, the baseline model consist of the mass and
stiffness matrices given by M0 ∈ Rn×n and K0 ∈ Rn×n. These matrices are in general large
banded matrices and can be obtained using the conventional finite element method [10, 12,
13, 51]. In addition to this, it is assumed that the dispersion parameters associated with these
matrices are known. The dispersion parameter [46, 47] is a measure of uncertainty in the system
and it is similar to normalized variance of a matrix. For example, the dispersion parameter
associated with the mass matrix is defined as

δM =
E

[
‖M−M0 ‖2F

]

‖M0 ‖2F
(16)

where ‖•‖F denotes the Frobenius norm of a matrix. The dispersion parameter associated with
the stiffness matrix can be defined in a similar way. The dispersion parameters δM and δK can
be obtained using stochastic finite element method [1–3] or experimental measurements [7].

From the mathematical analysis in the previous section it can be seen that the statistics of
dynamic response depends only on the distribution of the eigenvalues and eigenvectors of the
matrix Ξ. Adhikari has shown that [4] the matrix Ξ can be modelled as a Wishart random
matrix so that Ξ ∼ Wn(p,Σ). We refer to the books by Muirhead [39], Eaton [14], Griko
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[18], Gupta and Nagar [19], Mathai and Provost [33], Tulino and Verdú [50] and Mezzadri and
Snaith [37] for discussions on Wishart random matrices and and related mathematical details.
The parameters p and Σ can be obtained from the available data regarding the system, namely
M0, K0, δM and δK . It was shown that

Ξ ∼ Wn (p,Σ) (17)

where

Σ = Ω2
0/θ, p = n + 1 + θ and θ =

(1 + βH)
δ2
H

− (n + 1) (18)

The constant βH and the dispersion parameter δH can be obtained as

βH =




n∑

j=1

ω2
0j




2

/

n∑

j=1

ω4
0j

(19)

and

δH =

((
βn2 + 2βn + n2 − 1 + β

)
δK − nβK − βnβK − βn− n− ββK + 1− β + βK

)
δM

2

(1 + βK) (−1− βM + nδM ) (−1− βM + nδM + 3δM )

+
(−2n− 2nβM − 2β − 2ββ1 − 2βn− 2βnβM ) δKδM

(1 + βK) (−1− βM + nδM ) (−1− βM + nδM + 3δM )

+
(ββKβM + βKβM + ββM + βK + ββK + β + 1 + βM ) δM

(1 + βK) (−1− βM + nδM ) (−1− βM + nδM + 3δM )

+

(
ββM

2 + 2ββM + 2βM + β + 1 + βM
2
)
δK

(1 + βK) (−1− βM + nδM ) (−1− βM + nδM + 3δM )
(20)

where

βM = {Trace (M0)}2/Trace
(
M0

2
)

and βK = {Trace (K0)}2/Trace
(
K0

2
)

(21)

These relationships completely defines all the parameters of the Wishart random matric neces-
sary for uncertainty quantification of structural dynamic systems.

4 Density of eigenvalues
From equations (10) and (11) it is clear that the spectral properties of the Wishart random

matrix Ξ play a key role in uncertainty quantification of stochastic dynamical systems. In this
section we specifically look into the density of the eigenvalues. Our main result is that the
density of the eigenvalues have the ‘self averaging’ property. This implies that the density of
the eigenvalues of nominally identical systems are almost identical. In the next two subsections
we aim to present a rigorous proof.

4.1 Linear eigenvalue statistic
Let Ξ be a n×n random matrix and {λl}n

l=1 its eigenvalues. Then the (empirical) eigenvalue
density is

ρn(λ) = n−1
n∑

l=1

δ(λ− λl), (22)

where δ is the Dirac delta-function. Denote ρn(λ) the expectation of ρn, i.e.,

ρn(λ) = E{ρn(λ)}. (23)

The symbol E{...} denotes the mathematical expectation, i.e., the averaging with respect to
the corresponding probability law.
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To prove the selfaveraging of ρn one has to show that, say, its the variance

Var{ρn(λ)} := E{ρ2
n(λ)} −E2{ρn(λ)} (24)

tends to zero as n → ∞, and if possible, to find (or to estimate) the rate of decay of the
variance. However, while ρn(λ) = E{ρn(λ)}, i.e., the second term above, is well defined, this is
not the case for the first term. Indeed, we have by definition

ρ2
n(λ) = n−2

n∑

l1,l2=1

δ(λ− λl1)δ(λ− λl2) (25)

= n−2
n∑

l1=1

δ2(λ− λl1) + n−2
∑

l1 6=l2

δ(λ− λl1)δ(λ− λl2). (26)

and we see that summand δ2(λ−λl1) of the first sum on the r.h.s is not well defined (it is often
said that the square of delta-function is infinity).

