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1. Introduction

Distributed parameter systems (DPSs) are an established
research area in control which traces its roots back to the
1960s. To adequately describe the distributed nature of the system
one necessarily needs to use partial differential equation (PDE)
models (Curtain, 2003). The general objectives behind the control
of DPS are more or less the same as those for lumped parameter
systems like stability, optimality, etc. In addition, it also presents
certain unique challenges like satisfying the spatial boundary
conditions, non-collocated, collocated control design (assuring
separate locations for controllers and actuators), etc. Many
innovative ideas have been put into design and implementation
of control of distributed parameter systems. Since the field has
seen an explosive growth over the last decades (and it continues to
grow), perhaps this is an appropriate time to take an account of the
various developments in an unified manner, including some
possible dimensions of future research.

Surveys of theoretical, as well as application, papers on DPS
control can be found in Ray (1978), Balas (1983), Curtain and Zwart
(1995) and Lasiecka (1995). In addition to these available literature
(which are fairly old), this paper presents the development of control
strategies for distributed parameter systems (DPSs) until very

recently. It also attempts to present the developments in a
chronological order. The survey work has been organized as follows:
first we briefly present some of the early developments, where we
restrict ourselves up to 1989. The developments 1990 onwards have
been introduced as recent developments and discussed more
elaborately. This demarcation between early and recent develop-
ments is non-technical and it is based on the popularity of DPS.
Various conferences have been dedicated to the control of DPS
towards the end of twentieth century, which increased the number
of readers and researchers in the field of DPS. At the end some open
research topics and possible future directions have been discussed
before including the concluding remarks.

2. Early developments (1960–1989)

Literatures pertaining to the control of DPS can be found as early
as 1960. Butkovskiy and Lerner probably published the first paper
in this field in 1960 (Butkovskiy & Lerner, 1960), deriving a general
maximum principle for a class of distributed parameter systems.
This was followed by a series of papers from Butkovskiy (1961a,
1961b, 1966). These works were concentrated mainly on problem
formulation and the maximum principle for a distributed
parameter describable by a set of integral equations. All of these
developments can be found at one place in a book written by
Butkovskiy, the English translation of which was published in 1969
(Butkovskiy, 1969).

In 1964 Wang and Tung published their pioneering work (Wang
& Tung, 1964), which laid the formulation for further development
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towards a unified control theory for DPS. In close parallel to the
development of lumped parameter system theory, the paper
attempted to give precise mathematical description of DPS in term
of a set of partial differential equations. The authors discussed the
concepts of controllability and observability. Besides, they
formulated the optimal control problem and derived the optim-
ality conditions for a wide class of DPS. The paper also discussed
some numerical solution tools with discretized approximations.
Later in 1966, in a separate paper Wang addressed the problem of
stability of DPS with feedback controllers directly in the frame-
work of PDEs, using Lyapunov techniques without resorting to
approximations (Wang, 1966). These developments lead to a series
of papers by various authors proposing many solution techniques.

The paper by Sakawa in 1966 (Sakawa, 1966) discusses two
methods for the optimal control of heat equation. One of the two is
the application of variational method, whereby Fredholm’s integral
equation of first kind is derived as a necessary condition for
optimal control. The other method reduces the problem suitable
for application of linear and nonlinear programming for the
synthesis of optimal control. In 1966, Axelband (Axelband, 1966)
analyzed the tracking problem of a general model for a linear DPS,
with bounded control input. The optimal solution was shown to
exist and a control synthesis tool was presented by parameteriza-
tion, using convex programming. In the same year, Sage and
Chaudhuri (1967) proposed to use gradient and quasi-linearization
computational techniques for the synthesis of optimal control,
using the necessary conditions of optimality proposed by Wang
(Wang & Tung, 1964). Based on various discretization schemes, the
paper addressed (perhaps for the first time) computational tools
for a class of nonlinear DPS. For the regulation problem of linear
systems, the paper also proposed to incorporate the techniques
already developed for the lumped parameter systems by suggest-
ing only spatial discretization.

In 1967, Kim and Erzberger proposed a Hamilton–Jacobi
approach to the one-dimensional wave problem, with quadratic
cost function (Kim & Erzberger, 1967), having boundary control.
The authors came up with a set of Riccati equations whose solution
gives the closed loop optimal control. The authors also presented a
solution technique for the Riccati equations based on the
eigenfunction representation of the Green’s function, which leads
to the necessity of solving only a set of ordinary differential
equations. Following the idea of Kim and Erzberger, in 1969
Alvarado and Mukundan (Alvarado & Mukundan, 1969) obtained a
Riccati-type matrix partial differential equation for the problem of
a furnace, heating a one-dimensional slab, and presented an
approximation technique to solve the equation.

In 1970 Graham (Graham, 1970) presented a relatively simple
formulation of the one-dimensional heat conduction problem
using a sample-data model of the problem. This permitted the
solution of Hamilton–Jacobi formulation by two approaches,
namely the matrix Riccati method and the Kalman’s equation
method. Another paper from Goldwyn, Sriram and Graham
appeared in 1970 (Graham, 1970), where the authors showed
the applicability of Laplace transform for the determination of time
optimal control for hyperbolic class of problems. This paper
demonstrated the effect the nature of a PDE has on the form of
optimal control. A suboptimal synthesis approach was presented
in the paper, which did not always lead to bang-bang form of
control. Hassan and Solberg published a paper in 1970 (Hassan &
Solberg, 1970) that discussed the optimum control problem of
linear DPS with quadratic cost function in a discrete time
framework. The authors, using orthogonal series expressions for
a Riccati-type functional equation, proposed a scheme of recursive
functional expressions involving Green’s function matrices. In
1970 itself Julio published a paper (Julio, 1970b) presenting a
different technique to compute the optimal control for linear DPS,

which avoided the need to solve the PDE. In another paper in the
same year (Julio, 1970a), the author addressed the problem of
convergence of the discretized approximate solutions to the
continuous solution as the discretization interval goes to zero.

