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Abstract— Diabetes is a serious disease during which the into the blood stream. This method of intermittent monitgri
body’s production and use of insulin is impaired, causing and administration of insulin cannot ensure blood glucose
glucose concentration level to increase in the bloodstream remains at near normal levels at all times and thereforeethe

Regulating blood glucose levels as close to normal as podsib . iderable int ti ina diabet nii
leads to a substantial decrease in long term complications IS considerable Interest In managing diabetes on a conisiuo

of diabetes. In this paper, an intelligent neural network on  basis [3], [4] using subcutaneous glucose measurements.
line optimal feedback treatment strategy based on nonlinea An alternative approach is to replicate the function of
optimal control theory is presented for the disease using pancreatic insulin, i.e., a continuous measurement ane con
subcutaneous treatment strategy. A simple mathematical nuel tinuous insulin injection to the body based on a feedback
of the nonlinear dynamics of glucose and insulin interactia - )

in the blood system is considered based on the Bergman’'s strgtegy using an e)_(temal d?\{'(_:e such as a pumP [3-71.
minimal model. A glucose infusion term representing the efict ~ 1his pump that acts like an artificial pancreas would include
of glucose intake resulting from a meal is introduced into te  a sensor and an insulin container. The sensor provides the
model equations. The efficiency of the proposed controllerss ~ measurements of the blood glucose concentration and passes
shown taking random parameters and random initial condi-  {he information to a feedback control system that would

tions in presence of physical disturbances like food intakeA decid th . lin deli ¢ . trol
comparison study with linear quadratic regulator theory brings ecide on the necessary Insulin delivery rate using contro

out the advantages of the nonlinear control synthesis appach.  algorithms to keep the patient under metabolic control. The
Simulation results show that unlike linear optimal control, the  pump injects insulin through a catheter placed under the
proposed on-line continuous infusion strategy never lead$o  patients skin.
severe hypoglycemia problems. Robustness to parameter uncertainties and external distur
I. INTRODUCTION bances, should be satisfied before installing any automatic
The id f usi h ical | th | system of drug delivery. Therefore, it is vital for the pat®
ble iaea ob_uslmg rr|1at (_amatlca_ contlrci_ t Ieor)idto 1SO3V?Iﬁat controller used in the closed loop system should be
E'ro ems In biological sciences 1S bre aéve y %. '[d_ ]'_capable of handling these uncertainties in parametergidn t
owever, in recent years activities based on this idea ?{udy we apply a nonlinear optimal control approach using

growing fast. This is primarily due to development of MOr€,eural networks, a single adaptive critic network, to mamit
mathematical models for various biological systems [1], [2 blood glucose concentration

Th|s rap||d rg]:]rowthscan alsfohbe attnbutt)(_ad to (;he f\dvalncementSeveral methods have been previously employed to design
In control theory. Some of the recent biomedical applio&I0 y, o teeghack controller for insulin delivery, such as dtzads

of cor_1tr0| engineering can be found in [2] and the referencq- ear control [4]; and pole placement [3], where a lineadz
therein. In the present study an attempt has peen Mafiodel of the system is used for the design. Model predic-
to .regulate. blood g!ucose concentration in diabetic p&ien: « ~ontrol (MPC) [5], [6] and higher order sliding mode
using nonlinear optimal control approach. %II—|OSM) control [7], [8]. Hypoglycemia (blood glucose level

. D|abetes. IS a_d|seased|n Wh'chf_the bl?de s_ugg.r lev elow 50 mg/dl) is a major concern with many of these
Increases in patients and a significant efiort Is directegyq|jerg [7] (it will be shown later for a linear contrei

towards finding better ways to manage diabetes. The nor se), whereas HOSM increases model complexity
blood glucose concentration level in human is in the narrow Mahy difficult real-life control problems can be 1;ormu-
range of 70-110 mg/d|. Higher blood sugar level leads ©jated within the framework of optimal control. It is well

hyperglycemia and low blood sugar level results in hypogp, o\ that the dynamic programming formulation offers the

glycem_la._ This concentratu?n 1S normally controlled wathi most comprehensive solution approach to nonlinear optimal
these limits by hormones like, insulin and glucagon. Bloo%ontrol in a state feedback form [9]. However, a huge

glucos_e concebntratlor?_ls elle_zvate(_j be(_:rauzg_of dITf'C'er_ﬁ"nsu(infeasible) amount of computational and storage require-
secretion or abnormal insulin action. Traditionally, M@ \pents are needed. An innovative idea of 'Approximate

