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Abstract— Diabetes is a serious disease during which the
body’s production and use of insulin is impaired, causing
glucose concentration level to increase in the bloodstream.
Regulating blood glucose levels as close to normal as possible,
leads to a substantial decrease in long term complications
of diabetes. In this paper, an intelligent neural network on-
line optimal feedback treatment strategy based on nonlinear
optimal control theory is presented for the disease using
subcutaneous treatment strategy. A simple mathematical model
of the nonlinear dynamics of glucose and insulin interaction
in the blood system is considered based on the Bergman’s
minimal model. A glucose infusion term representing the effect
of glucose intake resulting from a meal is introduced into the
model equations. The efficiency of the proposed controllersis
shown taking random parameters and random initial condi-
tions in presence of physical disturbances like food intake. A
comparison study with linear quadratic regulator theory br ings
out the advantages of the nonlinear control synthesis approach.
Simulation results show that unlike linear optimal control, the
proposed on-line continuous infusion strategy never leadsto
severe hypoglycemia problems.

I. INTRODUCTION

The idea of using mathematical control theory to solve
problems in biological sciences is relatively old [1–3].
However, in recent years activities based on this idea is
growing fast. This is primarily due to development of more
mathematical models for various biological systems [1], [2].
This rapid growth can also be attributed to the advancement
in control theory. Some of the recent biomedical applications
of control engineering can be found in [2] and the references
therein. In the present study an attempt has been made
to regulate blood glucose concentration in diabetic patients
using nonlinear optimal control approach.

Diabetes is a disease in which the blood sugar level
increases in patients and a significant effort is directed
towards finding better ways to manage diabetes. The normal
blood glucose concentration level in human is in the narrow
range of 70−110 mg/dl. Higher blood sugar level leads to
hyperglycemia and low blood sugar level results in hypo-
glycemia. This concentration is normally controlled within
these limits by hormones like, insulin and glucagon. Blood
glucose concentration is elevated because of deficient insulin
secretion or abnormal insulin action. Traditionally, managing
diabetes has been through intermittent monitoring of blood
glucose and then administering an appropriate dose of insulin
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into the blood stream. This method of intermittent monitoring
and administration of insulin cannot ensure blood glucose
remains at near normal levels at all times and therefore, there
is considerable interest in managing diabetes on a continuous
basis [3], [4] using subcutaneous glucose measurements.

An alternative approach is to replicate the function of
pancreatic insulin, i.e., a continuous measurement and con-
tinuous insulin injection to the body based on a feedback
strategy using an external device such as a pump [3–7].
This pump that acts like an artificial pancreas would include
a sensor and an insulin container. The sensor provides the
measurements of the blood glucose concentration and passes
the information to a feedback control system that would
decide on the necessary insulin delivery rate using control
algorithms to keep the patient under metabolic control. The
pump injects insulin through a catheter placed under the
patients skin.

Robustness to parameter uncertainties and external distur-
bances, should be satisfied before installing any automatic
system of drug delivery. Therefore, it is vital for the patients
that controller used in the closed loop system should be
capable of handling these uncertainties in parameters. In this
study we apply a nonlinear optimal control approach using
neural networks, a single adaptive critic network, to monitor
blood glucose concentration.

Several methods have been previously employed to design
the feedback controller for insulin delivery, such as classical
linear control [4]; and pole placement [3], where a linearized
model of the system is used for the design. Model predic-
tive control (MPC) [5], [6] and higher order sliding mode
(HOSM) control [7], [8]. Hypoglycemia (blood glucose level
below 50 mg/dl) is a major concern with many of these
controllers [7] (it will be shown later for a linear controller
case), whereas HOSM increases model complexity.

Many difficult real-life control problems can be formu-
lated within the framework of optimal control. It is well
known that the dynamic programming formulation offers the
most comprehensive solution approach to nonlinear optimal
control in a state feedback form [9]. However, a huge
(infeasible) amount of computational and storage require-
ments are needed. An innovative idea of ’Approximate
Dynamic Programming’ (ADP) has been proposed in [10]
to get around the computational complexity. In this paper
ADP is attempted using a “Single Network Adaptive Critic”
(SNAC) [11]. The SNAC architecture offers three poten-
tial advantages: a simpler architecture, lesser computational
load and reduced approximation error than Adaptive Critic
Networks [10]. The efficiency of the technique has been



reported for a class of nonlinear systems [12], treatment of
Perturient Paresis in Cows [11], etc. In the present study
we apply SNAC to regulate blood glucose concentration
in diabetic patients. The advantages of using SNAC is it
provides nonlinear optimal treatment strategy for diabetic
patients. It can be implemented online. Furthermore, through
simulation results (shown later in section IV), it is observed
that unlike linear quadratic controller, SNAC does not lead
to any hypoglycemic conditions.

