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The paper presents an optimal fuzzy logic control algorithm for vibration mitigation of buildings using
magneto-rheological (MR) dampers. MR dampers are semi-active devices and are monitored using
external voltage supply. The voltage monitoring of MR damper is accomplished using evolutionary fuzzy
system, where the fuzzy system is optimized using evolutionary algorithms (EAs). A micro-genetic
algorithm (u#-GA) and a particle swarm optimization (PSO) are used to optimize the FLC parameters.
Two cases of optimal FLCs are shown. One where FLC is optimized keeping the rule base predefined and
in the other case, FLC rule base is also optimized along with other FLC parameters. The FLC rule base and
membership function parameters are optimized using 10 variables. Fuzzy controllers with a predefined
rule base and with an optimal rule base are applied to a single degree of freedom (SDOF) and a multi-
degree of freedom (MDOF) system. Finally, the study evaluates the performance of the fuzzy controller
optimized off-line, on a three storey building model under seismic excitations. The main advantage of
using FLC to drive the MR damper voltage is that it provides a gradual and smooth change in voltage.
Consequently, the present approach provides a better vibration control for structures under earthquake

excitations.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Present day structures are built to be large, slender and flexible
(e.g., long-span bridges, high-rise buildings, etc.) and are designed
to serve more critical functions. However, large flexible structures
subjected to natural disturbances such as wind gusts or earth-
quakes, experience large vibrations which may introduce damages
in the structure. This may lead to moderate to large damage in
structures and/or cause discomfort to the users. Specifically, in
seismic dominant regions, earthquakes pose a serious threat to
both the infrastructure and human lives. The protection of civil
structures, including their material content and the human
occupants, is without doubt a priority for structural designers
worldwide. The extent of the protection may range from reliable
operation and occupant comfort to human and structural survival
under the action of these hazardous loads.

The use of external devices (control devices) to mitigate
structural vibration during earthquakes as a means of hazard
reduction has become popular over the last 10 years (Soong and
Spencer, 2002). The design philosophy is to reduce the structural
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responses to safe levels with limitations on both the control force
applied (limited by the number and capacity of actuators and the
required amount of energy to drive the system) and the number of
measured signals (limited by number of sensors used). Depending
on the level of energy required and the devices employed, a
structural control system can be classified into passive, active,
semi-active and hybrid systems (Ali and Ramaswamy, 2007).
Among these systems, the semi-active control has recently
received considerable attention, because it offers significant
adaptability without a large power requirement. The magneto-
rheological (MR) damper, which employs MR fluid to provide its
controllable characteristics, is one of the newest additions to this
family. Besides its low-power requirement, the MR damper is
reliable, fail-safe against power cut, relatively inexpensive and
amenable for full-scale structural control applications (Yang et al.,
2002).

The nonlinear nature of MR dampers makes the design of a
suitable control algorithm that can take advantages of the unique
characteristics of these devices, an interesting and challenging
task. MR dampers hysteretic behaviour are monitored using an
external voltage supply, which makes damper supply voltage as a
control variable. Numerous control algorithms for the control of
the MR systems are proposed and reported. These include
‘skyhook’ damper control algorithm by Karnopp et al. (1974),
proposed for a vehicle suspension system. This was followed by a
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bang-bang controller (Feng and Shinozuka, 1990); direct Lyapu-
nov based control algorithms (Leitmann, 1994); a modified
homogeneous friction algorithm (Jansen and Dyke, 2000) and
widely used clipped optimal strategy (Dyke et al., 1996).

These algorithms provide either zero or the maximum voltage
value (without any intermediate levels of voltage supply) to the MR
damper based on feedback from the structure. Thus these methods
provide sub-optimal control force to the system. Moreover, swift
changes in voltage supply lead to a sudden rise in the external
control force which increases the system responses and may
introduce local damages in the structure (Ali and Ramaswamy,
2008a). Therefore, there is a need for control algorithms that can
change the MR damper voltage gradually and smoothly. This gradual
change in MR damper supply voltage will enable a designer to cover
all voltage values between zero and maximum voltage supply.

This paper presents an optimal fuzzy logic based approach to
monitor the voltage supply to MR dampers. Some characteristics
of FLC appealing to control engineers are their effectiveness and
ease in handling structural nonlinearities, uncertainties and
heuristic knowledge. Added to the niceties present in a fuzzy
system, a fuzzy control applied to structural system can handle
the hysteretic behaviour of the structure under earthquake (Dyke
et al.,, 1996). Moreover, it provides an added robustness to the
closed loop system when combined with MR dampers (Ali and
Ramaswamy, 2006). Another advantage of the present FLC model
used in conjunction with MR damper is that unlike in clipped
optimal and Lyapunov control techniques, the change in voltage
input to the MR damper is gradual and therefore it covers all
voltage values in the range of zero and maximum damper
voltages. This particular advantage not only permits the designer
to use variable voltage value but also provides an inherent
stability to the closed loop system.

