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Optimal blood glucose regulation of diabetic patients
using single network adaptive critics
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SUMMARY

Diabetes is a long-term disease during which the body’s production and use of insulin are impaired, causing glucose
concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a
substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy
is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural
networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear
dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural
network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous
measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed
studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison
study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important
advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is
also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties.
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1. INTRODUCTION

The idea of using mathematical control theory to
solve problems in biological sciences is relatively old
[1–3]. However, in recent years activities based on this
idea is growing fast. This is primarily owing to the

∗Correspondence to: Radhakant Padhi, Department of Aerospace
Engineering, Indian Institute of Science, Bangalore-560012,
India.

†E-mail: padhi@aero.iisc.ernet.in
‡Research Associate.
§Assistant Professor.

development of more mathematical models for various
biological systems [1, 2]. This rapid growth can also be
attributed to the advancement in control theory. Some
of the recent biomedical applications of control engi-
neering can be found in [2] and the references therein.
In the present study, an attempt has been made to regu-
late blood glucose concentration in diabetic patients
following a nonlinear optimal control design approach.

Diabetes is a disease in which the blood sugar level
increases in patients and a significant effort is directed
toward finding better ways to manage diabetes [3, 4].
The normal blood glucose concentration level in a
human is in the narrow range of 70–110mg/dl [5].
Keeping blood glucose levels as close to normal as
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possible leads to a substantial decrease in long-term
complications of diabetes. A higher value as well as
a lower value can lead to a serious illness in human
beings. A higher blood sugar level leads to hyper-
glycemia, whereas a low blood sugar level results in
hypoglycemia. Hyperglycemia in the long run can
create problems such as stroke, cardiac arrest, blind-
ness, etc. Hypoglycemia (less than 50mg/dl of blood
sugar concentration), on the other hand, has more
serious consequence as it can rapidly lead to brain
failure and hence death of the patient. The blood sugar
concentration is normally controlled within these limits
by different factors in the body. The most important
regulators of the glucose level in the body are insulin
and glucagon hormones that suppress and increase
the blood sugar level, respectively. Insulin is anabolic
and stimulates the glucose uptake capacity in tissues
and thereby lowers the glucose level in the blood.
Conversely, glucagon is catabolic. It stimulates the
glucose production from fatty acids and amino acids
when needed and results in increasing the blood sugar
level. Different factors including food intake, rate of
digestion, and exercise affect the glucose concentration
in the blood.

Diabetes mellitus is a disease in which blood glucose
concentration is elevated because of deficient insulin
secretion or abnormal insulin action. Diabetic patients
require lifetime exogenous insulin injections to monitor
the glucose concentration in blood within safe limits.
Traditionally, managing diabetes has been through
intermittent monitoring of blood glucose and then
administering an appropriate dose of insulin into the
blood stream. This method of intermittent monitoring
and administration of insulin cannot ensure that blood
glucose remains at near normal levels at all times and
therefore there is considerable interest in managing
diabetes on a continuous basis [5, 6]. The current
treatments include 3–4 daily glucose measurements
and an equivalent number of insulin injections.

An alternative approach is to replicate the func-
tion of pancreatic insulin, i.e. to have a continuous
measurement and situation-dependent insulin injec-
tion to the body based on a feedback strategy using
an external device such as an insulin pump and a
sensor [3, 5–8]. This pump, which acts like an artificial
pancreas, includes a sensor and an insulin container.

The sensor provides the measurements of the blood
glucose concentration and passes the information to
a feedback-control system that would decide on the
necessary insulin delivery rate using control algorithms
to keep the patient under metabolic control. The pump
injects insulin through a catheter placed under the
patient’s skin. The ultimate goal in closed-loop control
of blood glucose is not just finding the optimal insulin
rates that can effectively reduce the high blood glucose,
but to infuse it in such a way that the blood glucose
level can mimic the body’s natural excursion [7, 8].
In this study we apply a nonlinear optimal control
approach using the recently developed single network
adaptive critic (SNAC) philosophy [9, 10] to regulate
blood glucose concentration.

Several methods have been previously employed
to design the feedback controller for insulin delivery.
These include classical linear control design ideas such
as PID and pole placement designs, linear quadratic
regulator (LQR) control, etc. [5, 6], where a linearized
model of the system is used for the feedback-control
design. Nonlinear control design ideas such as model
predictive control (MPC) [11, 12] and higher order
sliding mode (HOSM) control [13, 14] have also been
proposed in the recent literature. However, an impor-
tant issue in blood glucose regulation using linearized
plant is the hypoglycemia problem (blood glucose level
below 50mg/dl) [13], which is typically not addressed
in the existing literature. In fact, our comparison
simulation study with the LQR control clearly shows
that such an approach does lead to hypoglycemia
problems (see Section 4 for the comparison results).
On the other hand, this issue does not arise in the
proposed SNAC-based nonlinear optimal drug delivery
approach.