The paper is organized as follows: Section II deals with
the mathematical modeling aspects of the problem. Nonlinear
Minimal model is considered for the present analysis with
exogenous glucose intake as food. In Section III we discuss
the necessary conditions of optimality from a discrete dy-
namic programming perspective. We describe the main idea
of a neural network based controller synthesis procedure in
this section. Results from the simulation studies are discussed
next in Section IV and derive some conclusions in Section V.

II. MATHEMATICAL MODEL FOR
INSULIN-GLUCOSE REGULATION

In this paper, the insulin-glucose regulatory system dy-
namics in the human body as described by the “Minimal
Model” is used. Bergman minimal model [13], [14] is a
commonly referenced model in the literature and approx-
imates the dynamic response of a diabetic patients blood
glucose concentration to the insulin injection using nonlinear
differential equations.

A. Minimal Model for Insulin-Glucose Regulation

Minimal model is composed of two parts, first part de-
scribes the glucose plasma concentration considering the
dynamics of glucose uptake and independent of circulating
insulin. It has treated insulin plasma concentration as a
known forcing function [3].

Ġ(t) = −p1 [G(t)−Gb]−X(t)G(t)+ D(t)
Ż(t) = −p2X(t)+ p3 [I(t)− Ib]

(1)

where t = 0 shows the time glucose enters blood,G(t) is
the glucose concentration in the blood plasma in (mg/dl),
Z(t) is the insulins effect on the net glucose disappearance
(1/min). Gb is the basal pre-injection level of glucose in
(mg/dl). Parameterp1 is the insulin-independent rate constant
of glucose uptake in muscles and liver in (1/min),p2 is the
rate for decrease in tissue glucose uptake ability (in 1/min),
p3 is the insulin-dependent increase in glucose uptake ability
in tissue per unit of insulin concentration above the basal
level in ((µU/ml)−1 min−2).

Insulin kinetics is given by a single equation which
describes the plasma insulin concentration considering the
dynamics of pancreatic insulin release in response to the
glucose stimulus [3].

İ(t) = −n [I(t)− Ib] (2)

I(t) is the insulin concentration in plasma at timet in
(µU/ml), Ib is the basal pre-injection level of insulin in
(µU/ml). n is the first order decay rate for insulin in blood

(1/min). It is worth noting that all the values are calculated
for a person of average weight and these are not constant
numbers and vary from patient to patient, which makes the
design of the controller a more challenging task.

To show the complete dynamics of the glucose-insulin
regulatory system, a food intake term is considered in Eq. 1.
However, typically a diabetic person quantifies the food
disturbance in terms of gram carbohydrate (CHO) it contains.
Since, CHO contain of food varies with food types and pa-
tient habit, we represent the food intake in a patient in terms
of glucose added in the blood due to the meal intake. Relation
between the food CHO contain and the amount of glucose
added into the blood can be obtained from the ref. [15].D(t)
shows the rate at which glucose is absorbed to the blood
from the intestine, following food intake. This disturbance
can be modeled by a decaying exponential function, whose
dynamics is given by the following equation [3], [16], [8].

Ḋ(t) = −BD(t), B > 0 (3)

wheret is in (min) andD(t) = Aexp(−Bt) is in (mg/dl/min)
with t > 0.

The objective of the study is to develop a nonlinear control
technique to compensate the uncertainties and disturbances
and to stabilize the blood plasma glucose concentration of a
diabetic patient at the basal value. It should be noted that the
control term is not yet considered in the model introduced
in Eq. 2.

B. Model for control design

The system of equations introduced in Eqs. 1-3 can be
combined to get following equations

ẋ1 = −p1 [x1−Gb]− x1x2 + x4

ẋ2 = −p2x2 + p3 [x3− Ib]
ẋ3 = −n [x3− Ib]+ u(t)
ẋ4 = −Bx4

(4)

In Eq. 4, x1,x2,x3, and x4 representG(t), X(t), I(t) and
D(t) respectively.u(t) is the control variable. It defines
the insulin injection rate and replaces the normal insulin
regulation of the body [8].