In 1972 Chaudhuri published a paper (Chaudhuri, 1972), which
discussed the optimal control of DPS having wave-type phenom-
enon (hyperbolic systems). The paper did not propose any new
computational tool for optimal control synthesis and rather
extended the computational tools published earlier by the author
in Sage and Chaudhuri (1967) for nonlinear hyperbolic systems.
However it discussed many associated issues, such as the
mathematical description of the propagation and growth of
the wave generated and the statement of maximum principle of
the system generating waves. It also addressed a few problems
associated with discretization schemes for such systems.

A successive approximation algorithm was presented by Zone
and Chang in 1972 (Zone & Chang, 1972), for a general class of
nonlinear DPS with nonlinear functional boundary conditions,
based on the second-order expansion of the performance index.
Necessary and sufficient conditions for the convergence of the
algorithm, which are independent of the system dynamics, were
also shown to be satisfied. The brief paper from Davis and Perkins
(1972) is devoted to the optimal control design of a class of DPS
with separable controllers. A separable control has fixed functional
dependence on the spatial variables and free functional depen-
dence on the time variable. The authors derived the optimal
conditions for such systems as a special case of the results due to
Wang and Tung (1964) and solved a plasma containment regulator
problem.

The problem of observability and optimal sensor location for
linear DPS is addressed by Yu and Seinfeld in 1973 (Yu & Seinfeld,
1973). Curtain and Pritchard published two papers in 1974
(Curtain & Pritchard, 1974, 1975). In these papers, the authors
developed the Riccati operator following the infinite-dimensional
operator theory. This provided a basis to synthesize the optimal
control for linear DPS directly in the infinite-dimensional frame-
work. For a comprehensive treatment of this concept of infinite-
dimensional operator theory based optimal control for linear
systems one can refer to the book written by Curtain and Zwart
published in 1995 (Curtain & Zwart, 1995).

Balas developed a feedback control scheme for the class of
systems given by the generalized wave equation in 1978 (Balas,
1978). The problem addressed considered a number of point force
actuators and point sensors. The feedback controller was devel-
oped for a finite number of models of the flexible system. The paper
also presented the controllability and observability conditions
necessary and examined the control and observation spillovers due
to residuals. Some remedies for the spillover problem were also
suggested (including a phase-locked loop pre-filter).

Pritchard and Zabczyk addressed stability and stabilizability
problems of infinite-dimensional system in 1981 (Pritchard &
Zabczyk, 1981). Meanwhile, in 1979 Gibson wrote a paper (Gibson,
1979), which presented the Riccati integral equations for optimal
control problems on Hilbert spaces. In 1981 the author wrote
another paper (Gibson, 1981), which can be thought of as a general
framework for convergence in the context of regulator problems.
Based on the ideas presented in Gibson’s papers, Banks and
Kunisch wrote a good technical note in 1984 (Banks & Kunisch,
1984) presenting an approximation framework for the computa-
tion of Riccati operators, which was shown to converge to the
Riccati operator in feedback control for parabolic type linear
infinite-dimensional systems.

In 1988 the Ph.D. dissertation of Pourki addressed the problem
of stability, using semigroup theory (Pourki, 1988). The disserta-
tion presents a Lyapunov stability analysis technique for DPS. The
examples considered include parabolic and hyperbolic classes,
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indicating the suitability of the method for both classes of DPS. The
thesis also considers the controllability and observability issues
and comes up with a formulation for finite order feedback control.

In 1989 Futagami et al. edited a volume containing a collection
of papers on modeling and simulation of DPS (Futagami, Tzafestas,
& Sunahara, 1989). This includes a paper from Tassan (1989) on
‘‘same basic multigrid algorithms for DPS’’, which serves as a
general strategy for numerically solving the continuous problems.
The algorithms basically involve iterative loops between coarse
and fine grids that lead the solution to the level of discretization
errors. The volume also includes a paper from Shimemura, Uchida,
and Kubo (1989), in which the authors proposed a designed
method for a linear quadratic regulator for DPS that locates the
poles in a specified region. A feedback control law was proposed to
be constructed from a finite-dimensional Riccati equation. The
method presented a tool to calculate the closed loop poles apriori,
so that a regulator can be designed having desired degree of
exponential stability. The volume includes a paper from Yoshida
(1989) that presents a method for computation of finite-dimen-
sional controllers, taking into account the spillover effects due to
such finite-dimensional approximations. In this method, the
spillover is formulated as a control structure constraint and the
control is synthesized by following a minimum norm suboptimi-
zation technique. In 1989 itself, another control design method
was proposed by Matsumoto and Yoshida (1989) for parabolic type
DPS. This was done by approximating the system as a lumped
parameter by using integral transforms.

3. Recent developments (1990 onwards)

In 1990 Bernstein and Rosen (Bernstein & Rosen, 1990)
proposed a new finite-dimensional approximation scheme for
the optimal fixed-order compensation of DPS, which used the so-
called Bernstein/Hyland optimal projection theory (Hyland &
Bernstein, 1984) in Hilbert space. The methodology yields fixed-
finite-order controllers. This approach involves constructing a
sequence of approximating finite-dimensional subspaces of the
original infinite-dimensional Hilbert space, along with corre-
sponding sequences of bounded linear operators that approximate
the given input, output and system operators. Choosing bases for
the subspaces and applying the optimal projection theory, a
sequence of matrix equations is obtained. Then the authors
propose to use available numerical techniques (e.g. Homotopic
continuation algorithm Richer, 1987), to compute the sequence of
approximating gains.