Many difficult real-life control problems can be
formulated within the framework of optimal control
theory. It is well known that the dynamic programming
formulation offers the most comprehensive solution
approach to nonlinear optimal control problems in a
state-feedback form [15], which is desirable because
of its beneficial properties (e.g. robustness with respect
to noise suppression). However, a huge (infeasible)
amount of computational and storage requirements
are needed to solve the associated Hamilton–Jacobi–
Bellman (HJB) equation. An innovative idea has been
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proposed in [16] to get around the computational
complexity of the dynamic programming formulation
by using approximate dynamic programming (ADP)
formulations. The solution to the ADP formulation is
obtained through a two-neural network approach called
adaptive critic (AC). In one version of the AC approach,
called the dual heuristic programming (DHP), one
network (called the action network) captures the
mapping between the state and control variables,
whereas a second network (called the critic network)
captures the mapping between the state and costate
variables. More important, this solution can be imple-
mented on-line, as the control computation requires a
few multiplications of the network weights (which are
trained off-line). Recently, a significant improvement
to the adaptive critic technique is proposed in [9] by
eliminating one of the two networks in the structure
and therefore named as SNAC. The action network in
adaptive critic design is eliminated and only the critic
network is preserved. As a consequence, the SNAC
architecture offers three potential advantages: a simpler
architecture, lesser computational load and elimination
of the approximation error associated with the elimi-
nated network. This approach is applicable to a wide
class of nonlinear systems where the optimal control
(stationary) equation can be explicitly expressed in
terms of the state and costate variables. The efficiency
of the technique has been reported for a class of
nonlinear systems [10] and treatment of Parturient
Paresis in cows [9].

In the present study we apply SNAC to regulate
blood glucose concentration in diabetic patients. The
advantages of the proposed continuous medication
strategy using SNAC include (i) it provides nonlinear
optimal treatment strategy for diabetic patients which
does not lead to any hypoglycemic conditions (unlike
linear quadratic controller) and hence avoids the asso-
ciated severe consequences such as brain failure, (ii) it
is computationally efficient and hence can be imple-
mented in real time and (iii) it brings down the glucose
level in blood to a safe level (less than 110mg/dl)
within approximately 1 h (and to the basal value within
approximately 3–4 hours) of food intake. The proposed
approach has sufficient robustness to parameter
uncertainties as well. Note that a small change in some
of the sensitive parameters can dramatically drive the

patient’s blood glucose level to instability and may
even result in the patient’s death. Therefore, it is vital
for the patients that controller used in the closed-loop
system should be capable of handling these uncer-
tainties in parameters, which we demonstrate from
sufficiently large number of simulations.

The remainder of the paper is organized as follows:
Section 2 deals with the mathematical modeling aspects
of the problem. Nonlinear minimal model is considered
for the present analysis with exogenous glucose intake
as food. In Section 3 the necessary conditions of opti-
mality from the ADP perspective is described, followed
by the main idea of SNAC synthesis. Results from
the simulation studies are discussed next in Section 4
and some conclusions of this research are derived in
Section 5.

2. MATHEMATICAL MODEL FOR
INSULIN–GLUCOSE REGULATION

Blood glucose regulation for a diabetic patient is done
using empirical and model-based approaches. In the
empirical approach to control algorithm design, the
relationship between the input (insulin) and the output
(desired glucose level) is determined based on exper-
imental data, not on a mathematical theory. A control
rule is then formulated either as a curve fitting tech-
nique or as a look-up table using the experimental data
as the basis.

The model-based approaches involve the use of a
mathematical model in the control of blood glucose
level. The models describe the complex interaction
of glucose and insulin. Various linear and nonlinear
models are available for controller design [5]. In this
paper, the insulin–glucose regulatory system dynamics
in the human body as described by the ‘minimal
model’ is used. Bergman minimal model [17, 18] is
a commonly referenced model in the literature and
approximates the dynamic response of a diabetic
patient’s blood glucose concentration to the insulin
injection using nonlinear differential equations.

2.1. Minimal model for insulin–glucose regulation

Minimal model is composed of two parts: the first part
describes the glucose plasma concentration considering
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Table I. Minimal model variables.

Variable Meaning Unit

G(t) The blood glucose concentration at time t (min) mg/dl
I (t) Blood insulin concentration at time t (min) �U/ml
Z(t) Represents insulin-excitable tissue glucose uptake activity min−1

D(t) Exogenous glucose infusion rate after meal mg/dl/min
Gb Basal glucose level mg/dl
Ib Basal insulin level �U/ml
� The rate of pancreatic release of insulin after bolus �U/ml/(mg/dl)/min
h The pancreatic target glycemia [5] mg/dl
n The time constant for insulin disappearance min−1

u(t) Insulin injection rate (the control variable) �U/ml/min

‘U’ indicates insulin strength. For example, U-100 reflects the number (100) of active insulin units in each ml
of liquid.

the dynamics of glucose uptake and independent of
circulating insulin. It treated insulin plasma concentra-
tion as a known forcing function [5].

Ġ(t) = −p1[G(t)−Gb]−Z(t)G(t)+D(t)

Ż(t) = −p2Z(t)+ p3[I (t)− Ib]
(1)

where t=0 shows the time glucose enters blood, G(t)
is the glucose concentration in the blood plasma in
(mg/dl), Z(t) is the insulins effect on the net glucose
disappearance, the insulin concentration in the remote
compartments in (1/min). Gb is the basal pre-injection
level of glucose in (mg/dl). Parameter p1 is the insulin-
independent rate constant of glucose uptake in muscles
and liver in (1/min), p2 is the rate for decrease in tissue
glucose uptake ability (in 1/min), p3 is the insulin-
dependent increase in glucose uptake ability in tissue
per unit of insulin concentration above the basal level in
((�U/ml)−1min−1). The term p1Gb accounts for the
body’s natural tendency to move toward basal glucose
levels.