The aim of the present study is to design the control
system such that the system variables in Eq. 4 reach their
equilibrium values (i.e., basal values in the present case).
Therefore, for convenience, system dynamics is rewritten in
its deviation terms. For this we define,

[

x1 x2 x3 x4
]T

=
[

x10 x20 x30 x40

]T
+

[

x1d x2d x3d x4d

]T

(5)
where

[

x1d x2d x3d x4d

]T
is the deviated state about the

equilibrium point
[

x10 x20 x30 x40

]T
of the system. From

Eq. 4 the equilibrium is obtained as

[

x10 x20 x30 x40

]T
=

[

Gb 0 Ib 0
]T

(6)



C. Model with normalized variables

For better training of neural networks (see Section III-B),
we normalize the neural network inputs. For this reason, we
define the new variables ¯x1 , x1d /x1n , x̄2 , x2d /x2n , x̄3 ,

x3d /x3n , x̄4 , x4d /x4n , where, subscript(n) denotes nominal
values of the variables. After writing the system dynamic
equations in terms of the normalized variables and then
for convenience redefining[x1 x2 x3 x4]

T
, [x̄1 x̄2 x̄3 x̄4]

T ,
following equations are obtained.
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(7)
Note that the equilibrium point of the homogeneous system
dynamics in (7) now corresponds to the origin (for nor-
malized and deviated states) and the control term ¯u(t) =
u(t)/x3n represents the normalized rate of insulin infusion.
For convenience let us represent (u(t) = ū(t)).

Equation (7) can be rewritten in state space form as

Ẋ = F(X , u) = f (X)+ g(X)u(t) (8)

where,X = [x1 x2 x3 x4]
T .

Note that the control term appears only in the insulin
dynamics, i.e., only the rate of insulin injection is modified
by the state feedback control theory. Since only the plasma
glucose concentration has to reach it basal value, a output
regulator problem is considered for the medication problem.
The output (y) is considered as the following

y = CX = [1 0 0 0]X (9)

III. OPTIMALITY CONDITION AND NEURAL
NETWORK SYNTHESIS

A. Optimality Conditions

For use with neural networks, the insulin-glucose regu-
lation medication dynamics is first discretized as (in Euler
integration form [17])

Xk+1 = Xk + ∆t Fk(Xk,uk) (10)

where ∆t is the step size in time. The discretized output
vector (yk) is given as

yk = CXk = [1 0 0 0]Xk (11)

A standard regulator cost function with output weighting
is considered. An approximate (using trapezoidal rule [17])
discrete cost function is obtained.

J =
1
2

N→∞

∑
k=1

[yk(Qd)yk + uk(Rd)uk] (12)

where Qd = Q∆t ≥ 0, Rd = R∆t > 0 are the weighting
matrices on state and control respectively and∆t is the step
size in time. Appropriate choice of these values is problem
dependent and can be adjusted with relative ease after a few
simulations. Applying the standard discrete optimal control

theory [9], [11], the equations for optimal control and costate
dynamics are given by

uk = −R−1[0 0 1 0]λk+1 (13)

λk = λk+1 + ∆t

[

CT QC Xk +

(

∂Fk

∂Xk

)T
]

(14)

where,λk is the costate variable at time steptk, the dynamics
for which evolves backwards in time.

At each time stepk the coupled equations (8, 10, 13
and 14) have to be solved simultaneously, together with the
boundary conditions (X1 specified andλN = 0 asN → ∞), to
obtain the optimal control solutionuk.

B. Procedure for Neural Network Synthesis

In this section, a neural network based optimal control
synthesis is presented. The schematic of the controller syn-
thesis procedure is shown in Fig. 1. We propose a neural
network structure that solve the optimal control problem. The
controller is essentially obtained through what we call as a
set of “critic networks”.

The simulation for blood glucose regulation problem is
run for two different cases. In the first case the model
parameters (p1, p2, p3, n, B, etc.) are assumed to be constant
and only the initial conditions of the state variables are
changed. This simulation refers to a particular patient whose
physiological parameter are assumed to be unchanged. But in
practical situation, patients will have different physiological
characteristics and therefore the model parameters will differ
from individual to individual. To design a control system
that can consider a varied range of patient, a second case
is consider, where the model parameters (like,p2, p3, n, B)
are also varied (p1 is not varied asp1 is assumed zero for
diabetic patients, see [3] for details).

1) State generation for neural network training:: In
the controller synthesis process, we first fix a particu-
lar time step k. Then, we choose a set of statesS =
{Xk : Xk ∈ Domain of interest} for which the critic networks
are to be trained. Obviously it is a difficult task, mainly
because of the fact that, we do not know how exactly a
system evolves in the presence of control. It may contain
very large values to zero near steady state conditions. For
this reason, we follow a telescopic procedure outlined below.