Although fuzzy logic results in the creation of simple control
algorithms, the tuning of the fuzzy controller is a more difficult
and sophisticated procedure than that employed in conventional
control algorithms (e.g., LQG, Lyapunov methods, etc.). Previous
studies on optimal FLCs mainly focused on adaptively changing
the fuzzy membership function (MF) parameters using genetic
algorithm (GA), while predefining the rule base and retaining it
unaltered (Ahlawat and Ramaswamy, 2004; Dounis et al., 2007,
Ali and Ramaswamy, 2007). It will be shown in this study that a
fixed rule base FLC (where rule base is eventually decided based
on designer knowledge) is not as efficient as a variable rule base
FLC in controlling the vibration of structures. Particularly when
structures are subjected to seismic excitations, they vibrate in
combination of different modes whose participation factors
depend on the energy content of the excitation at a particular
frequency (Chopra, 2005). This makes the manual design of an
optimal rule base, a complex task.

In this paper, optimal FLC is constructed using micro-genetic
algorithm (u-GA) and particle swarm optimization (PSO). Both the
11-GA and PSO are stochastic searchtechniques but follow different
methods to determine their next generation. PSO uses a simple
algorithm and is easy to implement. Compared to GA, PSO takes
less time for each function evaluation as it does not use many of
the GA operators (like, mutation, crossover and selection opera-
tor). On the other hand, PSO is likely to stick to the optima it finds
and stops exploring other regions (Kennedy and Eberhart, 1999).
Micro-GA is similar to a simple GA but with a smaller initial
population. It restarts its search space once an optima is found.
Therefore, it has the ability to search a bigger space with reduced
number of function evaluations. Both the techniques are used in
this paper and compared. Relative merits and demerits are also
highlighted.

Next section provides a brief description of the mathematical
model of a MR damper used in this study. The implementation

details for both kind of FLCs using evolutionary algorithms
(EAs) are discussed thereafter. Details of u-GA, PSO and optimal
FLC are given in the following section. Numerical simulations
on a single degree of freedom (SDOF) and a multi-degree of
freedom (MDOF) systems with both the forms of FLC for an
impulsive force and support displacement, respectively, are then
reported. Finally, the proposed FLC is applied to a three storey
building vibration control problem under a set of earthquake
records.

2. MR damper model

MR fluids belong to the class of controllable fluids. The
essential characteristic of MR fluids is their ability to reversibly
change from free-flowing, linear viscous Newtonian fluids to
semi-solid Bingham fluids having a controllable yield strength
when exposed to a magnetic field. This feature provides a simple,
quiet and a rapid response interface between the electronic
control and the mechanical system. MR fluid dampers are
relatively inexpensive, compact, reliable, and stable. The device
can provide controllable force just working on a battery power.
Commercial MR dampers come with a Wonder Box® which is
used to vary the magnetic flux across the MR damper. Wonder
Box® takes external voltage as an input making the choice of
voltage as an input variable to the MR damper, a viable one in
preference to current. Because the semi-active device can only
absorb vibratory energy from the structure by responding to its
motion, it is considered to be stable (in a bounded-input,
bounded-output sense) (Ikhouanea et al., 2005). Thus, semi-active
devices are expected to offer effective performance over a variety
of amplitude and frequency ranges. The first application of MR
dampers to protect civil engineering structures has been con-
ducted by Spencer and coworkers (Dyke et al., 1996).

2.1. MR damper model

Different models have been developed and reported in the
literature to describe the behaviour of MR dampers (Spencer et al.,
1997). For the present numerical study a simple Bouc-Wen
hysteretic model (Spencer et al., 1997; Ali and Ramaswamy,
2008b) is considered. The equations governing the force produced
by this model are given as

u(t) = kox(t) + cox(t) + ouz(t, x)
z=—ylxiziz"" — BxizI" + Ax (1)

where x is the displacement at the damper location; z is the
evolutionary variable and 7, 8, n and A are parameters controlling
the linearity in the unloading and the smoothness of the
transition from the pre-yield to the post-yield region. kg, co and
o are voltage dependent parameters. The functional dependence
of the device parameters on the command voltage v, is expressed
as follows:

oU(Ve) = Olg + 0pVe
Co(Vc) = Coa + CopVe
ko(ve) = koa + kopVe (2)

where Koq, Kop, Coa» Cop» %oq and oy, are constant parameters whose
numerical values are given in Table 1 and are taken from Ali and
Ramaswamy (2008b). In addition, the resistance and inductance
present in the MR damper circuit introduces dynamics in the
system. This dynamics is accounted for by a first order filter on the
voltage input, given by

Vc = _n(vc - V) (3)
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Table 1
MR damper parameter values

Parameter Value

%a 1.9504 x 10° Nm-~!

Coa 8.666 x 10*Nsm-!

koa 7.5140 x 10*Nsm~!

n 2

A 12.26

n 190s~!

78 157336 x 10° Nm~1V~!
Cop 1.6580 x 10°Nsm-1v~!
kob 1384 x 10> Nsm—1v~!
y 2.85m™!