To avoid this we have to ‘smooth’ the delta-function, i.e., to replacing it with a smooth
function having a well pronounced peak. If we denote this function u, then we have

n−1
n∑

l=1

u(λ− λl) =
∫

u(λ− µ)ρn(µ)dµ (27)

instead of ρn(λ). This happens, in particular, when one computes ρn(λ) numerically. This
is because one first finds the eigenvalues and then draws a continuous envelope curve which
corresponds to smoothing ρn with a function u whose peak has a width bigger that the distance
(of the order O(n−1)) between the eigenvalues. This is why we will not deal with ρn(λ) itself
but rather with so called linear eigenvalue statistics, defined for any sufficiently smooth test
function ϕ as

Nn[ϕ] = n−1
n∑

l=1

ϕ(λl) =
∫

ϕ(µ)ρn(µ)dµ (28)

Note that ρn in equation (22) correspond formally to ϕ(µ) = δ(λ − µ) for a given λ. In the
next subsection, we consider the density of eigenvalues within these general frameworks of the
Random Matrix Theory.

4.2 Self averaging property and the Marc̆enko-Pastur density
Let Ξ be n× n real symmetric or Hermitian Wishart matrix with p degrees of freedom and

a n× n covariance matrix Σ, i.e., Ξ ∼ Wn(p, Σ). Denote {λl}n
l=1 its eigenvalues and consider

the linear eigenvalue statistic (see (28))

Nn[ϕ] = n−1
n∑

l=1

ϕ(λl), (29)

corresponding to a real or complex valued test function ϕ. It can be shown (see [17, 32, 45])
that

lim
n→∞→, p→∞, p/n→c∈[1,∞)

E{Nn[ϕ]} =
∫

ϕ(λ)ρ(λ)dλ, (30)

where ρ can be found by solving a certain functional equation for its Stieltjes transform

f(z) =
∫

ρ(λ)dλ

λ− z
, =z 6= 0. (31)

In the case, where Σ = In and c > 1 we have
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ρ(λ) =
1

2πλ

{√
(a+ − λ)(λ− a−), λ ∈ [a−, a+],

0, λ /∈ [a−, a+],
(32)

where a± = (1±√c)2. If c = 1 then

ρ(λ) =
1
2π

{√
(4− λ)/λ, λ ∈ (0, 4],

0, λ /∈ (0, 4].
(33)

The density of eigenvalues given by equations (32) or (33) is now known as Marc̆enko-Pastur
(MP) density. This density will be considered in the next section in the numerical examples.

Let us show that the fluctuations of Nn[ϕ] around its expectation E{Nn[ϕ]} vanish suffi-
ciently fast in the limit

n →∞→, p →∞, p/n → c ∈ (0,∞) (34)

To this end we obtain a bound for the variance

Var{Nn[ϕ]} = E{|Nn[ϕ]|2} − |E{Nn[ϕ]}2

of Nn[ϕ]. The bound is

Var{Nn[ϕ]} ≤ 4
√

3
n2p

Tr Σ2(max
λ∈R

|ϕ′(λ)|)2. (35)

It is valid for real symmetric as well as for hermitian Wishart matrices. We give below its proof
for real symmetric matrices. The proof for hermitian matrices is practically the same.

It can be shown that if we want to keep the spectrum of Ξ bounded for all n, p of (34) rather
than escaping to infinity, we have to assume that in the limit (34):

max
p,n

n−1TrΣ2 ≤ C < ∞. (36)

(the same, in fact stronger, condition is necessary to prove (30)). Assuming this and

max
λ∈R

|ϕ′(λ)| < ∞, (37)

we obtain from (35) that
Var{Nn[ϕ]} = O(n−2) (38)

under condition (34) and (36) – (37).
Note that if {λl}n

l=1 were independent identically distributed random variables, then the
variance of their linear statistics is equal to n−1Var{ϕ(λ1)}, i.e., is O(n−1) for any ϕ such that
Var{ϕ(λ1)} < ∞. This is a manifestation of strong statistical dependence between eigenvalues
of Wishart (and many other) random matrices, known also as the repulsion of eigenvalues
and/or the rigidity of spectrum (see e.g. [36]).