Insulin kinetics is given by a single equation which
describes the plasma insulin concentration considering
the dynamics of pancreatic insulin release in response
to the glucose stimulus.

İ (t)=−n[I (t)− Ib]+�[G(t)−h]+t (2)

where ‘+’ sign shows the positive reflection to glucose
intake, i.e. when [(G(t)−h)>0] the term �[G(t)−h]+
in Equation (2) acts as an internal regulatory function

that formulates the insulin secretion in the body, which
does not exist in diabetic patients [5] (and therefore
assumed not present in simulations carried out with
diabetic patients). I (t) is the insulin concentration in
plasma at time t in (�U/ml), Ib is the basal pre-injection
level of insulin. The definition of variables used in the
minimal model and their units are given in Table I. It
is worth noting that all the values are calculated for
a person of average weight and these are not constant
numbers and vary from patient to patient, which makes
the design of the controller a more challenging task.

To show the complete dynamics of the glucose–
insulin regulatory system, a food intake term is
considered in Equation (1). D(t) shows the rate at
which glucose is absorbed to the blood from the intes-
tine, following food intake. This glucose absorption is
considered as a disturbance to the system dynamics
owing to the absence of normal insulin regulatory
system in diabetic patients. This disturbance can be
modeled by a decaying exponential function, whose
dynamics is given by the following equation.

Ḋ(t)=−BD(t), B>0 (3)

where t is in (min) and D(t) is in (mg/dl/min)
[5, 7, 14].

The objective of the study is to develop a nonlinear
control technique to compensate the uncertainties and
disturbances and to stabilize the blood plasma glucose
concentration of a diabetic patient at the basal value.
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It should be noted that the control term is not yet consid-
ered in the model introduced in Equation (2).

2.2. Model for control design

The system of equations introduced in Equations (1)–
(3) can be combined to get following equations

ẋ1 = −p1[x1−Gb]−x1x2+x4

ẋ2 = −p2x2+ p3[x3− Ib]
ẋ3 = −n[x3− Ib]+u(t)

ẋ4 = −Bx4

(4)

In Equation (4), x1, x2, x3 and x4 represent G(t),
Z(t), I (t) and D(t), respectively. Note that the term
�[G(t)−h]+ in Equation (2) is removed from Equa-
tion (4) as it does not exist in diabetic patients [5, 18].
u(t) defines the insulin injection rate and replaces the
normal insulin regulation of the body [14], which acts as
the control variable. The exogenous infusion of glucose
(Equation (3)) is considered as an additional state vari-
able (x4) in Equation (4).

The aim of the present study is to design the control
system such that the system variables in Equation (4)
reach their equilibrium values (i.e. basal values in
the present case). Therefore, for convenience, system
dynamics is rewritten in its deviation terms. For this
we define,

[x1 x2 x3 x4]T = [x10 x20 x30 x40]T

+[x1d x2d x3d x4d ]T (5)

where [x1d x2d x3d x4d ]T is the ‘deviated state’ about
the equilibrium point [x10 x20 x30 x40]T of the system.
From Equation (4) the equilibrium is obtained as

[x10 x20 x30 x40]T=[Gb 0 Ib 0]T (6)

Equation (4) can be rewritten in terms of x1d , x2d ,
x3d , and x4d as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1d

ẋ2d

ẋ3d

ẋ4d

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−p1x1d −(x1d +Gb)x2d +x4d

−p2x2d + p3x3d

−nx3d +u(t)

−Bx4d

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

2.3. Model with normalized variables

For better training of neural networks (see Section 3.2),
we normalize the neural network inputs. For this reason,
we define the new variables x̄1�x1d /x1n , x̄2�x2d /x2n ,
x̄3�x3d /x3n , x̄4�x4d /x4n , where subscript (n) denotes
nominal values of the variables (chosen appropriately
so that the values of the normalized variables becomes
roughly of same order). The system dynamics can
now be written in terms of the normalized variables as
follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̄x1
˙̄x2
˙̄x3
˙̄x4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−p1x̄1−(x̄1+Gb/x1n )x̄2x2n + x̄4x4n/x1n

−p2x̄2+ p3x̄3x3n/x2n

−nx̄3+ ū(t)

−Bx̄4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(8)

Note that the equilibrium point of the homogeneous
system dynamics in (8) now corresponds to the
origin (for normalized and deviated states) and the
control term ū(t)=u(t)/x3n represents the normalized
rate of insulin infusion. For convenience redefining
[x1 x2 x3 x4]T�[x̄1 x̄2 x̄3 x̄4]T and ū(t) as u(t), the
normalized dynamics in Equation (8) can be written as

Ẋ= F(X,u)= f (X)+gu(t) (9)

where, X=[x1 x2 x3 x4]T and

f (X) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−p1x1−(x1+Gb/x1n )x2x2n

+x4x4n/x1n

−p2x2+ p3x3x3n/x2n

−nx3

−Bx4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

g � [0 0 1 0]T

(10)

Note that the control term appears only in the insulin
dynamics, i.e. only the rate of insulin injection is modi-
fied by the state feedback-control theory. As only the
plasma glucose concentration has to reach its basal
value, an output regulator problem is considered for the
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medication problem. Glucose concentration in blood is
considered as the output (y), where

y=CX=[1 0 0 0]X (11)

3. OPTIMAL CONTROL DESIGN USING SNAC

A brief overview of the SNAC technique is presented in
this section. Even though the discussion is purposefully
biased toward the blood glucose regulation problem,
attempt has been made to preserve sufficient generality
for the larger benefit of the readers. As mentioned
in Section 1, SNAC falls into the larger basket of
adaptive critic methods, which in turn rely on the
ADP philosophy and provides a state feedback optimal
control solution within a domain of interest. However,
SNAC eliminates one of the two networks in the
adaptive critic structure for a class of problems for
which the optimal control (stationary) equation can be
explicitly expressed in terms of the state and costate
variables. This provides a simpler architecture, lesser
computational load and reduction in the approximation
error. Even though only a brief overview of this fairly
recent technique is provided here for completeness,
an interested reader can find more details on the
technique in [10].

