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Fisheye Video Correction
Jin Wei, Chen-Feng Li, Shi-Min Hu, Ralph R Martin, and Chiew-Lan Tai

Abstract—Various types of video can be captured with fisheye lenses; their wide field of view is particularly suited to surveillance video.
However, fisheye lenses introduce distortion, and this changes as objects in the scene move, making fisheye video difficult to interpret.
Current still fisheye image correction methods are either limited to small angles of view, or are strongly content-dependent, and therefore
unsuitable for processing video streams. We present an efficient and robust scheme for fisheye video correction, which minimizes time-
varying distortion and preserves salient content in a coherent manner. Our optimization process is controlled by user annotation,
and takes into account a wide set of measures addressing different aspects of natural scene appearance. Each is represented as a
quadratic term in an energy minimization problem, leading to a closed form solution via a sparse linear system. We illustrate our method
with a range of examples, demonstrating coherent natural-looking video output. The visual quality of individual frames is comparable
to those produced by state-of-the-art methods for fisheye still photograph correction.

Index Terms—fisheye lens, wide-angle lens, video correction, distortion, mesh, optimization, least squares minimization
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1 INTRODUCTION

L IKE the human eye, fisheye lenses can capture a
wide field of view, albeit at the cost of significant

barrel distortion. This results in noticeable bending of
straight edges, and unnatural appearances of e.g. human
faces. While still images captured with fisheye lenses
are usually created for artistic effect (e.g. shooting broad
landscapes to suggest the curve of the Earth), fisheye
videos are widely used in surveillance monitoring and
machine vision [1]. The distinctive curvilinear perspec-
tive generated by fisheye lenses may be desirable in
fisheye photographs [2]. However, in fisheye videos, the
resulting distortion renders them hard to understand
and uncomfortable to watch, especially as the distortion
changes over time. Recovering natural looking results
from fisheye videos not only enhances viewing, but also
facilitates automated video understanding, since video
analysis methods are typically designed to work on
distortion-free video.

An intuitive approach to fisheye video correction is to
find a global flattening from the view sphere to the view
plane, which can then be applied to all frames. However,
this is clearly an inadequate solution since the sphere
is not a developable surface, so the approach can only
work approximately at best, and such problems are ex-
acerbated by the fact that the camera may move during
video capture. Computer-aided distortion correction for
fisheye (or wide-angle) photographs has been studied by
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both the computer graphics and computer vision com-
munities. In graphics, several geometric approaches have
been proposed, but they are either limited to small angles
of view, or are strongly content-dependent, limiting their
usefulness in video. In computer vision, various camera
calibration methods have been developed for fisheye /
wide-angle lenses, but they are only applicable when the
field of view is relatively small (typically less than 100◦).

Distortion in fisheye video varies with location within
each frame, causing dynamic distortion of moving ob-
jects. Attempting to apply existing fisheye photograph
correction methods in a frame-by-frame manner leads
to unsatisfactory results, either leaving a certain amount
of distortion in each frame, or resulting in a lack of
temporal continuity in the output. To achieve satisfac-
tory results when processing fisheye video, interframe
relationships must be explicitly considered to recover
a natural-looking result. Moreover, it must do so for
time-varying video scenes with widely differing content,
without causing any flickering, pulsing or flexing arti-
facts. Ideally, the correction algorithm should be efficient
and perform in real time, allowing non-specialist users
to interactively check their results.