In 1991 Li and Fadali published a good brief paper (Li & Fadali,
1991), leading to the development of two-dimensional optimal
control theory that parallels the Hamiltonian formulation of one-
dimensional optimal control. The authors gave a theorem stating the
state equation, costate equation, stationary equation and boundary
conditions for such system. Though the development was in discrete
domain, and hence not exactly addressing the PDE-driven problems
in strict mathematical sense, still it can be thought of as a tool for the
optimal control design, starting with an appropriate discretized
form of the system dynamics and cost function.

In 1992 Helmiki et al. established various connections between
linear time-invariant DPS in continuous time and the zero-order
hold discrete time equations (Helmicki, Jacobson, & Nett, 1992).
This was done both in time and frequency domains. In 1993 a
theoretical paper by Fattorini (1993) presented the maximum
principle of a class of semi-linear parabolic DPS in Banach spaces.
The results apply to system described by nonlinear heat equation
and reaction–diffusion equation in L1 and L1 spaces. In 1994 Burns
and King (Burns & King, 1994) addressed the optimal sensor
location and estimator design problems leading to a robust control
design of DPS.

In 1995 Lasiecka wrote a paper (Lasiecka, 1995) citing a
historical perspective of the deterministic control of PDE-driven
systems. Though it was a short paper, it provided a unified
overview of the literature on this widely scattered and mathe-
matically nonhomogeneous field by that time. However, the
detailed survey was towards the boundary and point control
problems. In 1995 itself Alli and Singh (1995) derived the closed
form solutions for the class of DPS governed by the linear wave
equation. A frequency domain approach (using Laplace trans-
forms) was used to arrive at a bang-off-bang type optimal solution.

Joshi et al. wrote a paper in 1995 (Joshi, Speyer, & Kim, 1995)
and addressed the stabilization problem of plane Poiseuille flow.
The authors first constructed a finite-dimensional model following
the Galerkin projection approach using Fourier functions as basis
functions. Then they applied the Linear Quadratic Gaussian (LQG)
robust control design technique. The authors also proposed a
reduced-order LQG control design that stabilizes the system to a
prescribed degree.

Meanwhile Choe and Chang published a paper in 1995 (Choe &
Chang, 1995) comparing the two methods of optimal control
synthesis, namely the PDE approach and Integral Equation (IE)
approach, for the problem of a tubular reactor with axial
dispersion. The authors found that for the problem under
consideration the approach with PDE description was preferable,
even though the IE approach provided the exact solution where as
the PDE approach provided only an approximate solution. This was
because, the authors observed, one of the time-consuming steps in
IE approach is the determination of adequate number of positive
roots of an accompanied characteristic equation, with sufficient
accuracy. On the other hand numerical programming of PDEs was
found to be easier and more flexible. Later in 1998 the same
authors wrote another paper (Choe & Chang, 1998), which
attempted to merge the PDE and IE approaches of optimal control
synthesis for the same tubular reactor problem. This method was
found to be more efficient than either of the methods, both in
computing procedure as well as computing time.

In 1996 Farahi, Rubio, and Wilson (1996) considered the
existence of boundary control for linear wave equation. After
modifying the problem into a problem consisting of the
minimization of a linear functional, the problem was converted
to a finite-dimensional linear programming problem. The solution
to this linear programming problem was then used to construct a
piece-wise constant control.

By 1997 the Conference on Decision and Control (CDC) as well
as the American Control Conference (ACC) started devoting special
sessions on DPS. To mention a couple of papers from the
proceedings of CDC-1997, the paper by Banaszuk (Banaszuk,
Hauksson, & Mezic, 1997) proves the existence and uniqueness of
solution in the Sobolev space for the so-called Moore-Greitzer
nonlinear PDE, with some ‘‘mild conditions’’, after reformulating
the problem in the Banach space. The paper also presents a design
methodology based on back-stepping idea, using the modified
formulation. The paper by Drakunov and Barbieri (1997) presents a
stability analysis for DPS described by a class of multi-dimensional
PDEs. This paper also presents a control design approach using
model expansion. The approach first finds a manifold in the
system’s infinite dimensional state space such that if the system is
confined to this manifold, it has the desired properties. Then the
control makes that manifold an area of attraction for the closed
loop system. Based on the idea of sliding mode control, this
methodology steers the states towards the manifold and once
reached, maintains them within it. The paper from Bameih (1997)
considers a special class of spatially invariant DPS and presents a
variety of optimality criterion. The paper also shows that the
optimal controllers retain the same spatial invariant character-
istics. Meanwhile in 1997 Banks, Smith, Brown, Silcox, and Metcalf
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(1997) addressed some of the issues regarding the experimented
implementation of PDE-based controllers. The paper though did
not contain any new theoretical results, it attempted to answer a
few doubts about the implementability of some of the existing
methods.