d:abetes hzshbeendthr_oygh _intermittent m(_)nitodring o; _blOOFynamic Programming’ (ADP) has been proposed in [10]
glucose and then administering an appropriate dose ofimsu, get around the computational complexity. In this paper
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reported for a class of nonlinear systems [12], treatment ¢1/min). It is worth noting that all the values are calcuthte
Perturient Paresis in Cows [11], etc. In the present studgr a person of average weight and these are not constant
we apply SNAC to regulate blood glucose concentrationumbers and vary from patient to patient, which makes the
in diabetic patients. The advantages of using SNAC is design of the controller a more challenging task.
provides nonlinear optimal treatment strategy for diabeti To show the complete dynamics of the glucose-insulin
patients. It can be implemented online. Furthermore, tinou regulatory system, a food intake term is considered in Eq. 1.
simulation results (shown later in section 1V), it is obssiv However, typically a diabetic person quantifies the food
that unlike linear quadratic controller, SNAC does not leadisturbance in terms of gram carbohydrate (CHO) it contains
to any hypoglycemic conditions. Since, CHO contain of food varies with food types and pa-

The paper is organized as follows: Section Il deals withient habit, we represent the food intake in a patient in germ
the mathematical modeling aspects of the problem. Nonlineaf glucose added in the blood due to the meal intake. Relation
Minimal model is considered for the present analysis witlhetween the food CHO contain and the amount of glucose
exogenous glucose intake as food. In Section Il we discuggided into the blood can be obtained from the ref. [Dg},
the necessary conditions of optimality from a discrete dyshows the rate at which glucose is absorbed to the blood
namic programming perspective. We describe the main idé@m the intestine, following food intake. This disturbanc
of a neural network based controller synthesis procedure gan be modeled by a decaying exponential function, whose
this section. Results from the simulation studies are dised  dynamics is given by the following equation [3], [16], [8].
next in Section IV and derive some conclusions in Section V.
D(t)=-BD(t), B>0 (3)
II. MATHEMATICAL MODEL FOR

INSULIN-GLUCOSE REGULATION wheret is in (min) andD(t) = Aexp(—Bt) is in (mg/dl/min)

In this paper, the insulin-glucose regulatory system dywith t > 0.
namics in the human body as described by the “Minimal The objective of the study is to develop a nonlinear control
Model” is used. Bergman minimal model [13], [14] is atechnique to compensate the uncertainties and disturbance
commonly referenced model in the literature and approdand to stabilize the blood plasma glucose concentration of a
imates the dynamic response of a diabetic patients blogfiabetic patient at the basal value. It should be noted Heat t
glucose concentration to the insulin injection using noedir - control term is not yet considered in the model introduced
differential equations. in Eq. 2.

A. Minimal Modéel for Insulin-Glucose Regulation

Minimal model is composed of two parts, first part de-B' Model for control design

scribes the glucose plasma concentration considering theThe system of equations introduced in Egs. 1-3 can be
dynamics of glucose uptake and independent of circulatingpmbined to get following equations
insulin. It has treated insulin plasma concentration as a

known forcing function [3]. X = —pafx— GF] - X|1X]2 +X4
. X2 = —P2Xo + -
G(t) = —p1[G(t) — Gp] — X(t)G(t) + D(t) " ).é - _gfxg_ |F;]34)_(3u(t)b @)
Z(t) = —p2X(t) + ps[l (t) — o] 4= —Bxy

wheret = 0 shows the time glucose enters blo@lt) is

the glucose concentration in the blood plasma in (mg/dl), N EQ- 4, X1.X2.x3, andx, representG(t), X(t), I(t) and

Z(t) is the insulins effect on the net glucose disappearané¥{t) respectively.u(t) is the control variable. It defines
(1/min). Gy is the basal pre-injection level of glucose inthe |ns_uI|n injection rate and replaces the normal insulin
(mg/dl). Parametep; is the insulin-independent rate constant€gulation of the body [8].

of glucose uptake in muscles and liver in (1/mip},is the ~ The aim of the present study is to design the control
rate for decrease in tissue glucose uptake ability (in Iyminsystem such that the system variables in Eq. 4 reach their
ps is the insulin-dependent increase in glucose uptake wbiliequilibrium values (i.e., basal values in the present case)
in tissue per unit of insulin concentration above the basdiherefore, for convenience, system dynamics is rewritten i
level in ((LU/mI)~* min—2). its deviation terms. For this we define,