Based on Carroll et al.’s recent work on fisheye photo-
graph correction [3], we present an efficient and robust
fisheye video correction scheme, using per frame trans-
formations which minimize the time-varying distortions
while providing continuity of objects in the video. Each
video frame is discretized using a spherical mesh, and
its geometric features are represented using a set of
anchor points defined in the context of the whole video
stream. To obtain natural looking results, six distinct
but related correction criteria are used to remove the
distortion. They respectively address straight line dis-
tortion, boundary consistency, orientation consistency,
local shape similarity (i.e. conformality), homogeneity,
and temporal coherence. They are expressed in terms
of the discretization mesh and the anchor points. These
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Fig. 1. Swing video. Significant distortions exist in fisheye video (top row). Using a minimization-based technique
with an efficient closed-form solution, distortion is effectively removed in a way that coherently preserves content from
frame to frame (bottom row). (The horizontal field of view was 160◦, and 10 line constraints were used for correction.)

correction criteria are weighted and composed to give
a quadratic energy function whose minimization deter-
mines the correction mapping, represented as a mod-
ification of the discretization mesh. The solution of the
resulting least squares minimization problem is obtained
in a closed form by solving a sparse linear system. The
input video frames are corrected in a streaming manner
by warping the discretization mesh frame by frame, the
temporal coherence term ensuring temporal continuity.

We use interactive annotation to guide this process.
User requirements are expressed as anchor points in a
few key frames, and video feature tracking algorithms
are used to automatically propagate these user-specified
constraints throughout the rest of the video sequence.

Our method outputs smooth, coherent, natural-
looking video. We experimentally demonstrate that our
method produces results of comparable quality to ex-
isting fisheye image correction algorithms—while also
ensuring temporal coherence. Our method is clearly
superior to a frame by frame approach, or the naive
method of global viewing sphere flattening. Interactive
performance is achieved on a commodity computer.

2 RELATED WORK

Visual information seen from a single view point is
defined on a viewing sphere centered at that view
point. Thus, correcting fisheye distortion requires find-
ing a correction mapping from the viewing sphere to
the image plane. Cartographers have long recognized
that mapping a sphere to a plane is difficult: a non-
developable surface cannot be flattened onto a planar
domain without deformation. They have developed hun-
dreds of projections that trade off different types of
distortion, among which are orthographic, stereographic
and Mercator projections [4]. However, all of them in-
evitably include a certain degree of distortion; none of

them can satisfactorily recover natural looking images
from photos taken with a fisheye camera [3].

Artists have developed specialized techniques for han-
dling large fields of view [2], [5]. Unlike the mappings of
cartographers, which are all global and independent of
content, artists use multiple local projections to produce
paintings with a large field of view [5], [6]. Specifically,
the background is often painted from one view point
while each foreground person or object is depicted using
an additional view point to retain its natural shape.

Based on this multi-projection principle developed by
artists, several geometric methods have been developed
for correcting fisheye (or wide-angle) still images. Zorin
and Barr [7] gave an axisymmetric correction mapping
which compromises between bending lines and dis-
torting spheres. Their results are impressive, but their
approach is limited to fields of view which can be
covered by linear perspective projection. Zelnik-Manor
et al. [8] presented a simple method in which a fisheye
photo is partitioned and projected onto folding screens.
This approach generates sharp discontinuities between
projection planes, and so only works for photos which
can be readily partitioned along natural discontinuities
(e.g. intersections of walls). Kopf et al. [9] extended
this method by locally projecting salient regions onto
user specified planar polygons, but doing so requires
reconstruction of the irregularly deformed cylindrical
projection surface in order to prevent discontinuity.
Thus, this method cannot be applied in video processing
where the image content varies significantly from frame
to frame. Recently, Carroll et al. [3] proposed a mesh-
based non-linear optimization technique based on mini-
mizing line distortion and preserving local shapes. Their
approach can produce visually flawless correction results
for many fisheye photographs. However, it cannot be
easily adapted to correct frames of a video, because both
the correction mapping and the image boundary depend
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Fig. 2. Framework for fisheye video correction.

strongly on the image content and the user-specified con-
straints. Furthermore, although a linear approximation is
used for speed, it is still too slow to support interactive
video processing: a standard PC will take 1–4 hours to
process a 10s video clip.