B 5.42m"!

Vinax 5V

where 7 is the time constant associated with the first order filter
and v is the command voltage applied to the current driver. The
parameter values are given in Table 1. The time delay associated
with the MR damper and the Wonder Box closed loop response
together is less than 10 ms (Carrion and Spencer, 2007). The first
natural frequency of the structure considered for the present
study is 4.59 Hz. This translates to a substantially higher period
than 10ms. Moreover, this time delay is not significant in
structural control applications as the earthquake time signal is
updated every 10-20ms interval. The Wonder Box contains a
closed loop transfer function to compensate for changes in the
electrical loads. A pulse width modulation with a frequency of
30kHz (unfiltered) has been used for the current controller. The
input control signal to the Wonder Box can be switched at a
maximum rate of 1 kHz (Wonder Box, 2008). Eq. (3) can be used to
account for the time-lag associated with the use of the Wonder
Box.

Egs. (1)-(3) show a nonlinear force (u(t))-command voltage (v)
relation. One can determine the force required to suppress the
building vibration using various control algorithms, but it is very
difficult to determine the voltage to be supplied to the damper to
provide the required control force. This study describes the use of
FLC to monitor the MR damper voltage based on the feedback
from the structure. Acceleration and relative velocity at the
damper location are taken as inputs (UOD € [-1,1]) to the FLC
system and damper voltage ([0, 1]) is considered as an output. Five
MFs are used for both the input variables, whereas seven MFs are
used to map the output. An absolute function (‘abs’) is used to
convert the FLC output (the output MFs ranges [—1,1]) to MR
damper voltage ([0.1]). This is done to preserve the symmetry of
the output MFs about zero.

3. Encoding fuzzy logic structure

Although fuzzy logic allows the creation of simple control
algorithms, the tuning of the fuzzy controller for a particular
application is a difficult task and one needs a more sophisticated
procedure than that used for a conventional controller. This is due
to the large number of parameters that are used to define the MFs
and the inference mechanisms. Several methods have been
developed for tuning fuzzy controllers. These involve adjustment
of the MF (Arslan and Kaya, 2001) and/or scaling factors (Zhao and
Collins, 2003) and dynamically changing the defuzzification
procedure (Zheng, 1992). Previous effort towards optimization of
FLC have employed strategies such as neural networks and neuro-
fuzzy algorithms (Schurter and Roschke, 2001; Ali and Ramaswa-
my, 2007). Other researchers have turned to GA for development

of fuzzy controllers that manage active control schemes (Ali and
Ramaswamy, 2007; Ahlawat and Ramaswamy, 2004). NSGA II
optimized fuzzy rule base structure is reported by Shook et al.
(2008) for a three storey laboratory scale building along with
experimental results. A simple GA with local improvement
mechanism applied to a smart base isolated system is reported
by Kim and Roschke (2006). The main purpose of employing a GA
is to determine appropriate fuzzy control rules as well to adjust
parameters of the MFs. In the work (Kim and Roschke, 2006), the
weighting factor associated with each rule is introduced into
the chromosomes in order to let the GA weaken or strengthen the
contribution of each rule. Therefore, the approach needs as many
variables as there are rules to get an optimal rule base. The
advantage of the approach reported in the present paper is that it
takes only two variables to optimize the rule base geometry.

The FLC structure takes relative velocity and acceleration at the
damper location as an input and provides damper voltage as an
output (v(t) € [0,1]). The input variables are normalized over the
UOD (universe of discourse) of [—1,1] using pre-scaling gains
(selected using EA). The input variables range their respective
UOD using five MFs (NL = negative large, NS = negative small,
ZE = zero, PS = positive small and PL = positive large), whereas
the output space is mapped using seven MFs (NE = negative and
PO = positive are extra).

This paper studies two different FLC, whose parameters are
optimized using u-GA and PSO.

e FLC-FRB: GA optimizes the scaling gains, MFs shape and
parameters keeping the rule base fixed. The rule base adopted
is presented in Table 2.

e FLC-ORB: GA optimizes the scaling gains, MFs shape and
parameters, as well as the rule base.

3.1. Encoding membership function

A generalized bell shaped (MATLAB, 2004) MF is used for all
the inner MFs of the input-output variables, as it can assume any
other MF shape. The extreme MFs for the input variables are kept
unbounded in the respective positive (s-shaped) and negative
(z-shaped) UOD (Jang et al., 2005). To minimize the computa-
tional cost associated with the optimization scheme, two
variables are selected for optimization, namely, the MF width
and the MF slope at 0.5 membership grade. The MF width is
changed with a constraint that the overall span of all the MFs
should range the UOD and each MF should maintain a 50% overlap
with the neighbouring MFs. To enable evaluation of a nonuniform
distribution of MFs, MF slope at 0.5 membership grade is encoded.
This is achieved by multiplying the slope at 0.5 membership grade
(of an uniformly distributed MFs) with a value between 0.5 and 2.
The MF width is coded with 3 bits, which gives a precision of
0.0286 for a +10% change in MF width. MF slope at 0.5
membership grade is coded with 4 bits in the binary string for
1-GA optimization. This gives a precision of 0.1 in the real value

Table 2
Rule base for FLC-FRB

Velocity Acceleration

NL NS ZE PS PL
NL NL NE NS NS ZE
NS NE NS ZE ZE ZE
ZE NS ZE ZE ZE PS
PS ZE ZE ZE PS PO
PL ZE PS PS PO PL
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Fig. 1. Optimal rule base design.

for the multiplication factor of MF slope i.e., any value among
[0.5,0.6,...,2] can be used by the u-GA.