3.1. Optimality conditions

For use with neural networks, the insulin–glucose regu-
lation medication dynamics (i.e. the system dynamics)
is first discretized using Euler integration scheme [19])
as

Xk+1=Xk+�t Fk(Xk,uk)=Xk+�t[ fk+guk] (12)

where �t is the step size in time. The discretized output
vector (yk) is given as

yk =CXk =[1 0 0 0]Xk (13)

Note that Xk represents the ‘normalized state vector’
at time tk .

A standard regulator cost function with output
weighting is considered. An approximate (using

trapezoidal rule [19]) following discrete cost function
is obtained.

J = 1

2

N→∞∑
k=1

[Qd y
2
k +Rdu

2
k ] (14)

where Qd =Q�t�0, Rd = R�t>0 are the weighting
matrices on state and control, respectively, and �t is
the step size in time. The goal of this control synthesis
approach is to administer insulin slowly into the blood
stream which means one should not choose too high
values of Q or very small values for R. Appropriate
choice of these values is problem dependent and can
be adjusted with relative ease after a few simulations.
Applying the standard discrete optimal-control theory
[15], the equations for optimal control and costate
dynamics are given by

uk = −R−1[0 0 1 0]�k+1 (15)

�k = �k+1+�t

[
CTQCXk+

(
�Fk

�Xk

)T
]

(16)

where, �k is the costate variable at time step tk , the
dynamics for which evolves backwards in time.

At each time step k the coupled Equations (9), (10),
(12), (15) and (16) have to be solved simultaneously,
together with the boundary conditions (X1 specified and
�N =0 as N →∞), to obtain the optimal control solu-
tion uk . In an infinite horizon of the problem, we can
essentially capture the steady state relationship between
state and costate in a single network (or set of networks,
if one network is assumed for each element of the
output vector, as done in this work). For finite horizon
problems, however, one needs a series of such networks
to capture this relationship at every time step [10].
3.2. Procedure for neural network synthesis

In this section, the procedure for synthesizing a set
of neural networks, called as ‘critic networks’, is
presented. The neural network structure solves the
optimal control problem contained in Equations (12),
(15) and (16), while satisfying the boundary conditions
as well.

The blood glucose regulation problem discussed in
this paper is solved assuming two different cases. First,
it is assumed that complete information about the model
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parameters for individual patients is available (with the
assumption that a sufficiently fast parameter identifi-
cation procedure can be augmented in parallel). In the
second case, it is assumed that no specific information
about the model parameters for individual patients is
available (hence one must rely on the nominal parame-
ters for all patients). In the first case the model param-
eters (p1, p2, p3, n, B, etc.) are assumed to be constant
and only the initial conditions of the state variables are
assumed to vary. In the second case, the model param-
eters p2, p3, n, B are also varied in addition to the
initial condition variation of states (p1 is not varied
as p1 is assumed zero for diabetic patients [5]). Note
that the first case will be more easier (and realistic) for
implementation, whereas the second case is expected to
come up with ‘tailor made’ drug dosage for individual
patients. As it is evident from this discussion, in the
first case we only need to give the state information for
the feedback control (i.e. input to the neural networks),
whereas parameter values are also needed as input to
the networks in the second case.

3.2.1. State generation for neural network training. In
the controller synthesis process, we first fix a particular
time step k. Then we choose a set of states S={Xk :
Xk ∈Domain of interest} for which the critic networks
are to be trained. Obviously it is a difficult task, mainly
because of the fact that prior to the controller solu-
tion, we do not have an idea so as to how exactly a
system evolves in the presence of control. However,
for all practical purposes, one can just choose a suffi-
ciently large number of random states in the domain of
interest for training the neural networks. One can notice,
however, that for regulator problems, as time increases
the states tend to zero. Thus the set S must also contain,
with non-zero probability, the controlled states with
different magnitudes, including the ones close to zero.
For this reason, we follow the same ‘telescopic proce-
dure’ proposed earlier [9, 10], which is outlined below.

Define, Si ={all Xk : ‖Xk‖∞�ci }, for i =1,2,3, . . .,
where ci is a positive constant. Notice that for
c1�c2�c3� · · ·, S1⊆ S2⊆ S3⊆·· · . Thus, for some
i = I , SI will include the domain of interest for initial
conditions. Hence, to begin the synthesis procedure,
we fix a small value for the constant c1 and train the
networks for the states, randomly generated within

S1. Once the critic networks converge for this set, we
choose c2 close to c1 and again train the networks
for the profiles within S2 and so on. We keep on
increasing the constant ci this way until the networks
are trained for states in S1. In this paper, we have
chosen c1=0.05, ci =c1+0.01(i−1) for i =2,3, . . .
and continued until ci =cI =1.