Insulin kinetics is given by a single equation which T T
describes the plasma insulin concentration considerieg th X1 X2 X3 X4} = [Xlo X2y X3 X4 ]T+
dynamics of pancreatic insulin release in response to the [ Xig Xq X3y Xa4q ]
glucose stimulus [3]. T . ) (5)

) where [x1, Xo, X34 X4y] is the deviated state about the
I(t) = —n[I(t) — 1) @) equilibrium point [x, Xz, X3, x40]T of the system. From
I(t) is the insulin concentration in plasma at timein EQ. 4 the equilibrium is obtained as
(uU/ml), Iy is the basal pre-injection level of insulin in T T
(uU/ml). n is the first order decay rate for insulin in blood [ X, Xpo Xa X9 ] =[Go O Ip O] (6)



C. Model with normalized variables theory [9], [11], the equations for optimal control and edst
For better training of neural networks (see Section I1I-B)dynamics are given by

We.normalize the ngural ne;iwork inpu'&s. for this regsgn, we U = —Rfl[o 01 QMes (13)
define the new variable®g; = xi,/X1,, X2 = Xo, /X2, X3 =
— : ; T

X3y /X3, Xa £ Xa4 /%4, Where, subscript,) denotes nominal - JEK
values of the variables. After writing the system dynamic Ak = Akp1 + 48| CTQC X+ X (14)
equations in terms of the normalized variables and then
for convenience redefiningx; xp X3 x4]T 2 X1 X2 X3 x_4]T, where, A is the costate variable at time stgpthe dynamics
following equations are obtained. for which evolves backwards in time.

. At each time stepk the coupled equations (8, 10, 13

X1 —Pp1X1 — (X1 + Gp/X1,, ) XoX2, + XaXa, /X1, o o ! (

and 14) have to be solved simultaneously, together with the

;2 = :E)Z(Xi_}%x“?’"/xz” boundary conditionsXy specified and\y = 0 asN — o), to
).(i —Bxi obtain the optimal control solutiouny.

. . (7) " B. Procedure for Neural Network Yynthesis
Note that the equilibrium point of the homogeneous system

dynamics in (7) now corresponds to the origin (for nor- In this section, a neural network based optimal control
malized and deviated states) and the control texft) = synthesis is presented. The schematic of the controller syn

u(t)/xs, represents the normalized rate of insulin infusionth€sis procedure is shown in Fig. 1. We propose a neural

For convenience let us represenft{ = d(t)). network st_ructure th_at solve the optimal control probletme T
Equation (7) can be rewritten in state space form as controller. is essentially obtained through what we call as a
_ set of “critic networks”.
X =FX, u) = fX)+g(X)u(t) (8) The simulation for blood glucose regulation problem is
- run for two different cases. In the first case the model
where,X = [x1 Xz X3 Xa] - . ~ parametersyl, p2, ps, n, B, etc.) are assumed to be constant
Note that the control term appears only in the insuliyhg only the initial conditions of the state variables are
dynamics, i.e., only the rate of insulin injection is modifie changed. This simulation refers to a particular patientseho
by the state feedback control theory. Since only the plasmgysiological parameter are assumed to be unchanged. But in
glucose concentration has to reach it basal value, a OUtFMactical situation, patients will have different physigical
regulator problem is considered for the medication problemgharacteristics and therefore the model parameters \ifrdi

The outputy) is considered as the following from individual to individual. To design a control system
that can consider a varied range of patient, a second case
=CX=[1000X 9 '
y [ g © is consider, where the model parameters (ligg, p3, n, B)
I1l. OPTIMALITY CONDITION AND NEURAL are also varied; is not varied asp; is assumed zero for
NETWORK SYNTHESIS diabetic patients, see [3] for details).
A. Optimality Conditions 1) State generation for neural network training:: In

) _ ) the controller synthesis process, we first fix a particu-
For use with neural networks, the insulin-glucose regux, time stepk. Then, we choose a set of stat€s—=

lation medication dynamics is first discretized as (in Eule{xk : X € Domain of interest for which the critic networks
integration form [17]) are to be trained. Obviously it is a difficult task, mainly
Xir1 = X+ At Fk(xk,uk) (10) because of the _fact that, we do not know how exactly a
system evolves in the presence of control. It may contain
where At is the step size in time. The discretized outpuvery large values to zero near steady state conditions. For

vector ) is given as this reason, we follow a telescopic procedure outlinedwelo
Yk =CX=[1 0 0 0X (11)
A standard regulator cost function with output weighting .