3.2. Encoding rule base

To design an optimal rule base for the structural system we
take advantage of the fact that control force input (and therefore
the MR damper voltage) to the structure should increase when the
structural responses increase i.e., the extreme input values
(premise) result in extreme output values (consequent), mid-
range input values result in mid-range output values and small/
zero input values result in small/zero output values (Ahlawat and
Ramaswamy, 2004; Ali and Ramaswamy, 2007). This rule base
pattern is true for both the negative and positive portion of UOD.

A simple geometric approach is followed to modify the rule
base (Byrne, 2003). For this a co-ordinate space is defined based
on the premise MFs as shown in Fig. 1. The consequent space is
then overlayed upon the ‘premise coordinate system’ and is in
effect partitioned into seven nonoverlapping small regions, where
each region represents a consequent fuzzy set (Fig. 1). The line
diagonally crossing the co-ordinate space is defined as a
‘consequent line’. This line has been made pivotal on premise
zero-zero position (i.e. both inputs being zero) and it is free to
rotate over the consequent space and therefore the rule base
adapts according to the optimization scheme. A second variable
(‘consequent spacing’) is chosen to define the width of region of
output fuzzy sets over premise co-ordinate. The rule base is then
extracted by determining the consequent region in which each
premise combination point lies. Consequently, the present
optimization is made possible by encoding only two variables
(consequent-line angle, CA and consequent-region spacing, CS).

e Slope of the CA: It is used to create the output space partitions
(angles between 0 and 180°). CA is coded with 5 bits in the
binary string for binary GA optimization. This gives a precision
of 0.1013 radian in real value.

e CS: As seen from Fig. 1 ‘CS’ is a proportion of the fixed-distance
between the premises (NS, NL, ZE, PS and PL) on the coordi-
nate system and is used to define the distance between

consequent points along the consequent line. CS is coded with
4 bits to change the CS from half to twice its spacing as in
FLC-FRB.

For consequent line angle of 45° and consequent region spacing of
1, we get a rule base analogous to the rule base that can be derived
from the first mode vibration of the structure (Ahlawat and
Ramaswamy, 2004). This rule base has been used later in
the paper for simulation of the system with fixed rule base (see
Table 2). The input scaling gains for relative velocity and
acceleration are coded with five binary bits each.

4. Optimization of FLC

The optimization of the FLC variables proposed strategy is
made possible using a ¢-GA and a PSO technique. The advantage
of these evolutionary optimization techniques is its ease in
selection of a fitness functions. The fitness function can include
variables that are not the state variables in the control system. In
contrast, modern control theory that is based on the state space
system can incorporate only state variables into the performance
index.

4.1. Micro-GA

Micro-GA was proposed by Krishnakumar (1989) to improve
the performance of GA with smaller population sizes. The u-GA
operates on a family, or population of designs similar to the
simple GA but with a reduced population size. The basic idea is to
use a smaller population GA and allow it to converge rapidly and
invoke random population and start the search again (i.e., restart
the GA) without changing the elitist chromosome. A pu-GA
performs better in multi-modal optimization problems and is
therefore suitable for the FLC optimization. To restart the GA
search the current population has been aggressively mutated. In
addition, Krishnakumar (1989) reported that u-GA reaches the
optimum in fewer function evaluations compared to the simple
GA. This makes the application of u-GA suitable for large scale
problems and parallel processing (Pulido and Coello, 2003).

In this study, the u-GA with the following specifications have
been used.

(1) Initial population search space is sub-divided into two
complimentary subspaces. Half of the initial population is
selected randomly and the other half is obtained by taking
compliment of the initial half. In this manner any localization
in initial population is minimized. It is reported (Krishnaku-
mar, 1989) that even as few as a five member population can
provide a global convergence. Here, we use an initial
population size of seven members. Restart has been initiated
at every 20th generation.

(2) Gray encoding and decoding is used (Haupt and Haupt, 2004).
Ordinary binary value representation in GA may sometimes be
trapped in inefficient crossover (Haupt and Haupt, 2004)
(i.e. offspring results in lesser fitness value than parents). Gray
code avoids this problem by redefining the binary numbers
such that the consecutive numbers have a Hamming distance
of 1. Gray code is obtained by passing every consecutive
binary numbers through a XOR operation.

