Dynamic finite element analysis of axially vibrating nonlocal rods

S. Adhikari a, T. Murmu b,*, M.A. McCarthy b

a College of Engineering, Swansea University, Swansea SA2 8PP, UK
b Department of Mechanical, Aeronautical and Biomedical Engineering, Irish Centre for Composites Research, Materials and Surface Science Institute, University of Limerick, Ireland

1. Introduction

Research on size-dependent structural theories for the accurate design and analysis of micro and nanostructures is growing rapidly [1–4]. This is because, though molecular dynamic (MD) simulation is justified for the analysis of nanostructures [5,6] such as nanorods, nanobeams, nanorings, nanoshells, and nanocone objects, the approach is computationally exorbitant for nanostructures with large numbers of atoms. This calls for the use of conventional continuum mechanics [7] and finite elements in analysis of nanostructures. However, classical continuum modelling approach is considered scale-free. It fails to account for the effects arising from the small-scale where size-effects are prominent.

Nanoscale experiments demonstrate that the mechanical properties of nano dimensional materials are much influenced by size effects or scale effects [8,9]. Size effects are related to atoms and molecules that constitute the materials. Further, atomistic simulations have also reported size effects on the magnitudes of resonance frequency and buckling load of nanoscale objects such as nanotubes and graphene [10,11]. The application of classical continuum approaches is thus questionable in the analysis of nanostructures such as nanorods, nanobeams, and nanorings. Examples of nanorods and nanobeams include carbon and boron nanotubes, while nanoplates can be graphene sheets or gold nanoplates. One widely promising size-dependant continuum theory is the nonlocal elasticity theory pioneered in [12] which brings in the scale effects and underlying physics within the formulation. Nonlocal elasticity theory contains information related to the forces between atoms, and the internal length scale in structural, thermal and mechanical analyses. In the nonlocal elasticity theory, the small-scale effects are captured by assuming that the stress at a point is a function of the strains at all points in the domain. Nonlocal theory considers long-range inter-atomic interaction and yields results dependent on the size of a body [12]. Some drawbacks of classical continuum theory can be efficiently avoided and the size-dependent phenomena can be reasonably explained by nonlocal elasticity. Recent literature shows that the theory of nonlocal elasticity is being increasingly used for reliable and fast analysis of nanostructures. Studies include nonlocal analysis of nanostructures viz. nanobeams [13–15], nanoplates [16], carbon nanotubes [17], graphene [18], microtubules [19] and nanorings [20].

Recently due to elevated interests in nanotechnology, various one-dimensional nanostructures have been realised. They include nanorods, nanowires, nanobelts, nanotubes, nanobridges, nanonails, nanowalls and nanohelixes. Among all the one-dimensional nanostructures, nanotubes, nanorods and nanowires are the most widely studied. This is because of the easy material formation and device applications. One important one-dimensional
nanostructure is nanorods. Nanorods [21] are one-dimensional objects ranging from 1 to 3000 nm in length. They can be grown from various methods, including (i) vapour phase synthesis [22], (ii) metal-organic chemical vapour deposition [23], (iii) hydrothermal synthesis [24]. Nanorods have found application in a variety of nanodevices, including ultraviolet photodetectors, nanosensors, transistors, diodes and LED arrays.

Axial vibration experiments can be used for the determination of the Youngs modulus of Carbon Nanotubes (CNTs). Generally, the flexural modes occur at low frequencies. However vibrating nanobeams (CNTs) may also have longitudinal modes at relatively high frequencies and can be of very practical significance in high operating frequencies. Nanorods when used as electromechanical resonators can be externally excited and exhibit axial vibrations. Furthermore for a moving nanoparticle inside a single-walled carbon nanotube (SWCNT), the SWCNT generally vibrates both in the transverse and longitudinal directions. The longitudinal vibration is generated because of the friction existing between the outer surface of the moving nanoparticle and the inner surface of the SWCNT. It is also reported [25] that transport measurements on suspended SWCNTs show signatures of phonon-assisted tunnelling, influenced by longitudinal vibration (stretching) modes. Chowdhury et al. [26] have reported sliding axial modes for multiwalled carbon nanotubes (MWCNTs). Tong et al. [27] have considered axial buckling of MWCNTs with heterogeneous boundary conditions.