Distortion correction has also been studied in the
context of camera calibration [10], [11], [12], [13]. The
mapping from the viewing sphere to the image plane is
described by internal camera parameters. To account for
design and manufacture imperfections, various distor-
tion coefficients are also included in the camera model
as internal parameters. The goal of camera calibration is
to determine these camera parameters, which can then
be used to reconstruct 3D information from 2D images.
Direct use of the distortion coefficients for typical lenses
allows correction of images to follow the ideal pinhole
model. However, for wide-angle and fisheye images,
these calibration approaches do not produce pleasant
results in that the corrected images inevitably contain
severe perspective distortion.

Our fisheye video correction approach builds upon
existing mesh parameterization and optimization tech-
niques. In this context, we note that many specific mesh-
based optimization techniques have been developed for
a range of applications, including image and video re-
targeting [14], [15] and detail-preserving shape manipu-
lation and deformation [16], [17], [18], [19].

3 PROBLEM AND SOLUTION STRATEGY

With both eyes open, most people can see almost 180◦.
Even with this extremely wide angle of view, our eyes
perceive a view in which objects retain their natural
shapes, so for example, lamp posts appear straight.
Fisheye lenses also produce a wide field of view, but with
a significant amount of barrel distortion. This distinctive
imaging feature is determined by the optical design of
fisheye lenses, which we now briefly recap.

A lens can be described by a mapping function from
the viewing sphere to the image plane:

r = F (ω), (1)

where ω denotes the angle between a projection ray
and the optical axis, and r the distance between the
projected point and the image center. Nearly all lenses
used in photography and video are rectilinear lenses,
producing rectilinear (non-spatially-distorted) images of

distant objects. Rectilinear lenses with focal length f use
a perspective mapping r = f tan(ω), and capture images
from a small portion of the viewing sphere centered on
the optical axis. For angles of view greater than 90◦,
rectilinear lenses often suffer from severe perspective
distortion [20]. Fisheye lenses are designed to overcome
this limitation of rectilinear lenses and achieve a wider
field of view, of about 180◦. Many different mapping
functions are used in the design of fisheye lenses.
Among them, the most popular fisheye projections in-
clude equidistant projection r = fω, equisolid angle
projection r = 2f sin(ω/2), orthographic projection r =
f sin(ω) and stereographic projection r = 2f tan(ω/2).
Due to the fundamental difference between the positive
curvature of the viewing sphere, which is thus non-
developable, and the zero curvature of the image plane,
images created by fisheye lenses have a characteristic
convex appearance [1].

We assume we are given a fisheye video stream with-
out knowledge of the camera position, or the geometry
of the original 3D scene. However, we do assume that the
type and parameters of the fisheye projection performed
by the lens are known (this information is provided by
the lens manufacturer). The goal of fisheye video correc-
tion is to recover a natural-looking video stream with
the same content. In general, it is extremely difficult,
if not impossible, to reconstruct the viewed 3D scene
from arbitrary fisheye videos, so this problem cannot be
simply solved by using knowledge of the lens projection.
An overview of our solution strategy is now given.

As shown in Fig. 2, our correction scheme reads in
consecutive fisheye video frames, and the original visual
information on the viewing sphere is readily recovered
by an inverse fisheye projection, ω = F−1(r), using
the known lens projection. Fisheye video correction now
involves finding a sequence of correction mappings from
the viewing sphere onto the image plane. A minimiza-
tion problem using a specified set of correction criteria
reflecting natural appearance of the output video stream
determines these sphere to plane mappings frame-by-
frame to produce a natural-looking video stream.

Six correction criteria are used; all are expressed via
quadratic energy functions. The global minimizer of a
weighted sum of these energies gives the correction map-
ping; a closed-form solution can be found by solving a
linear system corresponding to a sparse positive-definite
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Fig. 3. Continuous correction requirements.

matrix. These correction criteria, taking into account
such issues as line distortion and temporal coherence,
provide a comprehensive set of measures for different
aspects of natural appearance, based on both large scale
features and local pixel distributions. For ease of repre-
sentation of the distortion correction, the viewing sphere
is divided along lines of longitude and latitude to form
a rectangular mesh, allowing the correction mapping to
be described by a flexible mesh transformation from the
viewing sphere to the image plane.