(3) A weighted multi-objective fitness function is adopted for the
optimization of the FLC. The multi-objective fitness function
consist of the sum individual fitness functions which are
framed to minimize each of the states in L, norm sense and
are described in Eq. (7).
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(4) Proportional fitness with stochastic universal sampling (SUS)
is used (Haupt and Haupt, 2004). SUS is markedly different
from roulette wheel selection technique. It is best described as
a multi-pointer roulette wheel selection technique in which n
(number of individuals in intermediate group) points are
selected in the fitness line with the first one chosen randomly
and others made equidistant from the previous one. Fitness
values of the individuals within these points are selected.
Individuals having higher fitness are given higher share of
fitness line (as in roulette wheel) and therefore have a greater
chance of selection. Since, SUS selects individuals in a single
turn it is faster and more efficient than roulette wheel
selection.

(5) Two point cross-over with probability 0.4 is considered.

(6) Mutation probability of 0.01 is taken for all iterations, and in
the restart generation a 0.5 probability of mutation is
considered.

(7) The best member in each population in each generation is
always carried to the next generation as done in an elitist
approach.

Micro-GA optimizes eight variables (scaling gains for each of the
inputs, MF width and MF slope for each of the inputs and one
output) for FLC-FRB. This results in the binary coded chromosome
of length 31 [2 x 5 (for scaling gains) + 3 x 3 (for MF width)+
3 x 4 (for MF slope)]. The optimization of FLC-ORB is carried out
using a total of 40 bits in a single chromosome (as it contains the 5
bits representing the CA and 4 bits representing CS).

4.2. Particle swarm optimization

The PSO is a population based stochastic optimization
technique developed by Kennedy and Eberhart (1995), inspired
by social behaviour of bird flocking or fish schooling. It uses a
number of particles that constitute a swarm. Each particle
traverses the search space looking for the global optima. In a
PSO system, particles fly around in a multidimensional search
space. During flight, each particle adjusts its position according to
its own experience, and the experience of neighbouring particles,
making use of the best position encountered by itself and its
neighbours. The swarm direction of a particle is defined by the set
of particles neighboring the particle and its own past experience.
PSO shares many similarities with other evolutionary computa-
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Fig. 2. Convergence of FLC optimization: SDOF case.

tion techniques such as GA. The system is initialized with a
population of random solutions. The population then search for
the optima by updating in subsequent generations. However,
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Fig. 3. Convergence of FLC optimization: MDOF case.
Table 3

Computational time required

Case No. of function evaluation = Computational time Optimal value
SDOF optimization
FRB—u-GA 7 x 100 9.9893 x 10° 0.10613
ORB—u-GA 7 x 150 28.527 x 103 0.08320
FRB-PSO 20 x 100 28.800 x 103 0.10612
ORB-PSO 20 x 150 113.99 x 103 0.08328
MDOF optimization
FRB—u-GA 7 x 150 56.508 x 10° 2.55261
ORB—u-GA 7 x 150 66.362 x 103 2.44510
FRB-PSO 20 x 150 163.059 x 10° 2.54908
ORB-PSO 20 x 150 209.197 x 10° 2.44246
x 1073
5 T T T T
0 4

T T
0 /\ /\U
Acceleration (m/sz)

0.2 . . . T
0 1 2 3 4 5

Time (s)

Fig. 4. Uncontrolled responses (SDOF system).
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Fig. 5. Time history of FLC controlled SDOF system (displacement, velocity and acceleration).

unlike GA, PSO has no evolution operators such as crossover and
mutation. Compared to GA, the advantages of PSO are that PSO is
easy to implement and there are few parameters to adjust. PSO
has been successfully applied in many areas, such as function
optimization, artificial neural network training, fuzzy system
control and other areas where GA can be applied. The working
strategy of PSO is given next.

In the PSO scheme, Let x, and v, denote a particle position and
its corresponding flight velocity in a search space, respectively.
The best previous position of a particle is recorded and
represented as pBest. The index of the best particle among all
the particles in the group (taken as neighbour) is represented as
gBest. Constriction function (C) is used to ensure convergence of
PSO (Eberhart and Shi, 2000). The modified velocity and position
of each particle can be calculated as shown in the following
formulas:

Vp,., = C[W x Vp, + ¢1C1 x (PBest — Xp, ) + ¢,z x (gBest — xp,)]

ng+1 = xpg + ng+1 (4)

where g is the generation number, X, is the current position of
particle at generation g and vp, is the corresponding velocity of
particle. w =1 is the inertia weight factor, ¢; =2.05 and ¢, =
2.05 are acceleration constants, ¢c; and ¢, are uniform random
values in the range [0,1], C is constriction factor which is a

function of ¢, and ¢, as given in the following equation:

2
C=
249" 40
P=0¢1+¢, ¢>4 (5)

PSO is run to optimize the same cost functions and for same
number of generations as u-GA. Each swarm is considered to be
consist of 20 members.