Only limited work on nonlocal elasticity has been devoted to the axial vibration of nanorods. Aydogdu [28] developed a nonlocal elastic rod model and applied it to investigate the small scale effect on the axial vibration of clamped-clamped and clamped-free nanorods. Filiz and Aydogdu [29] applied the axial vibration of nonlocal rod theory to carbon nanotube heterojunction systems. Narendra and Gopalkrishnan [30] have studied the wave propagation of nonlocal nanorods. Recently Murmu and Adhikari [31] have studied the axial vibration analysis of a double-nanorod-system. In this paper, we will be referring to a nanorod as a nonlocal rod, so as to distinguish it from a local rod.

Several computational techniques have been used for solving the nonlocal governing differential equations. These techniques include Naviers Method [32], Differentiale Quadrate Method (DQM) [33] and the Galerkin technique [34]. Recently attempts have been made to develop a Finite Element Method (FEM) based on nonlocal elasticity. The upgraded finite element method in contrast to other methods above can effectively handle more complex geometry, material properties as well as boundary and/or loading conditions. Pisano et al. [35] reported a finite element procedure for nonlocal integral elasticity. Recently some motivating work on a finite element approach based on nonlocal elasticity was reported [36]. The majority of the reported works consider free vibration studies where the effect of non-locality on the eigensolutions has been studied. However, forced vibration response analysis of nonlocal systems has received very little attention.

Based on the above discussion, in this paper we develop the dynamic finite element method based on nonlocal elasticity with the aim of considering dynamic response analysis. The dynamic finite element method belongs to the general class of spectral methods for linear dynamical systems [37]. This approach, or approaches very similar to this, is known by various names such as the dynamic stiffness method [38-48], spectral finite element method [37,49] and dynamic finite element method [50,51]. Some of the key features of the method are:

- The mass distribution of the element is treated in an exact manner in deriving the element dynamic stiffness matrix.
- The dynamic stiffness matrix of one-dimensional structural elements, taking into account the effects of flexure, torsion, axial and shear deformation, and damping, is exactly determinable, which, in turn, enables the exact vibration analysis by an inversion of the global dynamic stiffness matrix.
- The method does not employ eigenfunction expansions and, consequently, a major step of the traditional finite element analysis, namely, the determination of natural frequencies and mode shapes, is eliminated which automatically avoids the errors due to series truncation.
- Since modal expansion is not employed, ad hoc assumptions concerning the damping matrix being proportional to the mass and/or stiffness are not necessary.
- The method is essentially a frequency-domain approach suitable for steady state harmonic or stationary random excitation problems.
- The static stiffness matrix and the consistent mass matrix appear as the first two terms in the Taylor expansion of the dynamic stiffness matrix in the frequency parameter.

So far the dynamic finite element method has been applied to classical local systems only. In this paper we generalise this approach to nonlocal systems. One of the novel features of the analysis proposed here is the employment of frequency-dependent complex nonlocal shape functions for damped systems. This in turn enables us to obtain the element stiffness matrix using the usual weak form of the finite element method. The paper is organised as follows. In Section 2 we introduce the equation of motion of axial vibration of undamped and damped rods. Natural frequencies and their asymptotic behaviours for both cases are discussed for different boundary conditions. The conventional and the dynamic finite element method are developed in Section 3. Closed form expressions are derived for the mass and stiffness matrices. In Section 4 the proposed methodology is applied to an armchair single walled carbon nanotube (SWCNT) for illustration. Theoretical results, including the asymptotic behaviours of the natural frequencies, are numerically illustrated. Finally, in Section 5 some conclusions are drawn based on the results obtained in the paper.

2. Axial vibration of damped nonlocal rods

2.1. Equation of motion

The equation of motion of axial vibration for a damped nonlocal rod can be expressed as

$$EA \frac{\partial^2 U(x,t)}{\partial x^2} + c_1 \left(1 - (\varepsilon_0 \alpha_0)^2 \right) \frac{\partial^2 U(x,t)}{\partial t^2} + \frac{\partial U(x,t)}{\partial t} + F(x,t) = c_2 \left(1 - (\varepsilon_0 \alpha_0)^2 \right) \frac{\partial^2 U(x,t)}{\partial x^2} + \left[m \frac{\partial^2 U(x,t)}{\partial t^2} + F(x,t) \right] \right \}

\left(1 \right)