Some of our correction criteria are designed to pre-
serve salient objects in the video, which requires in-
formation concerning the key structures and content of
the input video. Experience in the related application
of video retargeting shows that fully automated feature
detection often fails to retain user-preferred parts [21].
Therefore, we provide an interactive tool for the user to
indicate straightness and orientation constraints, and to
mark important regions in key frames. These constraints
are then propagated into the remaining video frames.
This keeps user interaction low, and ensures the neces-
sary temporal coherence in the output.

4 CORRECTION REQUIREMENTS

It has long been known by artists that global perspective
projection cannot be used when painting large fields of
view as it causes severe perspective distortion. Instead,
artists use different view points for different objects in
a large field of view, and have developed various tech-
niques to seamlessly combine multiple local projections
in a single painting [2], [5], [6]. This is consistent with
the observation that fisheye distortion correction is a
data-dependent problem. Furthermore, in fisheye video
correction, the correction mapping must suit the content
of the whole video stream, not just specific individual
frames. In order to obtain satisfactory results for a given
fisheye video stream, the correction algorithm must be
informed about the key structures and content whose

natural appearance is to be preserved; we will refer to
these as the correction requirements. To achieve temporal
coherence, the correction requirements should vary in
a continuous manner over time (except, of course, at
discrete scene changes). These correction requirements
are specified in three forms: straight features, orientation
requirements, and an importance map.

4.1 Straight Features

As human eyes are extremely sensitive to straight
lines, straight features such vertical corners of buildings
should be straightened by fisheye video correction. Such
features are first specified by the user in a few key
frames. Note that the distorted straight features in the
fisheye image are represented as arcs of great circles
on the viewing sphere (Fig. 4(a)). Therefore, knowing
the fisheye lens projection, straight features in the dis-
torted image can be readily defined by specifying their
endpoints. We then propagate the user specified straight
lines into other frames to construct a set of continuous
straight-line constraints.

Although a straight feature is fully determined by
its endpoints, tracking these two endpoints alone is
unreliable, in particular when the straight feature is tem-
porarily occluded by another object in the fisheye video.
To improve robustness of propagation of this constraint
between adjacent video frames, we instead track the
whole great circle arc defined on the viewing sphere, and
then use information about the line’s geometry to extract
or predict its two endpoints depending on the occlusion
status. Tracking of arcs and extraction of endpoints are
cross-checked respectively by local gradient estimation
and content registration of fisheye frames, providing a
sophisticated mechanism for filtering out errors arising
in automatic video tracking.

User-specified straight-line constraints are often not
exactly placed on the straight features, but close to them.
In fact, distorted lines attracting viewers’ attention are
normally high-gradient edges. We use this to apply a
fine-tuning operation to straight-line constraints before
the tracking process. A user-specified straight line is first
sampled as a set of points as shown in Fig. 4(a), where
the sampling density is proportional to the arc length
on the viewing sphere. These points are then moved
within a small neighborhood onto the pixels with the
highest gradient values, found using the Sobel operator
after bilateral filtering. We then map the new points onto
the viewing sphere to obtain the best fitting great circle
arc, satisfying

arg min
n

=
∑
s

(qs · n)2, (2)

where n is the normal vector to the plane of the 3D, and
qs = (xs, ys, zs) is the Cartesian coordinate of the sample
point on the viewing sphere. The refined sample points
ps (including the two endpoints) are then obtained by
projecting qs onto the fitted arc.
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Fig. 4. Constraint propagation. A distorted straight line in the fisheye image determines a unique great circle plane on
the viewing sphere, as shown in (a). This property is borrowed to reduce tracking errors. A brief workflow for straight-
line tracking is shown in (b). An example in which all straight features suffer from multiple occlusions throughout the
entire timeline is shown in (c). Zoomed-in results (frames 20, 30, 35) demonstrate the effectiveness of our propagation
strategy (green points: Bouget’s results; purple lines: predicted straight features).