Figs. 2 and 3 show the convergence of 1-GA and PSO for both
FRB and ORB FLCs. The fitness value and the computational time
required are tabulated in Table 3. It is to be observed that both the
optimization schemes converge to the nearly same fitness value
but PSO converges faster in terms of number of generations (see
Figs. 2 and 3). The computational time required by the PSO is
much more than that of yu-GA, as PSO evaluates fitness function
20 x 150 number of times, whereas u-GA evaluates it for only
7 x 150. Therefore, where computational time is a constraint or
each function evaluation takes large amount of time (as in case of
large structures) u-GA should be preferred to PSO. Alternatively,
one has to use PSO with less number to generations (where a risk
remains that PSO may converge to a non-global optima). Another
interesting observation is that the ORB-FLC has lesser fitness
function value than the corresponding FRB-FLC although both
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Fig. 6. ;-GA optimized input/output MFs (MDOF system).

used the same fitness function. This represents a better control of
the structure using optimal rule base strategy.

5. Numerical simulation and results

Numerical simulations are carried out for three different cases.

First an SDOF system is taken and its vibration (under impulsive Tg

load) is minimized using optimized FLCs. All the four cases 5 0
namely (i) FRB-PSO: fixed rule base FLC optimized using PSO, (ii) © -02
FRB-u-GA: fixed rule base FLC optimized using p-GA, (iii) —0.4 4
ORB-PSO: optimal rule base FLC optimized using PSO, (iv) —0.6 4

ORB-u-GA: optimal rule base FLC optimized using u-GA, are
applied and a comparative analysis is performed. Next a three 1
storey building example (subjected to impulsive load) is taken for

the comparative analysis of the above four techniques. Finally,
based on the y-GA optimized FLCs (both FRB and ORB) obtained in
the second case, performance evaluation of the same three storey
building under a set of seismic records is performed and reported.

5.1. SDOF system
An SDOF model has been taken for the impulse response

analysis of the proposed fuzzy logic systems. A base isolated
building performs as an SDOF system. Therefore, it can be thought

— v yon
0.5 D ae Alexeti©
Fig. 7. ;-GA optimized fuzzy rule base (MDOF system).

of as a base isolated building structure. The equation of motion of
the SDOF system is given as

mX + cx + kx = u(t)

|
X=—

X(O) =0, m
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where m = 56.52kg, c = 11.30Nsm~!, k = 2.375 x 10 Nm~! are
system mass, damping and stiffness parameters, respectively. u(t)
is the restoring force provided by the MR damper. () represents
derivative with respect to time (t). The system is driven by giving
an initial velocity of x(0) = 1/m to simulate the system response
to an impulsive force. The objective is to bring the system
responses to zero. The FLC has been trained using y-GA and PSO to
minimize L, norm of displacement, velocity and acceleration
responses of the system. The fitness function is the main criterion
that is used to evaluate each chromosome. It provides an
important connection between the EA and the physical system
that is being modeled. A controller should minimize the structural
displacement without increasing the acceleration. Large displace-
ment is catastrophic to the structure where as acceleration effects
the occupant comfort and the contents inside. Additionally, MR
damper depends on the structural velocity and therefore mini-
mization of structural velocity is also taken into consideration in
fitness function.

There are several methods that can combine multiple objective
functions to make a single fitness function in a multi-objective
optimization problem. One of these methods, a weighted sum
approach, is employed in this study as shown in Eq. (7). As these
three objectives impose conflicting requirements, the relative
importance of these goals must be selected by the designer.
The displacement, velocity and acceleration are normalized with
respect to their corresponding uncontrolled L, norm values
(represented with subscript unc).

Xl Xl Xl
D) =W x ————+ W - + w: = 7
O =W e 2 Tancl T Ranc®] @
where | -| denotes the L, norm of the state variables. Equal
weights (w; =1, i=1,2,3) are taken for all the objective

functions. The simulation has been run for 5s as the controlled
responses has seen to achieve the goal well before 5s.

Fig. 2 shows the convergence of the PSO and u-GA for fixed rule
base and optimal rule base case. It is to noted that the fitness
function for FLC-FRB has higher objective value than that of the
FLC-ORB, which shows that the optimal rule base FLC provides a
better control of the SDOF system. PSO is seen to converge faster
than p-GA, whereas u-GA takes lesser time to converge as the
number of function evaluation required in ©-GA is far less than in
PSO. This advantage of p-GA makes it more viable for on-line
applications. The number of function evaluation and the time
taken on a P4 desktop PC with 2.8 GHz processor speed is
tabulated in Table 3.

Fig. 4 shows the time history of the uncontrolled system
responses for 5s. The system responses continues even after 5 s of
vibration as the damping is very low. The controlled responses are
shown in Fig 5. The controlled system responses are shown for 2's
for clarity in the figure. Fig. 5 contains results obtained from FLC
manually configured (SFLC), FLC with optimal MF and scaling
gains (FRB) and FLC with optimal MF, scaling gains and rule base
(ORB). The results obtained through u-GA optimization (dashed
line) and PSO (solid line) are shown together for better
comparison. It is evident from Fig. 5 FLC-FRB performs better
than SFLC but FLC-ORB performs far better than FLC-FRB and
SFLC.