This is an extension of the equation of motion of an undamped nonlocal rod for axial vibration [28,31,52]. Here EA is the axial rigidity, m is the mass per unit length, $\varepsilon_0 \alpha_0$ is the nonlocal parameter [12], $U(x,t)$ is the axial displacement, $F(x,t)$ is the applied force, x is the spatial variable and t is the time. The constant c_1 is the strain-rate-dependent viscous damping coefficient and c_2 is the velocity-dependent viscous damping coefficient. The parameters $(\varepsilon_0 \alpha_0)$ and $(\varepsilon_0 \alpha_0)$ are nonlocal parameters related to the two damping terms respectively. For simplicity we have not taken into account any nonlocal effect related to the damping. Although this can be mathematically incorporated in the analysis, the determination of these nonlocal parameters is beyond the scope of this work and therefore only local interaction for the damping is adopted. Thus, in the following analysis we
consider \((\varepsilon_0 a)_1 = (\varepsilon_0 a)_2 = 0\). Assuming harmonic response as
\[U(x,t) = u(x)e^{i\omega t} \]
and considering free vibration, from Eq. (1) we have
\[\left(1 + i\omega \tilde{c}_1 \frac{m\omega^2}{EA} (\varepsilon_0 a_0)^2 \right) \frac{d^2 u}{dx^2} + \left(\frac{m\omega^2}{EA} - i\omega \tilde{c}_2 \right) u(x) = 0 \]
(3)

Following the damping convention in dynamic analysis [53], we consider stiffness and mass proportional damping. Therefore, we express the damping constants as
\[\tilde{c}_1 = \xi_1 \frac{EA}{m} \]
and \[\tilde{c}_2 = \xi_2 \frac{EA}{m} \]
where \(\xi_1\) and \(\xi_2\) are stiffness and mass proportional damping factors. Substituting these, from Eq. (3) we have
\[\frac{d^2 u}{dx^2} + \alpha^2 u = 0 \]
(5)

where
\[\alpha^2 = \frac{(\omega^2 - i\omega \xi_1 \omega)/c^2}{(1 + i\omega \xi_2 (\varepsilon_0 a_0)^2 \omega^2/c^2)} \]
(6)

with
\[\xi^2 = \frac{EA}{m} \]
(7)

It can be noticed that \(\alpha^2\) is a complex function of the frequency parameter \(\omega\). In the special case of undamped systems when damping coefficients \(\xi_1\) and \(\xi_2\) go to zero, \(\alpha^2\) in Eq. (6) reduces to \(\Omega^2/(1 - (\varepsilon_0 a_0)^2 \Omega^2)\), which is a real function of \(\omega\).

2.2. Analysis of damped natural frequencies

Natural frequencies of undamped nonlocal rods have been discussed in the literature [28]. Natural frequencies of damped systems receive little attention. The damped natural frequency depends on the boundary conditions. We denote a parameter \(\sigma_k\) as
\[\sigma_k = \frac{k\pi}{L} \quad \text{for clamped-clamped boundary conditions} \]
(8)

and \[\sigma_k = \frac{(2k-1)\pi}{2L} \quad \text{for clamped-free boundary conditions} \]
(9)

Following the conventional approach [53], the natural frequencies can be obtained from
\[x = \sigma_k \]
(10)

Taking the square of this equation and denoting the natural frequencies as \(\omega_k\) we have
\[(\omega_k^2 - i\omega \xi_2 \omega_k) = \sigma_k^2 c^2 (1 + i \omega \xi_1 (\varepsilon_0 a_0)^2 \sigma_k^2 c^2) \]
(11)

Rearranging we obtain
\[\omega_k^2 (1 + (\varepsilon_0 a_0)^2 \sigma_k^2 c^2) - i \omega_0 \xi_2 (\omega_k^2 + \xi_1 \sigma_k^2 c^2) - \sigma_k^2 c^2 = 0 \]
(12)

This is a very generic equation and many special cases can be obtained from this as follows:

- **Damped local systems:** This case can be obtained by substituting \(\xi_1 = \xi_2 = 0\) and \(\varepsilon_0 a_0 = 0\). From Eq. (12) we therefore obtain
\[\omega_k = \sigma_k c \]
(13)

which is the classical expression [53].

- **Undamped nonlocal systems:** This case can be obtained by substituting \(\xi_1 = \xi_2 = 0\). Solving Eq. (12) we therefore obtain
\[\omega_k = \frac{\sigma_k c}{\sqrt{1 + \sigma_k^2 (\varepsilon_0 a_0)^2}} \]
(14)

which is obtained in [28].

\[\omega_k = \frac{i(\omega_2 + \xi_1 \sigma_k^2 c^2)/2}{(1 + \sigma_k c^2 (\varepsilon_0 a_0)^2) \sqrt{1 + (\xi_1 \sigma_k c + \xi_2 / (\varepsilon_0 a_0))^2}/4} \]
(15)

Therefore, the decay rate is \((\omega_2 + \xi_1 \sigma_k^2 c^2)/2\) and damped oscillation frequency is \(\sigma_k c / \sqrt{1 - (\xi_1 \sigma_k c + \xi_2 / (\varepsilon_0 a_0))^2}/4\). We observe that damping effectively reduces the oscillation frequency.