In a series of papers in CDC-97 and ACC-98 (Christofides, 1997;
Christofides & Armaou, 1998; Christofides & Baker, 1998;
Christofides & Daoutidis, 1997), Christofides and the co-authors
addressed several class of DPS problems. In reference Christofides
and Daoutidis (1997) the authors proposed a control design tool for
a class of quasi-linear parabolic PDE-driven systems, for which the
eigenspectrum of the spatial differential operator can be parti-
tioned into a finite dimensional slow spectrum and an infinite-
dimensional fast one that are stable. The methodology uses
Galerkin approach to come up with a suitable ODE system for the
PDE dynamics and design a nonlinear output feedback controller
that guarantees stability while making the system follows a
desired response. The paper (Christofides, 1997) proposes a robust
control design technique for the same class of DPS. The paper
(Christofides & Baker, 1998) is an improvisation of Christofides
(1997), whereby the authors present a robust control design
technique based on output feedback. In the paper (Christofides &
Armaou, 1998), the authors design a finite-dimensional nonlinear
controller for a two-dimensional nonlinear Navier–Stokes equa-
tion. Later in 2001, Armaou and Christofides published a paper
(Armaou & Christofides, 2001) presenting a robust nonlinear static
output feedback control design tool for DPS governed by quasi-
linear parabolic PDE systems. Many of the innovative ideas from
Christofides et al. are summarized in Christofides (2001).

The paper by D’Andrea in ACC-98 (Andrea, 1998) uses linear
matrix inequality theory and comes up with a decentralized
control strategy for multi-dimensional but linear DPS. In 1998
itself Balas presented a paper (Balas, 1998), which uses the theory
of semigroups in the infinite-dimensional state space to address
the stability problem of the actual DPS in closed loop and presents
stability bounds in both time and frequency domains. However the
author concludes that the frequency domain conditions can more
easily be tested in practice. In 1998 two experimental papers also
came out in the literature. The paper by Yoshida and Matsumoto
(1998) addresses a chemical reactor problem. The paper by Yang
and Jeng (1998) address a structural control problem. The short
paper by Sadek and Bokhari in 1998 (Sadek & Bokhari, 1998)
presents a different way of optimal control synthesis using
orthogonal polynomials. In this approach the author used the
standard model space technique to form an analogous lumped-
parameter optimal control problem. Then they proposed to use
finite interpolating orthogonal polynomials to present a simplified
computational method for evaluating the optimal control. The
paper, however, addresses only self-adjoint linear parabolic class
of DPS. Writing a separate paper in 1995 (Sadek & Yurekli, 1995)
Sadek and Yurekli addressed the general problem of combining the
open-loop and closed-loop controls for a system of multi-
dimensional PDEs describing large structural systems. This
approach first designs a set of open loop controls. Then the
feedback parameter describing the closed-loop control is com-
puted by minimizing energy functional over all possible feedback
parameters.

In 1999 Godasi, Karakas, and Palazoglu (1999) studied the
control nonlinear DPS in the framework of symmetry groups and
group invariant solutions of a differential system. Based on this
idea, Palazoglu and Karakas published a brief paper in 2000
(Palazoglu & Karakas, 2000). They proposed both continuous and
discontinuous controller design. Symmetry group has been used to
determine the group-invariant solutions of a differential system to
facilitate the formulation of control strategies. The invariance of
the solution space leads to the stability condition that produces the

control law. Essence of their study was to present a generalized
quantitative expression of the stability condition for any nonlinear
system. Further, an invariance condition in the so-called ‘‘pro-
longed space’’ of the differential system provided a framework for
the distributed control law.

In 1999, Matsuno and Murata (1999) developed a direct output
feedback control law based on proportional, derivative and strain
feedback (PDS) for a one link and a two link flexible arm based on
the distributed parameter model. They introduced Lyapunov
function related to the total energy of the distributed parameter
system and derived a simple sensor output feedback control law
without approximated finite-dimensional model at the controller
design phase. Stability and convergence proof of the closed loop
distributed parameter system were shown using the invariance
principle and the characteristic of the differential operator. In order
to demonstrate the validity of the derived model and the
effectiveness of the proposed control law experimental results
have been reported.

A frequency domain input–output approach has been proposed
by Reinschke and Smith in 1999 to linear time invariant distributed
parameter systems (Reinschke & Smith, 1999). The approach was a
generalization of H1 control in the sense that the second norm was
used for both the space and time-dependence of signals, which was
used to take account of the spatially distributed nature of a
system’s input and output signals. Finite-dimensional approxima-
tion of the LTI systems with distributed nature has been considered
for controller design. The authors proposed two controller
synthesis methods similar to the standard H1-synthesis techni-
ques of ‘‘H1 loop-shaping’’ and ‘‘m-synthesis’’ on the basis of finite-
dimensional distributed linear time invariant systems.

In 2000 Alli and Singh wrote a paper (Alli & Singh, 2000) on the
feedback control of wave equation. This paper addressed the
problem of designing collocated (having same controller and
actuator locations) and non-collocated controllers. The authors
considered the control design problem for a uniform bar without
structural damping, which made the closed loop system stable. A
Lyapunov based approach was adopted for the collocated problem,
where as a frequency domain approach was used for the non-
collocated case. The paper also proposed some stability conditions
for both cases. In the same year Khalid (2000) extended his
spreading control law developed for linear systems and reported
earlier in Jai and Kassara (1994, 1997) to semilinear distributed
parameter systems. The authors this time used the spreading
control as a selection of the feedback map. In the paper, a minimum
energy spreading control law was derived for systems with affine
dependence upon the control by using a parametrized constrained
optimization technique along with some facts of set-valued
analysis.

