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Abstract 

Stay cables are the main load carrying members of cable-stayed bridges, and large oscillations in the cables 
may cause catastrophic failure of the bridge. Therefore, modeling and controlling the vibration of cables 
under dynamic loads have become essential design requirements. The paper develops a fuzzy logic rule 
base to monitor the voltage of magnetorheological dampers to minimize stay cable responses. Cable 
nonlinearity, uncertainty with reference to magnitude and frequency content of dynamic loads, possibility of 
sensor saturation, limitations in actuator capacity and saturation have been given due consideration in 
developing control algorithms. Fuzzy logic control (FLC) with MR damper provides inherent robustness to 
the control mechanism and is easy to implement in real structures. The proposed control approach and 
classical control approaches are compared for a cable oscillation example. 
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INTRODUCTION 
Stay cables are important structural elements for many civil engineering structures and are extensively used in 
applications ranging from long span bridges to marine cables, transmission towers to temporary structures. Their 
importance in civil structures is increasing due to their immense tensile strength. They are the main load carrying 
members in long-span bridges and temporary structures. Unexpected large oscillation in stays of cable stayed bridges 
and vertical hangers of suspension and arch bridges are due to movement in their support points, i.e., tower top and 
deck connection. Low inherent damping of cables should be supported by control measures to mitigate such 
excessive vibration levels. In the past decade, the cable vibration control techniques by means of various passive 
countermeasures have been extensively investigated [Fujino 1994; Warnitchai 1995]. Performance of passive 
dampers increases with increase in distance between point of installation and support. Present day cable stayed 
bridges are several thousands metres long making each cable length nearly 500 metres, therefore installation of 
passive dampers becomes difficult. Numerous researchers have studied active vibration control of cables through the 
application of transverse force and axial stiffness or tension [Susumpow 1995]. Ni [2002] studied the neuro-control of 
inclined sagged cables using semi-active MR dampers. Johnson [2000] investigated the semi-active vibration control 
of a cable using MR dampers based on the clipped control strategy. Clipped optimal algorithm swaps the damper 
voltage between zero and its maximum value, thereby, does not make use of the full voltage range. Furthermore, 
Linear Quadratic Gaussian (LQG) control needs accurate analysis and state estimation, involving huge computational 
time. Therefore, nonlinearity and uncertainty in analysis may drive the system to instability. Moreover, the time lag 
between analysis and actual implementation makes the overall system sub-optimal. The present study uses a fuzzy 
rule base to control the voltage of the MR damper. Thereby, one can not only make use of the full voltage range 
available, but also get rid of the slight uncertainty present in modelling cable parameters and input excitation. Most 
studies on cable vibration control either analyzed a linear model of the stay cable or studied wind-induced vibration 



[Johnson 2000]. In the present study, the nonlinear response characteristics of a stay cable controlled by FLC driven 
MR damper is analyzed based on an accurate cable model. FLC has inherent robustness under nonlinear model, and 
MR dampers are fail-safe, as they need only a small voltage to operate and even controls in the absence of voltage 
supply. Finally the paper provides a comparison of the proposed control method with other control techniques. 

CABLE NON-LINEAR ANALYSIS 
Cables remain attached to structural system like the bridge deck or supports at tower top, and experience support 
motion during either the movement of the deck or tower or both. Therefore, cables in cable-stayed bridges should 
also be analysed to account for support motion. In this section motion of a single cable is investigated where the 
effects of global vibration is taken into account as motions at cable supports i.e. anchorages. 

Cable equation of motion 

Considering an uniform cable (Fig.1) of chord length ‘L’, area of cross-section ‘A’, modulus of elasticity ‘E’ and 
mass per unit length ‘m’, with small depth to span 
ratio. Thus, the static configuration of the cable can be 
assumed to be parabolic in the gravity plane. The 
differential equations for the static configuration of a 
parabolic cable are given by [Irvine 1981] 
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Where ‘H’ is the static horizontal tension, ‘x’ is the 
longitudinal coordinates of the cable system. Fig.1 
shows a stay cable with supports at different heights 
making an angle ‘θ’ with the horizontal axis. ‘u’, ‘v’, 
and ‘w’ are the displacements along ‘x’, ‘y’, and ‘z’ 
axes respectively. Static and dynamic profile of the 
cable is shown with support motions at support ‘a’ and 
‘b’. Superscript ‘s’ refers to the static equilibrium state. 
The dynamic equation of motion for the cable has been 
found using force equilibrium in three coordinate 

directions [Irvine 1981].  
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Where, ‘X’, ‘Y’, ‘Z’ are external forces along ‘x’, ‘y’, ‘z’ axis.  Assuming that the cable deforms in the elastic range, 
the dynamic tension ‘τ’ can be separated from static tension ‘T’ and can be given as. 
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Where ε(x,t) is the Green-Lagrange strain. The non-linear strain displacement relation makes a cable system nonlinear 
in nature. The non-homogeneous boundary conditions arising due to support motion are; 
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Figure 1: Typical Stay Cable With Support Motions 
at ‘a’ & ‘b’. 