For the general case of a nonlocal damped system, the damped frequency can be obtained by solving Eq. (12) as
\[\omega_k = \frac{i(\omega_2 + \xi_1 \sigma_k^2 c^2)}{2(1 + \sigma_k^2 (\varepsilon_0 a_0)^2)} \pm \frac{\sigma_k c}{\sqrt{1 + \sigma_k^2 (\varepsilon_0 a_0)^2}} \sqrt{1 - (\xi_1 \sigma_k c + \xi_2 / (\varepsilon_0 a_0))^2}/4(1 + \sigma_k^2 (\varepsilon_0 a_0)^2) \]
(16)

Therefore, the decay rate is given by \((\omega_2 + \xi_1 \sigma_k^2 c^2)/2(1 + \sigma_k^2 (\varepsilon_0 a_0)^2)\) and the damped oscillation frequency is given by
\[\omega_{ak} = \frac{\sigma_k c}{\sqrt{1 + \sigma_k^2 (\varepsilon_0 a_0)^2}} \sqrt{1 - (\xi_1 \sigma_k c + \xi_2 / (\varepsilon_0 a_0))^2}/4(1 + \sigma_k^2 (\varepsilon_0 a_0)^2) \]
(17)

It can be observed that the nonlocal damped system has the lowest natural frequencies. Note that the expressions derived here are general in terms of the boundary conditions.

2.3. Asymptotic analysis of natural frequencies

In this paper we are interested in dynamic response analysis of damped nonlocal rods. As a result, behaviour of the natural frequencies across a wide frequency range is of interest. An asymptotic analysis is conducted here to understand the frequency behaviour in the high frequency limit. We first consider the undamped natural frequency given by Eq. (14). To obtain asymptotic values, we rewrite the frequency equation in (14) and take the mathematical limit \(k \to \infty\) to obtain
\[\lim_{k \to \infty} \omega_k = \lim_{k \to \infty} \frac{c}{\sqrt{1 + (\varepsilon_0 a_0)^2}} = \frac{c}{(\varepsilon_0 a_0)} = \frac{1}{(\varepsilon_0 a_0)} \sqrt{\frac{EA}{m}} \]
(18)

This is obtained by noting the fact that for \(k \to \infty\), for both sets of boundary conditions we have \(\sigma_k \to \infty\). The result in Eq. (18) shows that there exists an ‘upper limit’ of frequency in nonlocal systems. This upper limit of frequency is an inherent property of a nonlocal system. It is a function of material properties only and independent of the boundary conditions and the length of the rod. The smaller the value of \(\varepsilon_0 a_0\), the larger this upper limit becomes. Eventually for a local system \(\varepsilon_0 a_0 = 0\) and the upper limit becomes infinite, which is well known.

Now we turn our attention to the oscillation frequency of the damped system. Rewriting the expressions for the oscillation frequency from Eq. (17) and taking the limit as \(k \to \infty\) we obtain
\[\lim_{k \to \infty} \omega_{ak} = \lim_{k \to \infty} \frac{1}{\sqrt{1 + (\varepsilon_0 a_0)^2}} \sqrt{1 - (\xi_1 c + \xi_2 / (\varepsilon_0 a_0))^2}/4(1 + \sigma_k^2 (\varepsilon_0 a_0)^2) \]
(19)

Therefore the upper frequency limit for the damped systems is lower than that of the undamped system. It is interesting note that it is independent of the mass proportional damping \(\xi_2\). Only the stiffness proportional damping has an effect on the upper
frequency limit. Eq. (19) can also be used to obtain an asymptotic critical damping factor. For vibration to continue, the term within the square root in Eq. (19) must be greater than zero. Therefore, the asymptotic critical damping factor for nonlocal rods can be obtained as

$$
(\zeta_{\text{lim}}) = \frac{2\varepsilon_0a}{c}
$$

In practical terms this implies that the value of ζ_{lim} should be less than this value for high frequency vibration. Again observe that like the upper frequency limit, the asymptotic critical damping factor is a function of material properties only and independent of the boundary conditions and the length of the rod.