In 2000 itself Byrnes, Lauko, Gilliam, and Shubov (2000)
extended the geometric theory of output regulation, introduced in
Isidori and Byrnes (1990) and Francis (1977) for solving the state
and output feedback regulator problems for infinite-dimensional
linear control systems, assuming bounded control and observation
operators. The application of the model was restricted to the case
when the reference signal and disturbances were generated by a
finite-dimensional exogenous system (for details on exogenous
systems one can refer to Francis, 1977). In particular, the paper
showed that the full state feedback and error feedback regulator
problems can be solved, under the standard assumptions of
stabilizability and detectability, if and only if a pair of regulator
equations is solvable. The regulator equations form a system of
Sylvester-type operator equations subject to extra side constraints.
For the examples taken, the regulator equations reduced to a
system of linear ordinary differential equations, which, in general,
were solved numerically off-line to obtain approximate feedback
control that work very well in practice. Later in 2003, Byrnes,
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Gilliam, Isidori, and Shubov (2003a) extended the technique to a
set point boundary control of nonlinear parabolic DPS. This paper
defined a problem of output regulation for nonlinear distributed
parameter systems, in the non-equilibrium settings. It also gave
necessary and sufficient conditions for a controller to solve the
output regulation problem. Basically the paper extended the non-
equilibria theory of nonlinear output regulation, so as to apply to
the set-point control of certain nonlinear distributed parameter
systems. The proposed method has been applied on a heat
equation and for a class of nonlinear reaction–diffusion equations.
The method still remains promising but as discussed by Meurer
and Zeitz in 2004 (Meurer & Zeitz, 2004), the main restriction was
given by the fact that the reference trajectory should be generated
by a neutrally stable finite-dimensional exogenous system (the
external system that generates tracking signal for a fixed plant so
that the output tracks the reference signal), which is not practical
for the realization of transitions between stationary profiles or
non-periodic reference trajectories. For an example, DPS control
problems arising in biological and chemical engineering are
usually highly nonlinear and require various set-point changes
during startup, operation and shutdown.

In 2001 Fard and Sagatun published a paper (Fard & Sagatun,
2001) that came up with an exponentially stabilizing nonlinear
boundary control law to stabilize a nonlinear beam transverse
vibration. The advantage was the control law used measurements
from the boundary only. This control design took into account the
coupling between longitudinal and transversal vibrations. Further,
the authors proved the stability of the closed loop system taking
the help of Lyapunov’s direct method.

A variety of neural network based optimal control synthesis
approach for DPS systems has been proposed by Padhi and
Balakrishnan in a series of papers followed 2000 onward. The
method has been initialized in the 2000 American Control
Conference (Padhi & Balakrishnan, 2000). An important contribu-
tion of the study was the derivation of the necessary conditions of
optimality for distributed parameter systems, described in discrete
domain, following the principle of approximate dynamic program-
ming. Then the derived necessary conditions of optimality were
used to synthesize infinite time optimal neuro-controllers in the
framework of adaptive-critic design. In 2001 (Padhi, Balakrishnan,
& Randolph, 2001) the authors extended the work and published a
similar paper in ‘Automatica’, which included a comparison with
linear quadratic regulator problem for the diffusion equation that
has a Riccati-operator based solution. For the synthesis of the
controller, the method proposed two sets of neural networks: the
set of action networks captures the mapping between the state and
control, while the set of critic networks captures the mapping
between the state and costate. Note that the construction of the
networks and the synthesis of the controller were relatively free of
simplified assumptions (like linearized models).

Probably this survey would remain incomplete without
mentioning a powerful model reduction technique, known as
Proper Orthogonal Decomposition (POD) followed by its usage in
Galerkin Projection and control design. The method was first
proposed by Karhunen (1946) and by Loeve (1945) independently.
For this reason this technique is also called as Karhunen–Loeve
(K–L) expansion. However the technique gained significance much
later. Lumley used it in the name of POD, to study turbulent flows
in 1967 (Lumley, 1967). The method gained further acceptability
when technique of ‘‘snapshots’’ got incorporated into it by Sirovich
(1987). The power of the technique lies in the fact that it creates
‘‘problem oriented’’ basis function, which when used in conjunc-
tion with a reduced basis method (for example, method of
Galerkin’s projection) leads to a very low dimensional representa-
tion of the DPS with high accuracy. A number of application papers
based on this technique continue to appear in the current

literature. A few of them include the paper by Burns and King
(1998) on the development of a feedback control law of hybrid DPS,
the NASA report by Ravindran (1999) on the optimal control of
fluids, the paper by Banks et al. (2000) on the feedback control of a
thin shell model and the paper by Singh, Myatt, and Addington
(2001) on the development of an adaptive feedback linearizing
control for a two-dimensional nonlinear flow.

In 2002 Shang, Forbes, and Guay (2002) proposed a Model
Predictive Control method for DPS governed by hyperbolic PDEs,
using the method of characteristics. It showed that the proposed
MPC possesses the advantage of high computation efficiency and
desired performance because of the method of characteristics.
2002 also show the wavelet based point-wise PDE control strategy
proposed by Gao, Gu, and Zeng (2002). Haar wavelets have been
used for orthogonal function approximation of distributed
parameter systems to deal with the optimal point-wise control.
The differential operational matrix and the product integrated
operational matrix of Haar wavelet base have been proposed.
Similar approach of converting a DPS to lumped parameter system
using orthogonal Haar Wavelets, has been reported later in (Ding &
Gu, 2004) and (Ding & Gu, 2006) for predictive control of DPS
systems.

In 2002, Zheng, Hoo, and Piovoso (2002) reported the use of
SVD-KL that combines singular value decomposition (SVD) theory
with Karhunen–Loeve (K–L) expansion technique to develop low-
order models of nonlinear, one-dimensional PDEs, when there is no
available exact model of the system. The SVD-KL were used to
capture intermediate and low frequency modes important for
controller synthesis. The input–output model that came from the
application of the SVD-KL method was used to design the dynamic
matrix controller and PI controller. It was shown that satisfactory
closed-loop performance of the nonlinear DPS could be obtained
using a DMC designed using the finite order model of the system. In
the same year, Fung, Wu, and Lu (2002) proposed an adaptive
boundary control to an axially moving string system using a mass-
damper-spring controller at its right-hand side boundary.
Unknown parameters appearing in the system equation were
assumed constant and estimated on-line by using adaptation laws.
Stability were guaranteed in Lyapunov sense. Finally, the
performance of the proposed controller was demonstrated by
numerical simulations where finite difference technique has been
used for PDE approximation.