After refinement of the user input, the projected points
ps are tracked to the next frame. Video feature tracking
is a challenging fundamental problem in computer vi-
sion, and has been extensively studied in the last two
decades [22]. We use a pyramid-KLT tracker [23]. For
general video feature tracking, it is stable and effective
with good tracking quality, but failures can arise, es-
pecially when there are occlusions of straight features.
As obtaining correct straight-line constraints is of key
importance to ensure a visually pleasing result, it is
essential to use a robust scheme to handle tracking
failures. To examine the tracking quality, we first check
whether the tracked points still form a unique great
circle arc on the viewing sphere (step 2 in Fig. 4(b)).
Let p

′

s denote the s-th tracked point of a line. The local
normal vector of the arc-plane at this point is computed
from the two adjacent vertices on the viewing-sphere as
(p

′

s+1 − p
′

s)× (p
′

s − p
′

s−1) (for the endpoints we use the
two nearest vertices). Then, similar local normals (within
an angular distance of η) are grouped into clusters, and
the largest cluster is considered to be correct, and is
the trusted cluster. Points grouped in all other clusters
are treated as errors and abandoned. In the example in
step 2 in Fig. 4(b), four groups are generated by the
clustering process (the gray point is filtered out before
clustering as it exceeds an user-specified error tolerance).
The yellow points form the trusted cluster (marked by
a dashed ellipse), while the other three groups (red,
green and purple) are discarded. The normal vector of
the new great circle arc is computed by averaging all
local normals as narc =

∑N
1 kbnb/‖nb‖, where N is the

number of points in the trusted cluster, and the weight kb
indicates the confidence in point b, determined by com-
paring the color distance between two patches centered
at the corresponding point before and after tracking. For
simplicity we set kb = 1/N for all examples. The average
normal vector narc indicates a great circle arc on the
viewing sphere, corresponding to the new position of
the straight feature, which is further improved through

local gradient estimation and great circle arc fitting as
described in the previous paragraph.

Our experiments show that endpoints can be success-
fully tracked in most cases because they are usually
located at corners with strong contrast. In cases when
an endpoint is abandoned during arc tracking, the al-
gorithm will predict a new position for the missing
endpoint using line geometry (step 3 in Fig. 4(c)). Specif-
ically, the lost endpoint is predicted to lie along the arc
using the angular distance ϑ to the most reliable tracking
point pmb, selected from the trusted cluster to be close to
the corresponding endpoint and to have lowest change
from the previous frame. The change considered here
includes the angular distance from its previous position
and the average scaling ς between pmb and its neighbors
on the arc. The new position for the missing endpoint is
then predicted by rotating pmb through an angle ςϑ:

ppredict = Rotate(pmb, ςϑ). (3)

Our implementation also handles temporary occlu-
sions caused by moving objects in a fisheye video.
The occurrence of occlusion is identified when tracking
fails simultaneously for an endpoint and its neighbors.
Note that occlusions appearing in the interior of straight
features do not affect the construction of new straight-
line constraints, and so do not require special treatment.
When predicted endpoints are successfully tracked again
over two consecutive frames, the period of occlusion
is considered to be over. Then, within a small neigh-
borhood of the predicted endpoint and between the
last successfully tracked frame and the current frame,
deformable feature matching [24] is performed to iden-
tify the real endpoint, which is sequentially interpolated
with the predicted endpoints in the last few frames
in order to obtain a smooth constraint flow. Before
applying [24], Mercator projection is used on the two
patches to map the spherical patch onto the plane in
a conformal manner. Fig. 4(c) shows an example in
which all straight features need prediction for the lower
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endpoint of a line through the entire timeline shown.
The feature lines suffer from constant occlusions from
the very start. A series of zoomed-in views show the
predictions for the most severely affected area in the
video, in which the green points indicate directly tracked
sample points using Bouget’s approach [23] while the
purple lines indicate the predicted lines. This example
shows that our strategy is capable of greatly reducing
tracking even when severe occlusion occurs.