The spacing between the natural frequencies is important for dynamic response analysis as the shape of the frequency response function depends on the spacing. Because k is an index, the derivative $d\sigma_k/dk$ is not meaningful as k is an integer. However, in the limit $k \to \infty$, we can obtain mathematically $d\sigma_k/dk$ and it would mean the rate of change of frequencies with respect to the counting measure. This in turn is directly related to the frequency spacing. For the local rod it is well known that frequencies are uniformly spaced. This can be seen by differentiating ω_k in Eq. (13) as

$$
\lim_{k \to \infty} \frac{d\sigma_k}{dk} = c \frac{d\sigma_k}{dk} \quad \text{where} \quad \frac{d\sigma_k}{dk} = \frac{\pi}{L} \quad (21)
$$

for both sets of boundary conditions. For nonlocal rods, from Eq. (14) we have

$$
\lim_{k \to \infty} \frac{d\sigma_k}{dk} = \lim_{k \to \infty} \frac{d}{dk} \left(\frac{c}{k^2 + \left(\varepsilon_0a\right)^2} \right) = \lim_{k \to \infty} \frac{\pi}{L} \left(\frac{1}{\sigma_k^2 + \left(\varepsilon_0a\right)^2} \right) \sigma_k^2
$$

$$
= \lim_{k \to \infty} \frac{\pi}{L} \frac{c}{\left(\varepsilon_0a\right)^2} = 0 \quad (22)
$$

The limit in the preceding equation goes to zero because $\sigma_k \to \infty$ for $k \to \infty$. This shows that unlike local systems, for large values of k, the undamped natural frequencies of nonlocal rods will tend to cluster together. A similar conclusion can be drawn by considering the damped natural frequencies also. Next we consider classical and dynamic finite element methods for dynamic response calculations.

3. Dynamic finite element matrix

3.1. Classical finite element of nonlocal rods

We first consider standard finite element analysis of the nonlocal rod. Recently Phadikar and Pradhan [36] proposed a variational-formulation-based finite element approach for nanobeams and nanofilaments. Let us consider an element of length L with axial stiffness EA and mass per unit length m. An element for the damped axially vibrating rod is shown in Fig. 1. This element has two degrees of freedom and there are two shape functions $N_1(x)$ and $N_2(x)$. The shape function matrix for the axial deformation can be given by [54]

$$
\mathbf{N}(x) = [N_1(x), N_2(x)]^T = [1-x/L, 1] \quad (23)
$$

Using this the stiffness matrix can be obtained using the conventional variational formulation as

$$
\mathbf{K}_s = EA \int_0^L \frac{d\mathbf{N}(x) \mathbf{N}'(x)}{dx} \ dx = \frac{EA}{L} \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right] \quad (24)
$$

The mass matrix for the nonlocal element can be obtained as

$$
\mathbf{M}_s = m \int_0^L \mathbf{N}(x) \mathbf{N}'(x) \ dx + m\varepsilon_0a^2 \int_0^L \frac{d\mathbf{N}(x) \mathbf{N}'(x)}{dx} \ dx
$$

$$
= m\frac{L^2}{6} \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right] + mL\varepsilon_0a/L \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right]
$$

$$
= mL \left[\begin{array}{cc} 1/3 + (\varepsilon_0a/L)^2 & 1/6 - (\varepsilon_0a/L)^2 \\ 1/6 - (\varepsilon_0a/L)^2 & 1/3 + (\varepsilon_0a/L)^2 \end{array} \right] \quad (25)
$$

For the special case when the rod is local, the mass matrix derived above reduces to the classical mass matrix as $\varepsilon_0a = 0$.

3.2. Dynamic finite element for damped nonlocal rod

The first step for the derivation of the dynamic element matrix is the generation of dynamic shape functions. The dynamic shape functions are obtained such that the equation of dynamic equilibrium is satisfied exactly at all points within the element. Similar to the classical finite element method, assume that the frequency-dependent displacement within an element is interpolated from the nodal displacements as

$$
\mathbf{u}_e(x,\omega) = \mathbf{N}(x,\omega) \mathbf{u}_e(\omega) \quad (26)
$$

Here $\mathbf{u}_e(\omega) \in \mathbb{C}^n$ is the nodal displacement vector $\mathbf{N}(x,\omega) \in \mathbb{C}^n$ is the vector of frequency-dependent shape functions and $n=2$ is the number of the nodal degrees-of-freedom. Suppose the $s_j(x,\omega) \in \mathbb{C}, j=1,2$ are the basis functions which exactly satisfy Eq. (5). It can be shown that the shape function vector can be expressed as

$$
\mathbf{N}(x,\omega) = \Gamma(\omega)s(x,\omega) \quad (27)
$$

where the vector $s(x,\omega) = [s_1(x,\omega), s_2(x,\omega)]^T, \forall j=1,2$ and the complex matrix $\Gamma(\omega) \in \mathbb{C}^{2 \times 2}$ depends on the boundary conditions.