In 2003, King and Hovakimyan (2003) presented a paper where
finite-dimensional Linear Quadratic Gaussian (LQG) controller has
been augmented for a distributed parameter system, with an
adaptive output feedback element. The adaptive parameters were
determined in neural network framework. The theory was
discussed for a problem concerning control of vibrations in a
nonlinear structure with bounded disturbances. In another
instance, Toshkova and Petrov (2003) discussed an algorithm for
linear quadratic optimal control synthesis for parabolic distributed
parameter systems. The distributed parameter system was
reduced to a lumped parameter system by applying the general-
ized finite integral transformation technique. The control law was
related to obtaining solutions of algebraic Riccati equation, which
was realized by using neural networks in real time. Another neural
based application can be found in Prokhorov (2003) where the
authors proposed to use the framework of backpropagation
through time (BPTT) to create optimal feedback neuro-controllers
for DPS. The neuro-controllers obtained for discretized DPS in the
infinite-horizon regulator setting were applicable to a broad set of
initial states (an envelope of initial state profiles). They compare
the technique and results with results reported by Padhi and
Balakrishnan in (Padhi & Balakrishnan, 2000), and (Padhi et al.,
2001). Discretization of DPS equations before utilizing the back-
propagation principle to obtain BPTT equations was performed in
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the method and then BPTT equations were used directly to
compute derivatives for subsequent training of a set of neural
networks.

In 2004, Demetriou and Fahroo (2004) discussed an adaptive
control mechanism for a class of second-order distributed
parameter systems that can be stabilized via static output
feedback. The adaptive estimates of the unknown feedback gains
were utilized for the convergence of state position and velocity in
Lyapunov sense. By further assuming that structured perturba-
tions of the damping and stiffness operators, often describing
modeling uncertainties, were always present in the system, a
modification to the proposed adaptive control law was included in
order to address these un-modeled uncertainties. In the same year,
a coupled Green-Galerkin numerical method proposed by Alaed-
dine and Doumanidis (2004) for infinite-dimensional thermal
conduction systems. The method used Galerkin optimization of an
energy index employing spatial and temporal convolution of
distributed Green’s fields. In the analysis presented, the developed
Green-Galerkin method was applied to a one-dimensional thermal
observation problem. The article investigated the development of
the method and was able to address the fundamental questions of
thermal control and observation in infinite-dimensional thermal
conduction systems.

A two degree-of-freedom feedforward and feedback design
approach was proposed by Meurer and Zeitz (2004) in 2004, for
boundary control of tubular bio-reactor model with nonlinear
reaction rate. The method used an advanced feedforward control,
in contrast to geometric approach used by Byrnes et al. (2000),
Byrnes, Gillam, and Shubov (2003b) in 2000, to achieve the
tracking performance of a control loop complemented by a
feedback control, to compensate for model errors and exogenous
disturbances. For the design of the feedforward part, formal power
series were used in conjunction with sophisticated summability
methods. This allows an extension of the formal power series
approach to nonlinear and in particular convection dominated DPS,
the latter playing an important role in chemical engineering
applications. Since the tracking behavior was mainly determined
by the feedforward control, the output feedback control has been
reported to be sufficient to account for offsets and disturbances or
stabilization along the desired output trajectory.

An optimal dynamic inversion strategy for DPS has been
proposed by Padhi and Balakrishnan (2007) in 2007. The
combination of dynamic inversion principle and optimization
theory has been used to design a stable controller for a class of one-
dimensional nonlinear distributed parameter systems incorporat-
ing an optimal control allocation strategy. This approach does not
demand any approximation either of the system dynamics or of the
resulting controller. Furthermore, the method provided a closed
form solution for the controller feedback and therefore suitable for
practical applications.

In 2006 a four paper special issue on ‘Advances in Robust and
Nonlinear Control of Distributed Parameter Systems’ has been
published in ‘International Journal of Robust and Nonlinear
Control’. In the first paper, Strub and Bayenz (2006) proved the
existence and uniqueness of a weak solution to the Lighthill-
Whitham-Richards partial differential equation (LWR PDE) in the
presence of boundary conditions. A weak formulation of the
boundary conditions makes the problem to be well-posed.
The existence of the solution results from the convergence of
the Godunov scheme. A highway traffic flow scenario presented in
the paper illustrates the applicability of the method. Boundary
control of the LWR PDE was applied to a highway optimization
problem with data from highway Interstate-80 (in USA) obtained
from the Berkeley Highway Laboratory. Note that the boundary
control was used to minimize travel time on a given stretch of the
highway.

The second paper, written by Dubljevic, El-Farra, Mhaskar,
and Christofides (2006), presents and compares a number of
model predictive control formulations for control of linear
parabolic PDEs with state and input constraints. Modal decom-
position techniques are used to derive finite-dimensional
systems that capture the dominant dynamics of the PDE. A
number of model predictive control (MPC) formulations,
designed on the basis of different finite-dimensional approxima-
tions, were then presented and compared. The closed-loop
stability properties of the infinite-dimensional system under the
low order MPC controllers are analyzed and sufficient conditions
that guarantee stabilization (satisfying state constraints) are
shown.