Fig. 1. Schematic of optimal control synthesis using neuralnetworks



Define, for i = 1,2,3, . . . ,Si = { all Xk : ‖Xk‖∞ ≤ ci},
where ci is a positive constant. Notice that forc1 ≤ c2 ≤
c3 ≤ ·· · , S1 ⊆ S2 ⊆ S3 ⊆ ·· · . Thus, for somei = I, SI will
include the domain of interest for initial conditions. Hence,
to begin the synthesis procedure, we fix a small value for the
constantc1 and train the networks for the states, randomly
generated withinS1. Once the critic networks converge for
this set, we choosec2 close toc1 and again train the networks
for the profiles withinS2 and so on. We keep on increasing
the constantci this way until the networks are trained for
states inS1. In this paper, we have chosenc1 = 0.05, ci =
c1+0.01(i−1) for i = 2,3, . . . and continued untilci = cI = 1.

2) Neural network training:: The critic neural network(s)
essentially capture the relationship betweenXk andλk+1. For
faster training, we have synthesized four neural networks
(separate networks for each element of the vectorλk+1).
Discussion for the training in second case is presented
here as it is more complicated. We have assumed that
the parameters of the problem (p2, p3, n, B) can vary,
within known minimum and maximum values. Thus,p2 ∈
[p2 min, p2 max], p3 ∈ [p3 min, p3 max], n ∈ [nmin, nmax], and
B ∈ [Bmin, Bmax]. Thus, to capture the relationship between
Xk and λk+1, we construct an augmented vectorX inp

k =
[

XT
k

... PT

]T

(P is the vector containing parameters), which

serves as the input to the neural networks. However, since
the individual elements ofX inp

k vary widely in magnitude, we
construct a normalized vector to serve as the input. Thus we
haveX inp

k = [z1k z2k z3k z4k p2/p2n , p3/p3n , n/nn, B/Bn]
T ,

where p2n , p3n , nn and Bn are the normalizing values for
p2, p3, n andB respectively. Note that after successful train-
ing of the networks, we can directly calculate the associated
optimal controlvk from Eq. 13 for eachX inp

k . We synthesize
the neural networks in the following manner (Fig. 1).

1) GenerateSi, as described in Section III-B.1.
2) For each elementXk of Si, follow the steps below,

• constructX inp
k ,

• input X inp
k to the networks to getλk+1: let us

denote this actual output asλ a
k+1 as well,

• calculatevk, knowing Xk and λk+1, from optimal
control equation Eq. 13,

• get Xk+1 from the state equation (10, 8), usingXk

anduk,
• constructX inp

k+1,
• input X inp

k+1 to the networks to getλk+2,
• calculate the targetλk+1, from the costate equation

Eq. 14. Let us denote this asλ t
k+1.

3) Train the networks, with allX inp
k as input and all

correspondingλ t
k+1 as output.

4) Check for convergence, as described in subsection III-
B.3.

5) If proper convergence is achieved, stop and revert to
step-1, withi = i + 1. If not, go to step-1 and retrain
the networks.

6) Continue the process tilli = I; i.e., until ci = cI = 1.

TABLE I

PARAMETER VALUES FOR CASE-I STUDY

Parameter Value Parameter Value
p1 0 p2 0.0142
p3 1.54×10−5 B 0.05
n 0.2814 γ 0

Gb 70 mg/dl Ib 7 µU/ml

One can notice that for faster convergence, one can
take the convex combinations

[

β λ t
k+1+(1−β )λ a

k, j+1

]

,
[

β λ t
2k+1 +(1−β )λ a

2k, j+1

]

as target outputs for training,

where 0< β < 1 is the learning rate for the neural network
training. For the biomedical problem under consideration,we
have followed these ideas (selectingβ = 0.5).

3) Convergence condition:: Before changingci to ci+1

and generating new profiles for further training, it should be
assured that proper convergence is arrived forci. This is not
discussed here and can be found in [11].

4) Choice of neural network structure and initialization::
The choice of a network is a trade-off between accuracy
and computational complexity. For this particular problem,
we took four π4,6,4,1 neural networks, one each for each
of the costates for case-I. Similarly, for random parameters
and states fourπ8,6,4,1 neural networks, one each for each
of the costates, is considered.Tangent sigmoid function is
considered for all the hidden layers andlinear function for
the output layer.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Two cases are considered in the present study. First,
different conditions of a patient are considered. In this case
the physiological properties of patient are assumed to remain
same and therefore the model parameters are not changed.
In the second case random model parameters and random
initial states are considered. This replicates a situationwhere
there are many patients each with a different physiological
property. This situation represents the reality better andalso
shows the efficiency of the control design over a broad class
of patient parameters. A comparison with linear quadratic
regulator control technique applied to the nonlinear system
dynamics is also provided.