In order to obtain $s(x,\omega)$ first assume that

$$
\mathbf{u}(x) = \Pi \exp(\mathbf{u}(x)) = \mathbf{u}(k) \quad (28)
$$

where k is the wave number. Substituting this in Eq. (5) we have

$$
k^2 + \omega^2 = 0 \quad \text{or} \quad k = \pm \omega \quad (29)
$$

In view of the solutions in Eq. (29), the complex displacement field within the element can be expressed by a linear combination of the basis functions $e^{-i\omega x}$ and $e^{+i\omega x}$ so that in our notations $s(x,\omega) = [e^{-i\omega x}, e^{+i\omega x}]$. Therefore, it is more convenient to express $s(x,\omega)$ in terms of trigonometric functions. Considering $e^{\pm i\omega x} = \cos(\omega x) \pm i \sin(\omega x)$, the vector $s(x,\omega)$ can be alternatively expressed as

$$
s(x,\omega) = \begin{bmatrix} \sin(\omega x) \\ \cos(\omega x) \end{bmatrix} \in \mathbb{C}^2 \quad (30)
$$

Considering unit axial displacement boundary condition as $u_e(x=0,\omega) = 1$ and $u_e(x=L,\omega) = 1$, after some elementary algebra, the shape function vector can be expressed in the form of Eq. (27) as

$$
\frac{\mathbf{N}(x,\omega) = \Gamma(\omega)s(x,\omega)}{\text{where} \quad \Gamma(\omega) = \begin{bmatrix} -\cot(\omega L) & 1 \\ \cosec(\omega L) & 0 \end{bmatrix} \in \mathbb{C}^{2 \times 2}} \quad (31)
$$
Simplifying this we obtain the dynamic shape functions as

\[N_{i}(\omega, x) = \left[-\cot(2L)\sin(2x) + \cos(2x) \right] \csc(2L)\sin(2x) \]

(32)

Taking the limit as \(\omega \to 0 \) (that is the static case) it can be shown that the shape function matrix in Eq. (32) reduces to the classical shape function matrix given by Eq. (23). Therefore the shape functions given by Eq. (32) can be viewed as the generalisation of the nonlocal dynamical case.

The stiffness and mass matrices can be obtained similarly to the static finite element case discussed before. Note that for this case all the matrices become complex and frequency-dependent. It is more convenient to define the dynamic stiffness matrix as

\[D_{i}(\omega) = K_{i}(\omega) - \omega^{2}M_{i}(\omega) \]

(33)

so that the equation of dynamic equilibrium is

\[D_{i}(\omega)\ddot{u}_{i}(\omega) = \bar{f}_{i}(\omega) \]

(34)

In Eq. (33), the frequency-dependent stiffness and mass matrices can be obtained as

\[K_{i}(\omega) = EA\int_{0}^{L} dN_{i}(\omega, x) dN^{T}_{i}(\omega, x) \, dx \]

and \[M_{i}(\omega) = m\int_{0}^{L} N_{i}(\omega, x)N^{T}_{i}(\omega, x) \, dx \]

(35)

After some algebraic simplifications [46, 55] it can be shown that the dynamic stiffness matrix is given by the following closed-form expression

\[D_{i}(\omega) = EA\left[\csc(2L) \cot(2L) - \csc(2L) \cot(2L) \right] \]

(36)

This is in general a 2 \times 2 matrix with complex entries. The frequency response of the system at the nodal point can be obtained by simply solving Eq. (34) for all frequency values. The calculation only involves inverting a 2 \times 2 complex matrix and the results are exact with only one element for any frequency value. This is a significant advantage of the proposed dynamic finite element approach compared to the conventional finite element approach discussed in the previous subsection.

So far we did not explicitly consider any forces within the element. A distributed body force can be considered following the usual finite element approach [54] and replacing the static shape functions with the dynamic shape functions (32). Suppose \(p_{i}(\omega, x) \), \(x \in [0, L] \) is the frequency-dependent distributed body force.