In the third paper, Demetriou and Fahroo (2006) considered
adaptive control of a class of structurally perturbed second-order
distributed parameter systems in which both partial position and
partial velocity measurements were assumed available. The
adaptive controller for the second-order system utilized both
online estimates of the static feedback gains and online
approximators of the unknown structured perturbations. The
perturbations were canceled via feedback, and the adaptive
controller directed the closed-loop dynamics match those of
the reference model. The control objective was to design an
adaptive controller so that the plant state followed the state of a
second-order reference model despite the presence of the
perturbation terms.

The fourth paper, written by Krstic (2006), is of tutorial nature.
The paper presents a catalogue of approaches for the design of
adaptive controllers for PDEs controlled from the boundary
(boundary control) and containing unknown destabilizing para-
meters affecting the interior of the domain. The paper differ-
entiates between two major classes of schemes: Lyapunov
schemes (published in Smyshlyaev & Krstic, 2006) and certainty
equivalence schemes. Within the certainty equivalence class two
types of identifier designs were pursued: passivity-based and
swapping designs (published in Smyshlyaev & Krstic, 2007a;
Smyshlyaev & Krstic, 2007b).

Immonen (2006) designed a controller for linear distributed
parameter systems (with bounded control, observation and
feedthrough operators) in 2006, which under certain assumptions,
achieved asymptotic tracking of arbitrary bounded uniformly
continuous reference signals in the presence of disturbances. An
independent feedforward-feedback controller has been reported
where the dynamic feedback part was used to stabilize the closed-
loop system consisting of the plant and the controller, whereas the
feedforward part was tuned using the regulator equations to
achieve the regulation of desired signals.

Among others works in 2006, we refer to application of fuzzy
logic based control by Li, Zhang, and Li (2006, 2007) for catalytic
packed-bed reactor (infinite dimensional system). The papers use
3D fuzzy membership function to take care of the spatial variability
of the DPS. Different to the traditional fuzzy logic controller, the
authors use multiple sensors to provide 3D fuzzy inputs and
proposes the inference mechanism with 3D nature that can fuse
these inputs into a so-called ‘‘spatial membership function’’.
Application of boundary control technique coupled with predictive
control by Ding and Gu (2006) for distributed parameter system
control. Here, orthogonal Haar wavelets based discretization of
DPS has been done to transform boundary predictive control
algorithm of time-discrete first-order linear distributed parameter
system into boundary predictive control issue of lumped para-
meter system. The problem of constructing model reference
adaptive H1 control for distributed parameter system of hyper-
bolic type was considered in the paper by Miyasato (2006), where
the proposed control scheme was constructed from finite
dimensional controllers. The stabilizing control signal was added
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to regulate the effect of spill-over terms, and it was derived as a
solution of certain H1 control problem where spill-over were
considered as external disturbances to the process.

In 2006, Kim and Bentsman (2006) presented a multi-resolution
based technique for the finite-dimensionalization of the controller
parameter adaptation laws in adaptive control of DPS. This
technique permits efficient incorporation of the prior knowledge
of the specific plant parameter characteristics (such as non-
smoothness) into controller implementation through the choice of
parameter approximation basis, yielding a high fidelity parameter
representation by a small number of basis coefficients. For this
purpose, a new tool the ‘‘multiresolution Lyapunov functional’’ has
been introduced. Using this the existence of the wavelet-based
finite-dimensional parameter adaptation law is proposed, which
provides the desired tracking accuracy while retaining the well-
posedness of the closed-loop system with the infinite-dimensional
plant. The benefits of the technique in both real-time and off-line
performance enhancement of the control law, such as reduction of
computational demand and increase in the output convergence
rate unaccompanied by the corresponding increase in the control
effort are demonstrated.

In 2006 Nguyen and Egeland considered the output feedback
stabilization problem for a class of second-order distributed
parameter systems without distributed damping (or non-strictly
positive distributed damping). Exponentially stable observer and
controller were designed. The main analysis tool was semi-group
theory (Nguyen & Egeland, 2006).

In a separate instance, Borggaard (2006) studied the develop-
ment of reduced-order models for nonlinear distributed parameter
systems in 2006 itself. The method was based on Galerkin
projection, but the reduced-basis vectors were optimal for the
dynamic model, found by minimizing the error between given full-
order simulation data and the reduced order model. This was
achieved by formulating the basis selection problem as an optimal
control problem with the reduced order model as a constraint. This
methodology allows a natural extension of reduced-order model-
ing ideas to nonlinear systems.

In 2007, the paper by Garcia-Sanz, Huarte, and Asenjo (2007),
introduced a new simple quantitative robust control design
technique applicable to one-point feedback controllers for DPS
with uncertainty. The paper proposes a new set of transfer
functions (TFs) that describe the relationships between the inputs
and outputs of the system. These points were chosen to be spatially
distributed at the relevant points where the inputs and the outputs
of the control system were applied (actuators, sensors, distur-
bances and control objectives). Based on these TFs, the paper
extended the classical robust stability and performance specifica-
tions to the DPS case and presented a new set of quadratic
inequalities to define the quantitative feedback theory bounds.

A general procedure for parabolic PDEs with spatially con-
tinuous backstepping based boundary control, introduced in
Smyshlyaev and Krstic (2004) by Smyshlyaev and Krstic has been
proposed by Krstic et al. in 2007 (Krstic & Smyshlyaev, 2007). The
paper contained a discussion of the main design. The paper
concluded with the application of the backstepping method to the
Schrodinger equation and first-order hyperbolic PDEs (the trans-
port equation and its derivatives).