is considered. An approximate (using trapezoidal rule)[17]
discrete cost function is obtained.

gNae o e Cpl Lol Conae
J=3 k; [Vk(Qd)Yk + Uk (R ) ug] (12) L f— 4"2“:]

2
u, k2

where Qy = QAt > 0, Ry = RAt > 0 are the weighting
matrices on state and control respectively aads the step Shi X el

size in time. Appropriate choice of these values is problem Ei@
dependent and can be adjusted with relative ease after a few

simulations. Applying the standard discrete optimal cointr Fig. 1. Schematic of optimal control synthesis using nenetorks




Define, for i = 1,2,3,....§ = { all X¢: [[Xl <c,
where ¢; is a positive constant. Notice that faf < ¢, <
3<-,5CSCSKC---. Thus, for soma =1, § will

TABLE |
PARAMETER VALUES FOR CASEIl STUDY

. - - s . Parameter Value Parameter Value
include the domain of interest for initial conditions. Henc p1 0 P2 0.0142
to begin the synthesis procedure, we fix a small value for the P3 154x10°° B 0.05

i n 0.2814 y 0
constantc; and train the networks for the states, randomly o 70 mrd o 7 0T

generated withir;. Once the critic networks converge for
this set, we choose close toc; and again train the networks
for the profiles withinS, and so on. We keep on increasing
the constant; this way until the networks are trained for
states inS;. In this paper, we have chosen= 0.05, ¢ =
€1+0.01(i—1) fori=2,3,... and continued untit; = ¢, = 1.

One can notice that for faster convergence, one can
take the convex combinations{BAhle(l—B) QJH},

. i BAS 1+ (1— B))‘fk,ju} as target outputs for training,
2) Neural network training:: The critic neural network(s) where 0< 3 < 1 is the learning rate for the neural network

essentially capture the relationship bewegmndAy,. For training. For the biomedical problem under consideratios
faster training, we have synthesized four neural networljjsave foilowed these ideas (selectifig= 0.5) '
(separate networks for each element of the vedior). 3) Convergence condition:: Before chén.g;ing:- to o

Discussion for the training in second case is presented - ! 1

here as it is more complicated. We have assumed th%?d generating new profiles for further training, it shouéd b

the parameters of the problemp( ps, n, B) can vary, assured that proper convergence is arrivedcfom his is not

. - : discussed here and can be found in [11].
within known minimum and maximum values. Thys € . L
4) Choice of neural network structure and initialization::
[P2 min, P2 max), P3 € [P3 min, P3 max), N € [Nmin, Nmax], and

B € [Brin, Bmaxl. Thus, to capture the relationship _betweer;rhe choice of a network is a trade-off between accuracy

p __and computational complexity. For this particular problem
X and Ay, We construct an augmented vecm‘tn ~ we took four myga1 neural networks, one each for each
o

(P is the vector containing parameters), whichof the costates for case-I. Similarly, for random paranseter
serves as the input to the neural networks. However, sin

g(%\d states fourge 41 neural networks, one each for each
L i . . . the costates, is considerethngent sigmoid function is
the individual elements of,"” vary widely in magnitude, we 9 9

construct a normalized vector to serve as the input. Thus

considered for all the hidden layers ahidear function for

i V¥ﬁ'\e output layer.
haveX,"" = [z Zok Za Zak P2/P2qs P3/P3ys N/Mn, B/Bn]', put iy

where py,, ps,, n and B, are the normalizing values for
p2, p3, N andB respectively. Note that after successful train-
ing of the networks, we can directly calculate the assodiat
optimal controlvi from Eq. 13 for eackX;"”. We synthesize
the neural networks in the following manner (Fig. 1).

IV. NUMERICAL RESULTS AND DISCUSSIONS

e Two cases are considered in the present study. First,
different conditions of a patient are considered. In thiseca
the physiological properties of patient are assumed to irema
same and therefore the model parameters are not changed.
In the second case random model parameters and random
initial states are considered. This replicates a situatibere
there are many patients each with a different physiological
property. This situation represents the reality better @lisd
shows the efficiency of the control design over a broad class
of patient parameters. A comparison with linear quadratic
regulator control technique applied to the nonlinear syste
dynamics is also provided.