5.2. MDOEF system

The equation of motion of the three storey shear building
model, taken for seismic mitigation analysis is given in the
following equation:

MX + CX 4+ KX = Af(t) + MT'&g (8)

where X = {x1,xy,x3}" is the vector of floor displacements relative
to the ground, subscript denotes storey number. X, is the seismic
ground acceleration. M and K are mass and stiffness matrices,
respectively,

56.52 0 0
M= 0 56.52 0 kg,
0 0 56.52
475 -2375 0
K=|-2375 475 -2375| x10°Nm™! (9)
0 —-2375 2375

C is the Rayleigh damping matrix and is constructed using 0.5%
modal damping in all modes. The Rayleigh parameter (g4, ;) are
determined based on the first and third eigen frequencies (w1, w3)
of the system (Chopra, 2005). Eq. (10) shows the construction of
the damping matrix.

C=agM + BK
lwims e
— 213 =2 > 10
%a w1y + w3’ Pa w1 + w3 (10)

A =1[100]" is the co-efficient vector determining the position of
the damper (in this case damper is located at the first floor of the
building). I = [1 1 1]" is the seismic influence vector.

0.54

. 0‘\
mcxe@“

Fig. 8. PSO optimized fuzzy rule base (MDOF system).

Fig. 9. GA optimized fuzzy rule base for three input MFs and five output MFs.
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The FLC is optimized for an initial displacement of 0.1 m and
then the motion is allowed to decay under free vibration
condition. The idea is to optimize the FLC to minimize the
structural motion quickly when excited by a sudden base
displacement which is a character of near source seismic motions.
Optimization is performed using both p-GA and PSO and the
objective function used is similar to that of the SDOF case, the only

2 T T T T

== 3 input 5 output

1 = = =5input 7 output

Normalized
Displacement

0 0.2 0.4 0.6 0.8 1

Normalized
Acceleration

) L L L L
0 0.2 0.4 0.6 0.8 1
Time (s)

Fig. 10. Time history of normalized responses (first floor).

difference is that the normalized response L, norms are summed

over all the floors.
Xl )
+—
IXunc (Ol

x|l

2= ﬂ;s(nxum(t)n "

The convergence curves of the optimization schemes are shown in
Fig. 3. It is evident from Fig. 3 that optimal rule base FLC performs
better than fixed rule base FLC. Micro-GA and PSO provide the
same optimal cost (see Table 3). Fig. 6 shows all the input-output
MFs for both FLC-FRB and FLC-ORB obtained using u-GA. It is to
be noted that the MFs has 50% overlap with each other and they
range the domain of UOD, i.e. [-1,1], which are taken as
constraints while generating MFs genetically. The ¢-GA optimized
and PSO optimized input-output relation surface plots for
FLC-ORB are shown in Figs. 7 and 8, respectively. Both the
optimization schemes provide similar nature of rule surface.

To observe the effect of using fewer MFs on the input and
output MFs, we have considered simulation of ORB-FLC with
three input MFs (namely, NL, ZE and PL) and five output MFs
(namely, NL, NS, ZE, PS and PL) for the MDOF system. The time
taken for the optimization with y-GA is 42.33 x 10%s. Fig. 9 shows
the optimal rule obtained in the simulation. It is observed that the
optimal rule surface is similar to that of obtained in ORB-FLC with
five input MFs and seven output MFs. Fig. 10 shows the
comparative plots for ORB-FLC with three input-five output
MFs and ORB-FLC with five input-seven output MFs. First floor
displacement and acceleration time history normalized with

%O
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Fig. 11. Time history of normalized responses (first floor).
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respective to the corresponding peak uncontrolled values are
shown in Fig. 10. It is evident from Fig. 10 that the ORB-FLC with
five input-seven output MFs provide slightly better performance
than that with fewer MFs. Thus subsequent analysis has been
reported for five input and seven output MFs.

MDOF structural displacement and acceleration responses
obtained from first and third floor of the building are shown in
Figs. 11 and 12. For clarity in the figures the responses are shown
for a duration of 1s. Figs. 11 and 12 contain responses obtained
using PSO and u-GA optimization for both FLC-FRB and FLC-ORB.
The responses are normalized with respect to their corresponding
uncontrolled cases. It is to be noted that the results obtained
through PSO and p-GA match. The corresponding controlling
force provided by the damper and the voltage input are shown in
Fig. 13.

5.3. Seismic vibration mitigation

A set of seismic records consisting of Chichi, Elcentro-1940 and
Northridge earthquake data are considered for the performance
analysis of the three storey building using optimal FLC. As shown
in the preceding example that the results of FLC-FRB and FLC-ORB
optimized using u-GA match with the corresponding results
obtained using PSO, therefore, the optimal FLCs obtained using
U-GA are considered for the seismic vibration mitigation of the
building.

FRB
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A set of performance indices is defined to determine the
efficiency of the control techniques used for the study.