In 2007 Smyshlyaev and Krstic proposed an adaptive version of
the backstepping based boundary control through a couple of
papers (Smyshlyaev & Krstic, 2007a, 2007b). An output feedback
adaptive control scheme for two benchmark parabolic PDEs
motivated by a model of thermal instability in solid propellant
rockets has been proposed in the papers. Both benchmark plants
were unstable and were controlled from the boundary. One plant
has an unknown parameter in the PDE and the other in the
boundary condition. The paper (Smyshlyaev & Krstic, 2007a)

introduces the novel approach to adaptive control of PDEs where a
parametrized family of boundary controllers can be combined with
‘‘swapping gradient’’ identifiers to yield global stability of the
resulting nonlinear PDE system. Only the state-feedback problem
was considered there. For a different, narrower, class of systems,
the output-feedback problem can be solved by this method, which
is illustrated on two benchmark examples in the short paper
(Smyshlyaev & Krstic, 2007b).

4. Open problems and possible future directions

The research on control of DPS has experienced a phenomenal
growth and various innovative methods have been developed over
the last few decades. However, the area remains a fertile field for
research. There is immense potential in this field of research and an
extensive list of all possible future directions is perhaps an
impossible task. In this section, however, we attempt to include a
brief discussion about some of the problems that in our view are
potential future directions of research.

� Many engineering solution techniques presented in various
literature rely heavily on ‘discretized solution’ of the original
problem. Even though these solutions are mostly reliable, precise
conditions about the step sizes used in the process of
discretization needs some special attention. Conditions on the
step sizes for the linear DPS are typically available, whereas for
the nonlinear systems such conditions are not available. It is an
important dimension of research since too big a step size invokes
accuracy issues whereas small a step size invites implementation
concerns. A precise idea of tolerable step sizes in general would
be potential dimension of research.
� One of the important issues in synthesizing discrete optimal

controllers for distributed parameter systems is the question of
accuracy of the discretized problem itself. Even if the solution to
the discrete problem exists, to address the question of accuracy
one has to answer whether the solution to the analogous discrete
problem will eventually converge to the continuous problem in
limiting sense, as the discretization intervals tend to zero. This
question has been addressed in (Julio, 1970a) to come up with
sufficient conditions for linear DPS. However to the best
knowledge of the authors, no precise results exist for this
problem for general nonlinear DPS.
� Even though many numerical methods have been proposed,

there is no systematic approach towards development of closed
form solution of control in general for optimal control design for
nonlinear problems. Development of such closed form solutions
(which can possibly rely on infinite-dimensional operator
theory) will have a great impact.
� Efficient computational techniques for reduced-order modeling

need to be developed further from the perspective of control
design. Even though the proper orthogonal decomposition (POD)
based problem-oriented basis function design has emerged as a
popular tool for model reduction, questions like the validity of
the snapshots (using which the basis functions are designed) in
closed loop is a major concern since the solution behavior of s
dynamic system can be completely different as compared to the
open loop solution. Even though some ideas like Re-POD,
adaptive POD, etc. have appeared in the literature, in our opinion
this issue needs further attention to efficiently incorporate the
closed loop solution behaviour in the basis function design.
� Another important issue in connection to reduced order

modeling and its real time application is the effect the
unmodeled dynamics. Spillover effects that arise due to non
observing and not controlling the unmodeled dynamics need
better understanding and clarification.
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� Another area that needs further research is the issue of stability
and stabilizability. Many finite-dimensional stability theories in
the sense of Lyapunov have been applied to infinite dimensional
systems as well. However, it is well-known that many important
classes of mechanical systems cannot be stabilized in the sense of
Lyapunov, while the concept of partial stability naturally appears
(Luo, Guo, & Morgul, 1999; Vorotnikov, 1998). Characterization
of the partial stability and stabilizability of nonlinear infinite-
dimensional system are still less developed and need further
attention.
� Intelligent control of DPS using neural networks, fuzzy logic, etc.

are computationally less expensive, relatively easier to imple-
ment and comparatively less sensitive to noise. However, there
are many issues in such designs (like selection of basis function,
appropriate choice of fuzzification, etc.), which need further
attention.
� Solution techniques emerging in various fields like computa-

tional fluid dynamics, finite element method (FEM), element free
techniques, etc. need further attentions because of challenging
requirements like irregular boundaries, non-homogeneous
boundary conditions, requirement of grid-free solutions, etc.
� Another important area that needs to be explored is perhaps the

field of ‘impulse control’, where the control action enters to the
system only at intermittent instants of time (and possibly at
various spatial locations as well). This area, which holds great
promise in biomedical applications, is at its infancy and
definitely opens up a great opportunity of research.
� Discrete control action (where controllers are located only at

discrete locations in the spatial domain), boundary control
problems (where the control action enters to the system
dynamics through the boundary condition) are good problems
to carry out further research.
� Because of practical constraints, it is always preferable to have a

non-collocated control design (where the sensors and actuators
are located at physically separate locations). Even though this
issue has found some attention in the literature, it has been
largely neglected for nonlinear DPS, and hence, opens up a
possible dimension of research.
� Recently the problems of modeling and control for systems

consisting of coupled rigid and elastic parts, known as hybrid
system have become an important research area. In particular,
controllability, observability and stability issues related to these
system are less developed (Coron & Novel, 1998; Zuyev, 2005).
� From application point of view, DPS control techniques applied

on areas such as flow control, smart structures, nano technology
and bioengineering are open for new advances and these fields
may require the development of new mathematical theories and
computational tools.

5. Conclusion

Distributed parameter systems have become an established
area of research in control which can trace its roots back to the
1960s. In this article we have attempted to give a comprehen-
sive overview of the various ideas that has appeared in the
literature over the decades, which include extensions of popular
finite dimensional techniques to infinite-dimensional systems as
well as innovative infinite-dimensional specific control design
approaches. The developments have been arranged in a chron-
ological order. Finally some open areas of research have also been
outlined.
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