Cable Analysis with support motion 
To analyse the cable under support motion the total time dependent displacements are separated into two parts, quasi-
static and modal motions (for details see Ali 2005). Since, longitudinal motion of cables is less in comparison to other 
directions, the axial inertia force is very small and can be omitted. The axial distributed force X is assumed to be zero. 
After that, the modal equation with homogeneous boundary condition is solved using standard Galerkin approach. 
The final nonlinear differential equations of motions of stay cable are obtained as: 
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The values of parameters used are given in Eq.7, where, subscript ‘n’ denotes parameters corresponding to the nth 
mode shape of the motion, i.e. n= 1,2,3, …,. 
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Eq.s 5, 6 show that the cable dynamic equation of motion is highly nonlinear and coupled.  

CABLE VIBRATION CONTROL 
The excessive vibration in cables under earthquake or wind induced excitations results in severe damage or even 
catastrophic failure of long-span bridges. Therefore, cable vibration control is an important issue. The damper in a 
stay cable should be located within 0.05L from a support for aesthetic reasons. Optimal damper location is at 0.02L 
from the anchored support (Ali 2005). 

Passive Viscous Fluid Damper 

Widely used passive system for cable vibration control is the viscous fluid damper. The damper force is given by 
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Where, 
d

x is the velocity across the damper location in the cable, and Cd is an experimentally determined damping 

coefficient, and α, is a real positive exponent with typical values in the range of 0.35–1 for seismic applications 
[Agrawal 2003]. Eq. 8 represents a linear viscous damper at ‘α=1’. Nonlinear viscous dampers have become popular 
recently because of their nonlinear force-velocity relationships and ability to limit the peak damper forces at large 
velocities while providing sufficient supplemental damping. This makes the nonlinear damper efficient for near field 
earthquakes. 

Magneto-rheological Dampers 

When exposed to magnetic field, MR fluids change from free flowing, linear viscous Newtonian fluid to a semi-solid 
Bingham fluid with controllable yield strength in milliseconds. Spencer [1997] has reported both parametric and non-



parametric models for modeling MR Dampers. The most commonly used model for MR dampers is the Bouc-Wen 
model. The present study uses 10 volts, 50 watt MR damper with a capacity of providing 1000 kN force. 

0df c x zα= +                 (9) 

The internal dynamics of the damper system is given by Eq.10. In MR damper, the damper force cannot be altered 
directly, therefore a clipped optimal algorithm is proposed by Dyke [1996], where, the voltage input to the cable is 
changed based on the control proposed by LQG control. 
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Fuzzy Logic Driven MR Damper Voltage 

The performance of clipped optimal algorithm fully depends on the accuracy of the model, as it decides the damper 
voltage to be supplied based on the difference of LQG proposed control force and force applied by the damper at 
current state [Dyke 1996]. Thus not only does it increase computation but also provide control force which is not 
optimal to the system. The FLC has been designed using five membership functions for each of the input variable 
(acceleration and velocity at mid span) and four for output variable (damper voltage) for finer input-output mapping. 
The subsets are NL = negative large, NE = negative, ZE = zero, PO = positive, and PL = positive large, PS = positive 
small (Fig.2). Generalized bell-shaped membership functions have been used for the FLC. The choice of a velocity 
and an acceleration component for feedback can be explained in the context of the state of the system in the 
fundamental mode of vibration. These feedback components help in generating the initial inference rule base (e.g., if 
velocity is zero and acceleration is high, the structure is at its extreme position and control action is not needed 
because it is going to return to its neutral position due to the restoring force, therefore voltage is zero). Again, if 
velocity and acceleration are of the same sign, the structure is returning to its neutral position due to its restoring 
force, and, if the acceleration and velocity are of opposite sign, then the structure is moving toward its extreme 
position and accordingly the control action should be applied. The adopted inference rules in this study are shown in 
Table-1. 