Special attention is required for straight features that
go beyond the frame border, e.g. a flagpole extending
upwards out of the frame. We first test if an endpoint
has reached the frame border using a threshold d. If the
border has been reached, the corresponding endpoint
will be set on the border along the computed great circle
arc. We also handle the case when the the end of the
straight object moves into the frame, e.g. the top of a flag-
pole moves inside the frame border. Specifically, a small
patch near the frame border is compared with the patch
centered at the the sample points a few steps ago, and if
the difference is greater than a user-specified threshold,
the algorithm will report a new endpoint entering the
frame and mark it for a new straight-line constraint.
When comparing patches, Gaussian weighting is used
to enhance the importance of central pixels.

During a fisheye video, some straight lines may move
out of the frame, and new straight features may move in.
We test in each tracking step if the number of straight-
line sample points has reduced by more than 35%. If
so, the current frame is set as a key frame, and user
interaction is required to mark some new straight-line
constraints. The algorithm then propagates these new
constraints both forward and backward to improve their
smoothness. Our constraint propagation strategy works
well for most cases, but in some extreme cases where
a large occlusion occurs causing tracking to fail for
almost all points, manual input is still needed. Other
more intelligent methods are needed to handle such
complicated scenarios. As intelligent feature tracking is
not the main topic of this paper, we leave this for future
consideration.

4.2 Orientation
The orientations of certain important content items
should remain constant throughout the video sequence.
The user places orientation constraints on chosen domi-
nant straight features such as edges of tall buildings and
the horizon. These features are constrained to not only
stay straight but also to lie in the prescribed direction.
Using linear interpolation, orientation constraints are
also propagated through the video stream.

4.3 Importance Map
Mapping images from the fisheye input to the output
video inevitably introduces deformation. In order to cre-
ate natural looking images, it is desirable to concentrate
the mapping deformation in less noticeable areas, to

allow important features with high visual impact to
have the desired shape. Therefore, it is necessary to
identify salient content in the input video stream for the
correction algorithm. Recent image and video resizing
systems [14], [15] have used various saliency detection
algorithms. We considered several saliency computation
methods [25], [26], [27] for our fisheye video correction
scheme, but none of them were suitable for all examples
tested. Furthermore, their computational efficiency is
often too low for video processing.

Instead, we propose a simple and very efficient strat-
egy for saliency computation, which takes into account
spatial importance, temporal coherence and the influence
of object movements. First, for every pixel, we calculate
the standard deviation in color for a small window
around it, to get an importance map for spatial saliency
(see e.g. Fig. 3(c)). Secondly, in order to produce coherent
output, we also take time variation of saliency into
account. The spatial saliency in a k frame window is
used (in practice k = 5 works well in most cases),
following a similar rule to that in [21]. This is designed
to squeeze the deformation far away from salient objects
through the timeline. Finally, to prevent jittering due
to motion of salient objects, we detect motion saliency
by estimating LK optical-flow [28]: motion saliency is
defined by pixel shifts in the estimated motion field and
normalized to [0, 1] over each pair of adjacent frames. To
ensure good spatial coherence, the normalized motion
saliency of each pixel is reevaluated in a similar way
to spatial saliency, and the lower motion saliency is
truncated from the final importance computation. Thus,
the total importance map value is defined as:

W ∗i = ωs

i+k∑
t=i

Wt/ (t− i+ 1) + ωmWimi + 1, (4)

where W ∗i is the total saliency value of a pixel in the i-th
frame, Wi its spatial saliency, and mi its motion saliency.
Spatial saliency in the k frame window is weighted
according to the frame number, so that the effect of
future frames on the current frame reduces over time.
Weights ωs and ωm are applied to spatial and motion
saliency; we set ωs = ωm = 2 in our experiments. An
example of the spatio-temporal saliency map W ∗i is given
in Fig. 3(d). The total saliency of a mesh vertex is then
assigned by calculating the average of W ∗i within a patch
around the vertex, and scaled to lie in [0, 1].