3.2.2. Neural network training. The critic neural
network(s) essentially capture the relationship between
Xk and �k+1. For faster training, we have synthe-
sized four neural networks (separate networks for
each element of the vector �k+1). Separate neural
networks are trained for the two different cases (first
with random initial conditions and the second one
with random initial conditions and random model
parameters). Discussion for the training in second
case is presented here as it is more general. We have
assumed that the parameters of the problem (p2,
p3, n, B) are not fixed and they can vary, within
known minimum and maximum values. Thus, p2∈
[p2min, p2max], p3∈[p3min, p3max], n∈[nmin,nmax]
and B∈[Bmin, Bmax]. The parameter range are shown
in Table II. However, we have assumed that the param-
eters remain constant for any particular patient and
hence, for a typical state trajectory. Thus, to capture
the relationship between Xk and �k+1, we construct an
augmented vector X inp

k =[XT
k

... PT]T (P is the vector
containing parameters), which serves as the input to the
neural networks. However, as the individual elements of
X inp
k vary widely in magnitude, we construct a normal-

ized vector to serve as the input. Thus we have X inp
k =

[x1k x2k x3k x4k p2/p2n , p3/p3n ,n/nn, B/Bn]T, where
p2n , p3n , nn and Bn are the normalizing values for
p2, p3, n and B, respectively. Note that for first case
(i.e. for which only nominal parameter information is
available), Xk is used as X inp

k . With the availability of

Table II. Nominal parameter values.

Parameter Value Parameter Value

p1 0 p2 0.0142
p3 1.54×10−5 B 0.05
n 0.2814 � 0
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Figure 1. Schematic of optimal control synthesis using
neural networks.

X inp
k information, the steps of synthesizing the neural

networks is as follows (Figure 1) [10]:
1. Generate Si , as described in Section 3.2.1:
2. For each element Xk of Si , follow the steps below,

• Construct Xinp
k ,

• Input Xinp
k to the networks to get �k+1: let us

denote this actual output as �ak+1 as well,
• Calculate uk , knowing Xk and �k+1, from

optimal control equation Equation (15),
• Get Xk+1 from the state equation (12 and 10,

using Xk and uk ,
• Construct Xinp

k+1,

• Input Xinp
k+1 to the networks to get �k+2,

• Calculate the target �k+1, from the costate
equation Equation (16). Let us denote this as
�tk+1.

3. Train the networks, with all Xinp
k as input and all

corresponding �tk+1 as output.
4. Check for convergence, as described in Section

3.2.3.
5. If proper convergence is achieved, stop and revert

to step 1, with i = i+1. If not, go to step 1 and
retrain the networks.

6. Continue the process till i = I ; i.e. until ci=cI=1.

One can notice that for faster convergence, one can
take the convex combinations [��tk+1+(1−�)�ak, j+1],
[��t2k+1+(1−�)�a2k, j+1] as target outputs for training,
where 0<�<1 is the learning rate for the neural
network training. Moreover, to minimize the chance of
getting trapped in a local minimum, one can follow the
philosophy of batch training, where a network is trained
for all of the elements of Si together [10]. For the
blood glucose regulation problem under consideration,
we have followed these ideas (selecting �=0.5). One
also notices that although Si should ideally contain
an ‘infinite’ number of X inp

k vectors, a large yet finite
number of random states is usually sufficient.

3.2.3. Convergence condition. Before changing ci to
ci+1 and generating new profiles for further training,
it should be assured that proper convergence is arrived
for ci . This can be done in the following manner.

1. Fix ci to the same values that have been used
for the training of the networks. Generate a set
Sci of profiles, exactly the same manner used to
generate Si . This set will be used to check or the
convergence of the network.

2. Choose a tolerance value tol (we have selected
tol=0.1).

3. By using the profiles from Scc , generate the target
outputs, as described in Section 3.2.1. Let the
outputs be �ti1 , �ti2 , �ti3 and �ti4 .

4. Generate the actual output from the networks by
simulating the trained networks with the profiles
from Sck . Let the outputs be ��i

1 , ��i
2 , ��i

3 and ��i
4 .

5. Check whether [‖�tii −��i
i ‖/‖�tii ‖]< tol, where

i =1,2,3,4. If these conditions are satisfied
simultaneously, we assume that the networks
have converged.

Note that after successful training of the networks
(i.e. after successfully meeting the convergence condi-
tion), one can directly calculate the associated optimal
control uk from Equation (15) for each Xinp

k .

3.2.4. Choice of neural network structure and initial-
ization. Choosing a neural network structure is not a
science yet; one mostly relies on experience and intu-
ition. The choice of a network is a trade-off between
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accuracy and computational complexity. A relatively
smaller network may not be adequate to capture the
nonlinearity of the problem, whereas a larger choice of
network may lead to a slower training and a greater
probability of getting trapped in a local minimum. For
this particular problem, we took four �4,6,4,1 neural
networks, one each for each of the costate variables in
the training where the model parameters are assumed
unchanged. Note that a �4,6,4,1 neural network means
four neurons in the input layer, six neurons in the
first hidden layer, four neurons in the second hidden
layer and one neuron in the output layer. Similarly,
for random parameters and states four �8,6,4,1 neural
networks, one each for each of the costate variables,
are considered.