Proof of (35). The proof can be given by following these steps:

(i). Given the standard Gaussian random variables {ξl}q
l=1

E{ξl} = 0, E{ξlξm} = δlm (39)

and a differentiable function Φ : Rq → C of q variables, consider the random variable

Ψ = Φ(ξ1, ..., ξq). (40)

Then its variance admits the bound
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Var{Ψ} ≤
q∑

l=1

E

{∣∣∣∣
∂Φ

∂ξl

∣∣∣∣
2
}

, (41)

known as the Poincaré inequality (see e.g. [11]).

(ii). Given a n×n real symmetric or hermitian matrix A(t) depending on a parameter t and
a function ϕ : R→ C, consider the matrix function ϕ(A(t)). Then we have

d

dt
Trϕ(A(t)) = Trϕ′(A(t))A′(t)). (42)

Note now that we can write the Wn(p, Σ) real symmetric Wishart matrix as

Ξ = p−1RXXT R, (43)

where R is a positive definite n× n matrix such that R2 = Σ and X = {Xαj}p,n
α,j=1 is a p× n

random matrix whose entries are the standard Gaussian random variables

E{Xαj} = 0, E{XαjX∗
βk} = δαβδjk. (44)

By using this one can check easily that the entries {Ξjk}n
j,k=1 of Ξ are

Ξjk = p−1
n∑

j,k=1

p∑
α=1

RjlXαlXαmRmk (45)

thus
E{Ξjk} = Σjk (46)

as it should be.
Note now that it follows from the spectral theorem for real symmetric matrices and (29)

that
Nn[ϕ] = Trϕ(Ξ). (47)

Take in (41) n−1Trϕ(Ξ) as Ψ and {Xαj}p,n
α,j=1 as {ξl}q

l=1, hence q = np. This yields

Var{Nn[ϕ]} ≤ n−2

p∑
α=1

n∑

j=1

E

{∣∣∣∣
∂Trϕ(Ξ)

∂Xαj

∣∣∣∣
2
}

. (48)

Take now in (42) Xαj as t, p−1RXXT R as A and use the formula (see (45))

∂

∂Xαj
(p−1RXXT R)lm = Rlj(XT R)αm + (RX)lαRjm. (49)

This yields after a simple algebra

Var{Nn[ϕ]} ≤ 4
(np)2

E
{
TrΞϕ′(Ξ)Σϕ′(Ξ)

}
. (50)

Now we use

(iii). The Schwarz inequality for traces

|TrAB|2 ≤ TrAA∗ TrBB∗

with A = Ξϕ′ and B = Σϕ′. We obtain that

|TrΞϕ′(Ξ)Σϕ′(Ξ)| ≤ (TrΞ2ϕ′(Ξ)ϕ′(Ξ))1/2(TrΣ2ϕ′(Ξ)ϕ′(Ξ))1/2.



8 S Adhikari and L A Pastur

Two more inequality to use are

(iv) |TrAB| ≤ ||A||TrB,

valid for any matrix A and a positive definite B, where ||A|| is the Euclidian norm of A, and

(v) ||ψ(Ξ)|| ≤ maxx∈R |ψ(x)|,
valid a real symmetric (hermitian) Ξ.

We obtain from the above

Var{Nn[ϕ]} ≤ 4
(np)2

(max
x∈R

|ϕ′(x)|)2(TrΣ2)1/2(E{TrΞ2})1/2 (51)

It follows from (44) and (45) that if n ≤ p, then

E{TrΞ2} ≤ 3p2TrΣ2.

Plugging this in (51), we obtain (35). In the next section, the validity of equations and (38) are
examined using numerical examples.

5 Numerical investigations
In the previous section it was proved that for large random dynamical systems, the density

of eigenvalues reaches a non-random limit. In this section we examine the validity of this result
using numerical examples. We also verify if one of most widely used asymptotic density, namely
the Marc̆enko-Pastur density, is valid for structural-dynamic systems.
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Fig. 1 The Finite Element (FE) model of a steel cantilever plate. The deterministic properties are:
Ē = 200× 109N/m2, µ̄ = 0.3, ρ̄ = 7860kg/m3, t̄ = 3.0mm, Lx = 0.998m, Ly = 0.59m.