 

NUMERICAL RESULTS 

A test cable for analysis and control is taken from [Susumpow, 1995]. The parameters of the cable and MR damper 
used are given in Table 2. The cable differential equations are solved using ten sine terms. Vibration analysis is 
carried out for El Centro Earthquake excitation at left support, right support assumed to be fixed. The damper is 
supposed to be located at its optimal location i.e. 0.02L [Ali, 2005] from the left support. Four types of control 
strategies are studied, viz., passive linear viscous damping (PLVC) (case I); passive nonlinear viscous damping 
(PNLVC) (case II), semi active MR damper control using clipped optimal approach (COMR) (case III) and FLC 
driven MR damper (FLCMRD) (case IV). For the nonlinear viscous damper, test runs were done for different αvc. 

 
Figure 2: Input Output Membership 

function 

Table: 01 Inference Rules for FLC 
 Acceleration 

 NL NE ZE PO PL 

NL PL PO PS PS ZE 

NE PO PS ZE ZE ZE 

ZE PS ZE ZE ZE PS V
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PO ZE ZE ZE PS PO 

 PL ZE PS PS PO PL 



Finally, αvc=0.6 is chosen for comparison. 
Viscous damper constant is taken as Cd=1e6, for 
both linear and nonlinear case. For case III 
acceleration feedback is taken at the point of 
location of damper. Kalman estimation technique 
is used to estimate unknown states and to control 
the process and measurement noise. FLC is 
proposed based on acceleration and velocity 
feedback and voltage as output. For case III and 
IV, A/D and D/A converters with 16-bit precision 
and a span of ±10 volts are used. Sensor 
sensitivity is taken as 1V=10g and actuator 
capacity is assumed as 1000 kN. Sensor and 
actuator dynamics are not considered as natural 
frequencies of sensors and actuators are assumed 
to be much higher than the cable dominant 
frequency range. All four cases are compared in 
Table 3. 

Time histories of displacement at damper 
location, normed displacement over the span at 
each time instance and force time history for case 

I and case IV are shown in Fig.3. It is evident from the figure that FLC MR damper provides similar control as 
PLVC, but force given to the system is less. Fig.4 shows the normed response of cable over time along the span of the 
cable. Fig.5 shows the voltage required for FLC based MR damper control. It is evident that FLC has achieved it goal 
of getting all voltages in the range of damper. Thereby, providing better robustness than clipped optimal algorithm. 

Also the voltage never reaches its maximum 
thereby, avoids actuator saturation. 

 

Stability of proposed FLC based MR damper control is shown by taking worst-case initial condition, where both 
velocity and acceleration are given its maximum values. Fig.7 shows how the time histories of velocity and 
acceleration. 

 

Table: 03  Comparison of Different Control Methods 
 Peak 

Disp (m) 
Normed 
Disp (m) 

Peak 
Force 
(N) 

Peak 
Voltage 
(V) 

Uncont 0.6752 43.7066 -- -- 
PLVC 0.3001 27.2046 2.7e5 -- 
PNLVC 0.3220 33.7446 2.9e5 -- 
COMR 0.5882 28.7701 4.9e5 10 
FLCMR 0.3131 28.8682 2.26e5 6.7871 

Table: 02 Cable and Damper Parameters 

Sym Values Sym Values 

L 205 m C0a 4.40 Nsec/cm 

A 7.2e-3 m2 C0b 44 Nsec/(cm V) 

m 60.1992 n 1 

E 1.962e11 N/m2 Amr 1.2 

H 2932560 N γ 3 cm-1 

θ 38.7*π/180 β 3 cm-1 

α a 1.087e5 N/cm η 50 sec-1 

α b 4.961e5 N/(cmV) v 0-10 V 

Figure 3: Time Histories Figure 4: Normed response along span



CONCLUSION 
From the vibration analysis and FLC based control of the stay cable the following conclusions may be reached: 

1. Passive dampers located on the cable are quite effective in limiting the vibration amplitudes. But increase in 
length of cable reduces their performance as the optimal location (0.02L) of the damper placement becomes 
inaccessible. 

2. FLC based voltage switching of MR damper voltage provides better control than clipped optimal control as it 
varies the voltage over the full range. 

3. FLC along with MR damper provides inherent robustness to the system. 

4. Semi active MR dampers are not effective when deployed individually but may offer an attractive alternative to 
active systems when used along with passive systems as a hybrid system. 
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