For activation functions, we took tangent sigmoid
functions for all the hidden layers and a linear func-
tion for the output layer. Simulation results indicate
that this is an appropriate choice. For initializing the
weights, we solved the problem with the well-known
LQR optimal control theory [15], after linearizing the
system dynamics, and trained the networks based on
the associated relationship between state and costate
variables. For more details on SNAC, one can refer to
[9, 10].

4. NUMERICAL RESULTS

In this section, numerical results from extensive
simulation studies are presented to evaluate the perfor-
mance of the proposed nonlinear optimal drug delivery
(continuous insulin injection) strategy. The simulation
studies presented here can be broadly classified into
three categories. First, studies are carried out with
nominal model with fixed parameters (both for control
design as well as simulations). Next, the concentration
is on realistic models with randomly chosen parameters.
This replicates a more realistic situation as different
patients are supposed to have different physiological
property and hence different parameters. However, this
set of simulation studies is done with the assumption
that the parameters are ‘known’ for individual patients
(which can possibly come from a parameter identi-
fication scheme implemented in parallel). Finally, a
robustness study is carried out by repeatedly applying

the nominal controller to the realistic models with
randomly chosen parameters. This situation is more
realistic as it retains the advantage of eliminating the
parameter identification requirement (hence making
it easier practical realization), while simultaneously
showing the robustness of the control design over a
broad class of patient parameters. Comparison studies
with LQR-based medication scheme is also carried
out as part of the simulation studies that clearly brings
out some important advantages of the proposed SNAC
approach over the LQR approach.

4.1. Case-I: simulation studies with nominal model

For this set of simulation studies (including training of
the neural networks), the parameter values considered
are shown in Table II, which are taken from [5, 6]. For
all simulation studies, the basal value of glucose (Gb)

and insulin (Ib) concentrations in plasma are consid-
ered as 70mg/dl and 7�U/ml, respectively. For the
neural network training purposes, the range of values
for the state variables that are accounted for in the
neural network training are shown in Table IV. The
normalizing variables [x1n , x2n , x3n , x4n ]T are taken as
[150,0.01,100,10]T. Note that for training purposes
the lower bound for some of the deviation states are
taken as negative with the expectation of some over-
shooting during transient. However, these correspond
to positive values of the actual physical state variable.
The time interval �t is chosen as 10 s, which is compat-
ible with the sampling time of the available apparatus
to monitor the blood glucose and inject the insulin [5].
The output weight Q is taken as 5×(x1n )

2 and the
control weight is considered as 400×(x3n )

2. Q and R
are chosen such so as not to change the values of Q
and R with the change in nominal state values.

The parameters used here leads to an undesirable
glucose trajectory for the untreated condition (i.e.
without exogenous insulin supply) as seen in Figure 2.
Hence, this is a case where the external medication is
a necessity. Figure 2 also shows the glucose history
for both linearized system and nonlinear system with
LQR-based medication and proposed SNAC-based
medication. Figure 3 shows the trajectory of plasma
insulin concentration in the patient and Figure 4
shows the corresponding control input required. It is
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Figure 2. Trajectories of blood glucose concentration.
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Figure 3. Trajectories of blood plasma insulin concentration.

evident form these figures that, as expected, the
linearized system and the nonlinear system differ
in their response and the SNAC-based medication
performs better than LQR-based medication because
of the following reasons:

• The LQR-based medication strategy leads to
overshooting during transient. The overshooting is
rather high (very close to the dangerous 50mg/dl
level) and may trigger hypoglycemia (a major
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Figure 4. Required insulin injection rate for blood glucose
regulation.

concern for diabetic patients, which may lead
to brain failure [5]). This dangerous trend is
completely absent in the proposed SNAC-based
medication.

• From Figure 4 one can observe that the LQR
control input demand goes to negative during
transient. However, implementation of a negative
control is difficult as it would rather mean a
backup system through which glucagon can be
injected to the blood plasma. However, such
a requirement is not there in the SNAC-based
medication. In fact, this trend is observed in all
of our numerous simulation studies, including
many randomly selected initial conditions and
parameter perturbations, which will be clear from
subsequent discussions in this section. We claim
this as rather an important advantage as the
requirement of an emergency negative control
(i.e. glucagon injection) is completely avoided.

• The SNACmedication leads to a faster closed-loop
response of the blood glucose trajectory towards
its steady state value. One can see from Figure 2
that in SNAC medication, one can essentially stop
the medication after about 200 minutes (approxi-
mately three hours) of its initiation as the control
required after that is zero. This is however with
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Figure 5. Blood glucose trajectories with random initial
conditions.

the assumption that there is no further disturbance
input to the system (such as fresh food intake).

• The SNAC medication also brings down the blood
glucose level of a initial high value to within
the safe limit (which we assume to be below
110mg/dl) within approximately one hour of
initiation of medication, which is adequate.

The above observations clearly indicates that the
SNAC approach is a much better alternative compared
with the LQR approach. Next, to gain confidence on
the results, a large number of simulation studies were
carried out from different initial conditions. For clarity
of pictures, however, we include only five such cases
in Figures 5 and 6.