A rectangular cantilever steel plate is considered to illustrate the convergence of the
eigenvalue-density. The deterministic properties are assumed to be Ē = 200×109N/m2, µ̄ = 0.3,
ρ̄ = 7860kg/m3, t̄ = 3.0mm, Lx = 0.998m, Ly = 0.59m. The schematic diagram of the plate is
shown in Figure 1. The plate is divided into 25 elements along the x-axis and 15 elements along
the y-axis for the numerical calculations. The resulting system has 1200 degrees of freedom so
that n = 1200. In Figure 2 the density of eigenvalues of the deterministic system is compared
with the Marc̆enko-Pastur density. Except in the very low frequency region, the Marc̆enko-
Pastur density agree well with the Finite Element results. Two different cases of uncertainties
are considered. In the first case it is assumed that the material properties are randomly inhomo-
geneous. In the second case we consider that the plate is ‘perturbed’ by attaching spring-mass
oscillators at random locations. The first case corresponds to a parametric uncertainty problem
while the second case corresponds to a non-parametric uncertainty problem.
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Fig. 2 The density of 1200 eigenvalues of the baseline model.

5.1 Plate with randomly inhomogeneous material properties:
parametric uncertainty problem

It is assumed that the Young’s modulus, Poissons ratio, mass density and thickness are
random fields of the form

E(x) = Ē (1 + εEf1(x)) , µ(x) = µ̄ (1 + εµf2(x)) (52)
ρ(x) = ρ̄ (1 + ερf3(x)) and t(x) = t̄ (1 + εtf4(x)) (53)

The two dimensional vector x denotes the spatial coordinates. The strength parameters are as-
sumed to be εE = 0.10, εµ = 0.10, ερ = 0.08 and εt = 0.12. The random fields fi(x), i = 1, · · · , 4
are assumed to be correlated homogenous Gaussian random fields. An exponential correlation
function with correlation length 0.2 times the lengths in each direction has been considered. The
random fields are simulated by expanding them using the Karhunen-Loève expansion [16, 41]
involving uncorrelated standard normal variables. A 5000-sample Monte Carlo simulation is
performed to obtain the eigenvalues of the system. In Figure 3 100 samples of the density of the
eigenvalues are shown, alongside the fitted Marc̆enko-Pastur density and density obtained from
the baseline model. The density of the eigenvalues of the random realization are quite close.

5.2 Plate with randomly attached spring-mass oscillators:
nonparametric uncertainty problem

In this example we consider the same plate but with non-parametric uncertainty. The baseline
model is perturbed by attaching 10 spring mass oscillators with random natural frequencies at
random nodal points in the plate. The natural frequencies of the attached oscillators follow
a uniform distribution between 0.2 kHz to 4.0 kHz. The nature of uncertainty in this case
is different from the previous case because here the sparsity structure of the system matrices
change with different realizations of the system. Again a 5000-sample Monte Carlo simulation is
performed to obtain the eigenvalues. In Figure 4, 100 samples of the density of the eigenvalues
are shown, alongside the fitted Marc̆enko-Pastur density and density obtained from the baseline
model. The density of the eigenvalues of the random realization are quite close.
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Fig. 3 The density of eigenvalues of the plate with randomly inhomogeneous material properties.
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Fig. 4 The density of eigenvalues of the plate with randomly attached oscillators.

6 Conclusions
The density of eigenvalues of structural dynamical systems with uncertainty is considered in

this paper. Due to the positive definiteness nature of a real system, it can be modeled using
a Wishart random matrix with suitable parameters. These parameters in turn can be explic-
itly obtained form the baseline model and dispersion parameters corresponding to the mass
and stiffness matrices of the system using the closed-form expressions given the paper. It was
shown that for large random systems, the density of eigenvalues reaches a non-random limit. It
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particular, it was rigorously proved that for an n-dimensional system, the variance associated
with a suitable linear statistic of the eigenvalues is in the order O(n−2). This result shows
that if a system is large, then the detailed nature of random perturbation do not effect the
eigenvalue-density. Under certain simplified assumptions, this asymptotic density can be suit-
ably represented by the so called Marc̆enko-Pastur density. Two numerical examples involving a
cantilever plate with parametric and non-parametric uncertainty have been used to investigate
the validity of analytical results. Using direct Monte Carlo simulations, it was indeed observed
that eigenvalue-densities of nominally identical systems do not differ from each other and are
very close to the Marc̆enko-Pastur density. It is important to note that the original matrices
are not Wishart matrices, but the eigenvalue-density is close to that of Wishart matrices.

The strong convergence of the eigenvalue-density perhaps explains why many random ma-
trix based methods (e.g. statistical energy analysis) are so useful for high-frequency vibration
problems where the sizes of the underlying matrices are very large. This convergence property
may also opens up the possibility of calculating other useful quantities such as the response
statistics.
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