The element nodal forcing vector can be obtained as

\[\bar{f}_{i}(\omega) = \int_{0}^{L} p_{i}(\omega, x)N_{i}(\omega, x) \, dx \]

(37)

As an example, if a point harmonic force of magnitude \(p \) is applied at length \(b < L \) then, \(p_{i}(\omega, x) = p\delta(x - b) \) where \(\delta(\cdot) \) is the Dirac delta function. The element nodal force vector becomes

\[\bar{f}_{i}(\omega) = p\int_{0}^{L} \delta(x - b)N_{i}(\omega, x) \, dx = p\left\{ -\cot(2L)\sin(2x) + \cos(2x) \right\} \csc(2L)\sin(2x) \]

(38)

Next we illustrate the formulation derived in this section using an example.

4. Numerical results and discussions

We consider an SWCNT to illustrate the theory developed in this paper. An armchair (5, 5) SWCNT with Young’s modulus \(E = 6.85 \) TPa, \(L = 25 \) nm, density \(\rho = 9.517 \times 10^{3} \) kg/m\(^3\) and thickness \(t = 0.08 \) nm is considered as in [56]. We consider only mass proportional damping such that the damping factor \(\zeta_2 = 0.05 \) and \(\zeta_1 = 0 \). By comparing with MD simulation results [10, 6] it was observed that \(e_0a = 1 \) nm is the optimal value of the nonlocal parameter. In this study however we consider a range of values of \(e_0a \) within 0–2 nm to understand its role in the dynamic response. Although the role of the nonlocal parameter on the natural frequencies has been investigated, its effect on the dynamic response is relatively unknown. It is assumed that the SWCNT is fixed at one end and we are interested in the frequency response at the free end due to harmonic excitation. Using the dynamic finite element approach only one ‘finite element’ is necessary as the equation of motion is solved exactly. We consider natural frequencies and dynamic response of the CNT due to a harmonic force at the free edge.

First we look into the nature of the novel nonlocal dynamic shape functions employed in this study. In Fig. 2 the amplitudes of the two dynamic shape functions as a function of frequency for \(e_0a = 0.5 \) nm are shown. For convenience, the shape functions are plotted against normalised frequency

\[\tilde{\omega} = \omega / \omega_{1} \]

(39)

and normalised length coordinate \(x/L \). Here \(\omega_{1} \) is the first natural frequency of the local rod [53], given by

\[\omega_{1} = \frac{\pi}{2L} \sqrt{\frac{EA}{m}} \]

(40)

Similar plots for \(e_0a = 2.0 \) nm are shown in Fig. 3 to examine the influence of the nonlocal parameter on the dynamic shape.
functions. The plots of the shape functions show the following interesting features:

- At zero frequency (that is for the static case) the shape functions reduce to the classical linear functions given by Eq. (23). It can be observed that \(N_1(0,0) = 1 \), \(N_2(L,0) = 0 \) and \(N_2(0,0) = 0, N_2(L,0) = 1 \).
- For increasing frequency, the shape functions become non-linear in \(x \) and adapt themselves according to the vibration modes. One can observe multiple modes in the higher frequency range. This nonlinearity in the shape functions is the key for obtaining the exact dynamic response using the proposed approach.
- Figs. 2 and 3 also show the role of the nonlocal parameter. In Fig. 3 one can observe more number of modes in the high frequency range. This is due to the fact that natural frequency of the nonlocal rod reduced with the increase in the value of the nonlocal parameter.

The shape functions used for the proposed dynamic finite element analysis do not give the natural frequencies directly. By considering the undamped system (that is by substituting \(\zeta_2 = 0 \) and \(\zeta_1 = 0 \) in Eq. (6)), setting the denominator of any of the shape functions to zero, and solving the resulting equation one can obtain the natural frequencies. Following this, from Eq. (32) one has \(\sin(\zeta L) = 0 \). This in turn will give an expression identical to the frequency equation in (14). In Fig. 4, the first 10 normalised natural frequencies and the normalised displacement amplitude of the dynamic response at the tip of the SWCNT are shown.