Blood glucose concentrations with random initial
conditions are shown in Figure 5. Figure 5 shows
the glucose trajectories for untreated patients and
for patients with neural medication. As shown in
Figure 5, neural medication never leads to overshooting
of the closed-loop response and hence never leads
to hypoglycemic conditions. It is to be observed
that in all cases the blood glucose concentration is
reduced to the basal value (70mg/dl) within about
200min (i.e. approximately three hours) of initiation
of medication and to the safe limit (below 110mg/dl)
within approximately one hour. More important, the
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Figure 6. Rate of insulin injection for random initial
conditions.

control requirement never becomes negative, thereby
eliminating the additional requirement of emergency
glucagon injection. In summary, all advantages pointed
out above are maintained in all of our numerous
simulation studies.

Figures 2–6 indicate that the proposed SNAC-based
medication scheme leads to good (rather substantially
improved) blood glucose management. However, these
results are based only on the nominal model. Further
simulation studies need to be carried out with realistic
models (i.e. models with parameter variations) before
gaining sufficient confidence of the robustness of the
proposed approach, which is discussed next.

4.2. Case-II: simulation studies with realistic models
with known parameters

In this exercise, the model parameters (p2, p3, n and B)
are considered random from a range of values about
their nominal values (as suggested in [5]), which are
given in Table III. However, as mentioned before, these
parameters are assumed to be ‘known’ and hence are
accounted for in the control design.

For the neural network training purposes, we have
assumed a range of values for the state variables (Xk)

as given in Table IV. Numerical values of the normal-
izing variables are selected as the nominal values i.e.
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Table III. Range of parameter values for realistic model.

Parameter Min value Max value Nominal value Deviation (%)

p2 0.01/p2n 0.02/p2n 0.015 ±33
p3 1×10−6/p3n 3×10−6/p3n 2×10−6 ±50
n 0.12/nn 0.30/nn 0.21 ±42
B 0.01/Bn 0.10/Bn 0.05 +100, −80

[p2n , p3n ,nn, Bn]: Nominal parameters.

Table IV. Range of values for state variables.

State Value State Value

x1 max 220/x1n x1 min −80/x1n
x2 max 0.03/x2n x2 min −0.001/x2n
x3 max 200/x3n x3 min −10/x3n
x4 max 20/x4n x4 min 0/x4n

[p2n , p3n ,nn, Bn]T. Basal value of glucose concen-
tration in blood (Gb) is another parameter, which is
assumed to be an input to the control computation.
This is because the ideal basal glucose concentration
varies from patient to patient (depending on other
factors such as body weight, age, etc.) and is assumed
to be determined by the physicians from a prescribed
chart [5]. This gives a choice to the physician for
better diabetes management for individual patients. In
this paper, however, three basal values are selected
as possible options to a physician without loss of
generality. Accordingly, three separate set of networks
are synthesized for different ideal basal values of
blood glucose. The basal values considered here are
70mg/dl, 80mg/dl and 90mg/dl, respectively. Basal
value of blood plasma insulin concentration, however,
is considered as 10�U/ml for all cases.

Blood glucose concentration with random model
parameters and Gb=70mg/dl are shown in Figure 7.
The trajectories of blood glucose concentration without
treatment and with neural treatment are shown together
for better comparison. The controlled glucose trajec-
tories are observed to reach the basal value and reach
there in short time. The corresponding control inputs
(rate of insulin injection) are shown in Figure 8. As
evident from Figure 7, the insulin injections can be
stopped after 200min as all the control trajectories
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Figure 7. Blood glucose trajectories with random
parameters, (Gb=70) mg/dl.

are seen to reach zero within this time (in some
cases, it can even be stopped in about 100min). Note
that in this set of simulation results, we have also
made a comparison study with the LQR controller, as
applied to the nonlinear system. The blood glucose
response in one such representative case is shown
in Figure 9, whereas the associated control (insulin
injection) history is shown in Figure 10. It is evident
from these plots that the LQR medication shows a
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Figure 8. Rate of insulin injection for random parameters,
(Gb=70) mg/dl.
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Figure 9. Glucose trajectories with random parameters,
(Gb=70) mg/dl.

drop down in blood glucose concentration near to
50mg/dl, which has the potential danger of triggering
the serious hypoglycemic condition. It should be noted
that it appears better to give no treatment rather than
to use LQR. Similar to what was observed before, this
behavior is absent in neural medication in this case
as well, thereby avoiding the necessity of having a
glucagon infusion mechanism in addition to the insulin
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Figure 10. Rate of insulin injection for random parameters,
(Gb=70) mg/dl.

pump. In other words, the advantages of the proposed
SNAC-based nonlinear design retains the advantages
over the LQR design for a wide range of parameter
values as well.

It should be noted that Figures 5 and 6 are generated
with random initial conditions with basal glucose value
(Gb) as 70mg/dl, whereas, Figures 7 and 8 are gener-
ated with both random initial conditions and random
parameters for Gb=70mg/dl. Figures 11 and 12 show
the simulation results for the trained network with
Gb=80mg/dl, with similar advantages.

4.3. Case-III: simulation studies with realistic models
with unknown parameters

Even though the numerical results of Case-II are quite
promising, such a strategy can be implemented in prac-
tice, only if the basic design proposed in this paper
can be augmented with an online system (parameter)
identification scheme. Hence, such a strategy is rather
a bit unrealistic and complicated to realize in prac-
tice. A more realistic strategy is perhaps to have the
controller design based on nominal parameters, whereas
it can guarantee sufficient robustness for inaccuracies
in the model parameters and retain its generality for a
large number of patients (see Figure 13 for a concep-
tual diagram of the philosophy). The purpose of the
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Figure 11. Blood glucose trajectories with random
parameters, (Gb=80) mg/dl.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Time (min)

u 
(t

) 
In

su
lit

on
 I

nj
ec

tio
n 

R
at

e 
(µ

 U
/m

l/
m

in
)

Figure 12. Rate of insulin injection for random parameters,
(Gb=80) mg/dl.

following set of results is to investigate such robustness
property of the proposed nominal controller.