A. Case-I: Parameter Values

For simulation study and training of the network in case-I,
the model parameters considered are shown in Table I.

For all simulation studies, the basal value of glucose (Gb)
and insulin (Ib) concentrations in plasma are considered
as 70 mg/dl and 7µU/ml respectively (see Table I). For
the neural network training purposes, the range of val-
ues for the state variables are shown in Table II. where
the normalizing variables[x1n , x2n , x3n , x4n ]

T are taken as
[150, 0.01, 100, 10]T . The time interval∆t is chosen as
0.5 seconds (studies with with higher time step (10s) is
underway). The output weightQ is taken as 0.01× (x1n)

2

and the control weight is considered as 3000× (x3n)
2.



TABLE II

RANGE OF VALUES FOR STATE VARIABLES

state Value state Value
x1 min 0/x1n x1 max 300/x1n

x2 min −0.01/x2n x2 max 0.03/x2n

x3 min −10/x3n x3 max 300/x3n

x4 min 0/x4n x4 max 20/x4n

B. Case-I: Analysis of Simulation Results

The parameters mentioned in subsection IV-A leads to an
unstable glucose trajectory as shown in Fig. 2 for untreated
(i.e., without exogenous insulin supply) conditions. Figure 2
also shows the glucose profile for both linearized system
and nonlinear system with linear quadratic control (LQR)
and single network adaptive critic control (SNAC). It is
evident form Fig. 2 that linearized system and nonlinear
system differs in their profiles. It also to be noted that SNAC
based nonlinear control performs better than LQR based
control. The glucose profiles in LQR based control strategy
brings down the glucose in the patient body to 50 mg/dl
(a major concern for diabetic patients [3]). This is absent
in neural medication. Figure 3 shows the profile of insulin
concentration in the patient. The control required (or the rate
of exogenous insulin injection) is shown in Fig. 4. One can
stop neural medication at 200 minutes of simulation as the
control required after that is zero.
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Fig. 2. Open and closed loop Glucose regulatory system, (X(0) =
[1.31 0.31 1.82 0.064]T )

Plasma glucose concentrations with random initial condi-
tions and parameters as given in Table I are shown in Fig. 5.
Figure 5 shows the glucose trajectories for untreated patients
and for patients with neural medication together. As shown in
Fig 5 neural medication never lead to hypoglycemic condi-
tion where the glucose concentrations goes below 50 mg/dl.
It is to be noted that all glucose profiles are bought down to
the basal value (70 mg.dl) within 200 minutes of simulation
even for the hypoglycemia cases. The corresponding rate of
insulin injection are shown in Fig. 6.

C. Case-II: Parameter Values

In second case the parameters (P2, p3, n and B) are also
considered random. For the neural network training purposes,
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Fig. 5. Glucose trajectories with random initial conditions
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TABLE III

RANGE OF VALUES FOR PARAMETERS

state Value state Value
p2 min 0.01/p2n p2 max 0.02/p2n

p3 min 1×10−6/p3n p3 max 20×10−6/p3n

nmin 0.30/nn nmax 0.12/nn
Bmin 0.1/Bn Bmax 0.01/Bn
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Fig. 7. Glucose trajectories with random parameters

we have assumed range for the state variables (Xk) as given
in Table II and range for the rest of the parameters is given
in Table III.

The normalizing variables in Ta-
ble III ([p2n , p3n , nn, Bn]

T ) are taken as
[

0.015, 5×10−6, 0.21, 0.05
]T

. Blood glucose
concentration with random model parameters are shown in
Fig. 7. The simulated glucose profiles without treatment
and with neural treatment are shown together for better
comparison. The controlled glucose trajectories are observed
to reach basal value in short time. The corresponding control
inputs (rate of insulin injection) are shown in Fig. 8. As
shown in Fig. 7, the insulin injections can be stopped after
100 minutes as all the control trajectories are seen to reach
zero within this time.

V. CONCLUSIONS

One of the challenging control problems in human regula-
tory systems, the diabetes management, has been discussed
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Fig. 8. Insulin injection rate for random parameters

in the present study. The treatment of the disease using linear
optimal controller applied to nonlinear system and through
SNAC based neural medication has been considered. Two
different training cases are studied. The first case considered
a patient with various physiological conditions and in the
second case the neural controller is trained for random model
parameter, which represents different patients. The second
case is more realistic and also shows the robustness of
the neural control under parameter variation. In both the
cases neural control shows rapid settlement of blood glucose
concentrations to its basal value. Furthermore, a comparison
study with the linear quadratic regulator theory clearly brings
out the advantage of the proposed nonlinear control synthesis
approach.
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