The normalised displacement amplitude is defined by

\[
\delta(\omega) = \frac{\tilde{u}_2(\omega)}{u_{\text{static}}} \quad (41)
\]

where \(u_{\text{static}} \) is the static response at the free edge given by \(u_{\text{static}} = FL/EA \). Assuming the amplitude of the harmonic excitation at the free edge is \(F \), the dynamic response can be obtained using the equation of dynamic equilibrium (34) as

\[
\tilde{u}_2(\omega) = \frac{F}{EA \cot(\zeta L)} = \frac{F \tan(\zeta L)}{EA \zeta} \quad (42)
\]

Therefore, the normalised displacement amplitude in Eq. (41) is given by

\[
\delta(\omega) = \frac{\tilde{u}_2(\omega)}{u_{\text{static}}} = \left(\frac{F \tan(\zeta L)}{EA \zeta}\right) \left(\frac{FL}{EA}\right) = \frac{\tan(\zeta L)}{\zeta} \quad (43)
\]

The frequency axis of the response amplitude in Fig. 4(b) is normalised similarly to the plots of the shape functions given earlier. The frequency plot in Fig. 4(a) clearly shows that the natural frequencies decrease with increasing value of the nonlocal parameter \(e_0 a \). One interesting feature arising for larger values of \(e_0 a \) is that the frequency curve effectively becomes ‘flat’. This implies that the natural frequencies reach a terminal value as shown by the asymptotic analysis in Section 2.3. Using Eq. (18), for large values of \(k \), the normalised natural frequency plotted in Fig. 4(a) would approach to

\[
\frac{\omega_k}{\omega_l} \approx \frac{2}{\pi} \left(\frac{e_0 a}{L}\right) \quad (44)
\]

Therefore, for \(e_0 a = 2 \text{ nm} \), we have \(\omega_{k_{\text{max}}} \leq 7.957 \). Clearly, the smaller the value of \(e_0 a \), the larger this upper limit becomes.
The consequence of this upper limit can be seen in the frequency response amplitude plot in Fig. 4(b). For higher values of \(\varepsilon_0a \), more and more resonance peaks are clustered within a frequency band. Indeed in Eq. (22) we have proved that asymptotically, the spacing between the natural frequencies goes to zero. This implies that higher natural frequencies of a nonlocal system are very closely spaced. In Fig. 4(b), this fact can be observed in the frequency ranges. It is worth pointing out that the frequency derived in (18), then a very high number of finite elements will be necessary (theoretically infinitely many and there exist an infinite number of frequencies up to the cut off frequency). In such a situation effectively the conventional finite element analysis breaks down, as seen in Fig. 6(d) in the range \(7 < \omega < 8 \). The proposed dynamic finite element is effective in these situations as it does not suffer from discretisation errors as in the conventional finite element method.

5. Conclusions

In this paper a novel dynamic finite element approach for axial vibration of damped nonlocal rods is proposed. Strain rate dependent viscous damping and velocity dependent viscous damping are considered. Damped and undamped natural frequencies for general boundary conditions are derived. An asymptotic analysis is used to understand the behaviour of the frequencies and their spacings in the high-frequency limit. Frequency dependent complex-valued shape functions are used to obtain the dynamic stiffness matrix in closed form. The dynamic response in the frequency domain can be obtained by inverting the dynamic stiffness matrix. The stiffness and mass matrices of the nonlocal rod were also obtained using the conventional finite element method. In the special case when the nonlocal parameter
becomes zero, the expression of the mass matrix reduces to the classical case. The proposed method is numerically applied to the axial vibration of a (5,5) carbon nanotube. Some of the key contributions made in this study are:

- Unlike local rods, nonlocal rods have an upper cut-off natural frequency. Using an asymptotic analysis, it was shown that for an undamped rod, the natural frequency \(\omega_{\text{max}} \rightarrow \left(\frac{1}{2e_0a} \frac{\sqrt{EA}}{m} \right) \) where \(c = \sqrt{EA/m} \) and \(e_0 \) is the stiffness proportional damping factor arising from the strain rate dependent viscous damping constant. The velocity dependent viscous damping has no affect on the maximum frequency of the damped rod.
- The asymptotic critical damping factor for nonlocal rods is given by \(\zeta_{\text{crit}} = 2e_0a \sqrt{m/EA} \).

Fig. 6. Amplitude of the normalised dynamic frequency response at the tip for different values of \(e_0a \). Dynamic finite element results (with one element) is compared with the conventional finite element results (with 100 elements). (a) \(e_0a = 0.5 \text{ nm} \), (b) \(e_0a = 1.0 \text{ nm} \), (c) \(e_0a = 1.5 \text{ nm} \) and (d) \(e_0a = 2.0 \text{ nm} \).

Acknowledgments

S.A. acknowledges the support of Royal Society of London through the award of Wolfson Research Merit award. TM acknowledges the support from the Irish Research Council for Science, Engineering & Technology (IRCSET).

References