Here simulations are run with random system param-
eters and random initial conditions, selected from the
range of values as mentioned in Tables III and IV,
respectively. The control design, however, is based on
the nominal parameters, as mentioned in Table II. Note
that the random patient parameters are unknown to the

Figure 13. Schematic of diabetic control system with
nominal parameters.
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Figure 14. Simulation results with Gb=70mg/dl.

controller and therefore, this analysis shows robustness
of the control design under parametric uncertainty. In
this set of simulation results and associated analysis,
depending on the achieved steady state values of the
blood glucose, we propose to define different levels
of success in the following manner: (i) failure (either
>110mg/dl or <50mg/dl), (ii) marginally successful
(between 100–110 and 50–60mg/dl), (iii) fairly
successful (between 90–100 and 60–70mg/dl) and (iv)
successful (between 70–90mg/dl). Simulations are run
for 1000 random parametric values and for different
basal values of Gb=70, 80, 90mg/dl. Figures 14,
15 and 16 show the steady state blood glucose level
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Figure 15. Simulation results with Gb=80mg/dl.
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Figure 16. Simulation results with Gb=90mg/dl.

after 1000min of simulation run for Gb =70, 80,
90mg/dl, respectively. Note that 200min is roughly
the settling time of the closed-loop system. However,
simulations are run for much longer time to ascertain
that the actual steady state value is picked up in this
analysis. Horizontal lines are drawn at glucose level
of 100, 90, 70, 60 and 50mg/dl to clearly show the
number of cases falling between different segments. In
Figures 14, 15 and 16, the dots signify the successful
cases (patients do not get hypoglycemia) and the cross

signifies the unsuccessful cases of robustness test
(simulation results to hypoglycemic condition).

Table V shows the values of the respective number
of cases falling in each group. For the case of Gb=
80mg/dl, simulation results show that out of 1000
simulations, 598 cases are successful with very good
response and 115 more cases lead to fairly successful
results. This means the nominal controller performs
fairly good for 713 cases (i.e. it leads to 71.3% success).
If one includes the additional 96 marginal cases as
well within the definition of acceptable performance,
the success rate rather goes to 809 cases (i.e. 80.9%
success). Only about 191 (19.1%) failure runs are
observed from the 1000 simulation runs. The results
from other cases (i.e. Gb=70, 90mg/dl) are also fairly
similar. Note that a lesser number of cases are observed
to fall within the range 70–90mg/dl for Gb=70 and
90mg/dl basal values because only one-sided spread
is allowed in both the cases. If both side spread is
allowed in the definition of successful cases, much
more cases will fall within the proper range. From
Table V it is evident that the proposed SNAC-based
nominal control design has fairly adequate robustness
for parameter inaccuracies of the model. In the strict
definition of failure, i.e. for steady state values of
blood glucose concentration of either >110mg/dl or
<50mg/dl, only the maximum percentage of failure
cases observed was only 22.3 %.

5. CONCLUSIONS

An intelligent online feedback insulin infusion strategy
is presented in this paper for the control of blood
glucose levels in diabetic patients using single network
adaptive critic neural networks with the intension of
replicating the function of pancreatic insulin, i.e. to
have a fairly continuous measurement and situation-
dependent insulin injection to the body using an
external device. Detail studies are carried out to
analyze the effectiveness of this adaptive critic-based
feedback medication strategy. The efficiency and the
robustness of the proposed nonlinear controller is
shown taking random initial conditions and random
parameters. A comparison study with LQR theory
shows that the proposed nonlinear medication strategy
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Table V. Results of simulation for robustness study (out of 1000 simulations).

Basal value Ranges of blood glucose concentration

Gb 70–90mg/dl 60–100mg/dl 50–110mg/dl >110 and <50mg/dl

70 447 634 777 223
80 598 713 809 191
90 280 817 879 121

offers the following potential advantages: (i) it never
leads to the hypoglycemia problem, thereby avoiding
the severe consequences associated with it, (ii) the
necessity of a negative control (glucagon infusion)
is eliminated and (iii) it is capable of bringing down
the blood glucose level to safe level quickly (within
an hour’s time of initiation of insulin injection). The
sampling time chosen is compatible with the available
apparatus. Moreover, as the computational demand
in using the trained neural networks is typically very
minimal, the necessary computations can very well
be carried out online (this is a major advantage of
the adaptive critic approach in general). Because of
these important advantages, the proposed nonlinear
optimal control theoretic approach is a potential option
for implementation in the continuous insulin infusion
apparatus for continuous regulation of blood glucose
in diabetic patients, leading to potential benefits in the
long run. Possible topics of further research would
include: (i) state estimation from output information
(as measurement of all state variables is typically not
feasible), (ii) parallel system (parameter) identification,
thereby making the drug dosage specific to the patients
(i.e. fully tailor made drug dosage) and (iii) experi-
mental clinical trial and subsequent development of
the hardware (insulin pump) implementing this logic.
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