_ maxe[Xe(t)| _ maxe[Xe(d)| _ max|Xc(t)|
Ji= max|Xunc(6)|” Jo= max|Xunc(6)|” Js= max¢|Xunc(0)|
IXc(O)]] lI%c(0)]] [ERG]
= , Jo = ;e = e 12
4= e 1" P> = Tane®1" 98 = TRanc(O] (12)

where the subscript ‘c’ denotes the controlled responses and the
subscript ‘unc’ represents the uncontrolled motion. max; repre-
sents maximum value over time (t), |x| denotes the absolute value
of x and |x|| denotes the L, norm of x.

The performance of the system according to Eq. (12) for all
three seismic records is tabulated in Table 4 for both FLC-FRB and
FLC-ORB. Comparing the results presented in Table 4, one can see
that FLC-ORB is better than FLC-FRB in controlling all responses
of the structure. Normed first floor velocity is the only case where
FLC-FRB has shown better performance than that of FLC-ORB, the
reason is that FLC-ORB adds more force to the system to mitigate
its vibration which increases the velocity response at the damper
location.

Fig. 14 shows the uncontrolled and controlled floor displace-
ments of the building under Chichi, Elcentro and Northridge
earthquake ground motions. It is seen that the FRB-ORB does not
only reduce the peak floor responses but also minimizes the floor
drifts. Fig. 15 shows the control force and the voltage required for
FLC-FRB and FLC-ORB for Chichi earthquake. One should observe
from Fig. 15 that the voltage supplied to the MR damper takes any

ORB
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Fig. 12. Time history of normalized responses (third floor).



Table 4
Performance indices: FF = first floor, SF = second floor and TF = third floor

Voltage (V)

Force (N)
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Fig. 13. Input voltage and control force (MDOF system).

PI Floor Chichi Elcentro Northridge
ORB FRB ORB FRB ORB FRB
A FF 0.2372 0.264 0.1311 0.187 0.235 0.2869
SF 0.3351 0.4304 0.2372 0.3451 0.3268 0.3753
TF 0.3885 0.5086 0.2777 0.4005 0.3621 0.4149
I FF 0.219 0.2093 0.1284 0.2065 0.2184 0.2516
SF 0.4682 0.5193 0.3005 0.3972 0.3108 0.3139
TF 0.5338 0.6031 0.3443 0.5022 0.358 0.3723
I3 FF 1.4536 2.0051 1.3987 2.2985 1.3014 1.4814
SF 0.4676 0.6238 0.4658 0.6239 0.5229 0.609
TF 0.7517 0.8508 0.467 0.7125 0.4594 0.5693
Ja FF 0.1671 0.1916 0.0863 0.1183 0.2211 0.2481
SF 0.2581 0.3173 0.2176 0.2902 0.3284 0.3681
TF 0.2941 0.3829 0.2633 0.3609 0.3744 0.4337
Is FF 0.0927 0.06 0.0682 0.0439 0.1493 0.1205
SF 0.2477 0.3803 0.2676 0.3765 0.353 0.4286
TF 0.3011 0.4808 0.3293 0.4762 0.4215 0.5294
Js FF 1.3821 2.2322 1.4469 2.2368 1.4216 1.9704
SF 0.4507 0.5881 0.4065 0.5476 0.5517 0.6589
TF 0.4656 0.682 0.4595 0.6606 0.5753 0.7214

=—@=— Uncontrolled === FLC—-ORB === FLC-FRB
Chichi Elcentro Northridge

1 0 1 0 1 1
0 0.01 002 O 0.01 0.02 0 0.01 0.02 0.03
Maximum Displacement (m)

Fig. 14. Maximum floor response of three storey building (ChiChi, Elcentro and
Northridge).
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Fig. 15. Input voltage and control force time history (Chichi earthquake).

voltage value within its range and seldom reaches its maximum
voltage value (5V).

6. Conclusion

This paper presents and compares several optimal FLCs used to
monitor voltage input to the nonlinear hysteretic MR damper systems
attached to a three storey building. Examples of SDOF and MDOF
system under various conditions show that FLC monitored MR
damper voltage effectively minimizes structural vibration. Further-
more, FLC driven MR damper voltage monitoring provides a gradual
and smooth change of voltage and thereby increases the system
stability. The paper also describes an easy and computationally less
intensive technique to modify the rule base, which uses a minimum
number of optimization variables. It is shown using an example of a
three storey shear building model under base excitation and seismic
ground motion that the FLC with optimal rule base modified using the
proposed technique performs better than the conventional FLC with
predefined rule base. The optimization of FLC is carried out using
1-GA and PSO with a constriction function. Results show that PSO
converges faster in terms of number of generations than p-GA but
takes larger time and more function evaluation than that of p-GA.
Relative merits and demerits of the optimization schemes are
discussed. Finally, the study evaluates the performance of the fuzzy
controller trained off-line on a three storey building model under a set
of earthquake records. It is seen that the present approach provides
better vibration control for structures under earthquake excitations.
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