1) Generate5, as described in Section 11I-B.1.
2) For each elemerX, of S, follow the steps below,

. constructx,™,

. input X" to the networks to gef\x1: let us
denote this actual output ag, ; as well,

« calculatevy, knowing Xx and Ay, 1, from optimal
control equation Eq. 13,

» get X1 from the state equation (10, 8), usiXg

and uy, . A. Case-l: Parameter Values
. constructx;"

inp <L For simulation study and training of the network in case-I
H np )
« InputX,.; to the networks to gely..», . the model parameters considered are shown in Table I.
- calculate the targety, 1, from the costate equation . : .
) For all simulation studies, the basal value of glucdsg) (
Eq. 14. Let us denote this a, ;. s o .
R and insulin () concentrations in plasma are considered
3) Train the networks, with aII>(t'<np as input and all as 70 mg/dl and 7uU/ml respectively (see Table I). For
corresponding\;, ; as output. the neural network training purposes, the range of val-
4) Check for convergence, as described in subsection lltes for the state variables are shown in Table Il. where
B.3. the normalizing variable$x,,, x2,, X3, x4n]T are taken as
5) If proper convergence is achieved, stop and revert {450, 0.01, 100, 10]T. The time intervalAt is chosen as
step-1, withi =i+ 1. If not, go to step-1 and retrain 0.5 seconds (studies with with higher time step (10s) is
the networks. underway). The output weigh® is taken as @1 x (xq,)?
6) Continue the process till=1; i.e., until¢; = ¢ = 1. and the control weight is considered as 300(&3n)2.



TABLE Il
RANGE OF VALUES FOR STATE VARIABLES

state Value state Value
X1 min O/ X1 X1 max 300/ X1
X2 min 70.01/X2n X2 max 0'03/X2n
X3min | —10/x3, || X3 max | 300/X3,
X4 min 0/x4, X4 max | 20/xa,

B. Case-l: Analysis of Smulation Results

The parameters mentioned in subsection IV-A leads to an
unstable glucose trajectory as shown in Fig. 2 for untreated
(i.e., without exogenous insulin supply) conditions. FgQ
also shows the glucose profile for both linearized system
and nonlinear system with linear quadratic control (LQR)
and single network adaptive critic control (SNAC). It is
evident form Fig. 2 that linearized system and nonlinear
system differs in their profiles. It also to be noted that SNAC
based nonlinear control performs better than LQR based
control. The glucose profiles in LQR based control strategy
brings down the glucose in the patient body to 50 mg/dl
(a major concern for diabetic patients [3]). This is absent
in neural medication. Figure 3 shows the profile of insulin
concentration in the patient. The control required (or tite r
of exogenous insulin injection) is shown in Fig. 4. One can
stop neural medication at 200 minutes of simulation as the
control required after that is zero.
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Plasma glucose concentrations with random initial condi-
tions and parameters as given in Table | are shown in Fig. 5.
Figure 5 shows the glucose trajectories for untreated qustie
and for patients with neural medication together. As shawn i
Fig 5 neural medication never lead to hypoglycemic condi-
tion where the glucose concentrations goes below 50 mg/dI.
It is to be noted that all glucose profiles are bought down to
the basal value (70 mg.dl) within 200 minutes of simulation
even for the hypoglycemia cases. The corresponding rate of
insulin injection are shown in Fig. 6.

C. Case-ll: Parameter Values

In second case the parameteps, (p3, N and B) are also
considered random. For the neural network training purpose
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TABLE Il
RANGE OF VALUES FOR PARAMETERS

state Value state Value

P2 min 0.01/pz, P2 mex 0.02/py,
Pamin | 1310 °/ps; || Psmax | 2010 °/pg,
Nrmin 0.30/n, Nrmax 0.12/n,
Brin 0.1/B, Brax 0.01/B,

700

(t) Blood Glucose Concentration (mg/dL)

)
s
5
8

o

—— Neural Medicatio
- - - Untreated

o

Fig. 7.

we have assumed range for the state variabigsds given

L L L L L L L L L
50 100 150 200 250 300 350 400 450 500

Glucose trajectories with random parameters

Time (min)

in the present study. The treatment of the disease usingrline
optimal controller applied to nonlinear system and through
SNAC based neural medication has been considered. Two
different training cases are studied. The first case coreide

a patient with various physiological conditions and in the
second case the neural controller is trained for random mode
parameter, which represents different patients. The skcon
case is more realistic and also shows the robustness of
the neural control under parameter variation. In both the
cases neural control shows rapid settlement of blood glicos
concentrations to its basal value. Furthermore, a conparis
study with the linear quadratic regulator theory clearlyngs

out the advantage of the proposed nonlinear control syisthes
approach.
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