We have also investigated saliency due to pixels mov-
ing differently from surrounding pixels. However, the
influence of this type of saliency is relatively small
and sometimes even harmful depending on the video
clip. Therefore, differences of pixel movements are not
considered in Eqn. (4).

5 CORRECTION CRITERIA

Performing fisheye video correction largely depends on
quantifying different aspects of natural visual appearance,
a very subjective concept. We use six measures, each



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Φ

θ

A’ B’

C’D’

P’

Viewing Sphere

y

x

A B

C
D

P

Image Plane

x1 x3x2

1 2
3
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defined as a quadratic form, to do this. Correction of
fisheye videos is posed as finding a mapping which
minimizes an overall quadratic objective function. Some
criteria depend strongly on the video content, while
other criteria are determined by differential relations of
the imaging process.

The viewing sphere is parameterized by (−π/2 ≤
θ, φ ≤ π/2)—see Fig. 5. Let (x, y) be Cartesian coordi-
nates in the image plane. We wish to find the correction
mapping x = x(θ, φ), y = y(θ, φ). The viewing sphere is
meshed into rectangular cells at equal increments of θ
and φ with grid coordinates (θj , φi); the correction map-
ping is correspondingly discretized on the image plane
with Cartesian nodal coordinates xi,j , yi,j . This mapping
is determined using a quadratic objective function based
on the six correction criteria.

5.1 Straight Line Preservation

Straight features should become straight after fisheye
video correction. Such a constraint has long been used
in camera calibration, and is typically expressed in terms
of squared residual distances of points from their corre-
sponding best-fit lines [10], [11]. However, this results
in a non-linear objective function, needing an iterative
solver [3], and it is hard to use in video correction which
has high requirements of robustness and efficiency. It
is also noted that along a straight line, aspect ratios
of background objects should remain proportional to
their real dimensions in the 3D world. Based on this ob-
servation, we precalculate the scaling coefficients along
a straight feature using geometric information on the
viewing sphere, which in turn allows the straight-line
distortion to be measured by a quadratic energy term.

Straight features appear curved in the fisheye image,
corresponding to arcs of great circles on the viewing
sphere (see Fig. 5). On the viewing sphere, let 1, 2 and 3
denote three sample points on a straight feature specified
by the user. In the image plane, let (x1, y1), (x2, y2) and

(x3, y3) denote the corrected projections for these three
points. These are collinear in the image plane if and only
if they satisfy the relations

x1 − x2
x2 − x3

=
y1 − y2
y2 − y3

=
d12
d23

, (5)

where dij is the distance between (xi, yi) and (xj , yj) in
the image plane. As these three points lie on a great circle
on the viewing sphere, the length ratio d12/d23 in Eqn. (5)
can be approximately determined as an angle ratio, i.e.
d12/d23 ≈ γ12/γ23 where γij is the angle subtended by
points i and j on the viewing sphere. This approximation
assumes that the length ratio on the image plane can be
approximated by the angle ratio on the viewing sphere,
which holds particularly well within small angles of
view.

The distortion of a straight feature can be simply mea-
sured using the sum of squared residuals of the linear
relations defined above. Let l denote a user specified
straight feature in the fisheye image. Through inverse
fisheye projection, the straight feature is mapped onto an
arc of a great circle on the viewing sphere, which is then
discretized using Ml sample points. The line-distortion
energy corresponding to l is defined as

El =

Ml−1∑
m=2

∥∥γlmMl

(
xl1 − xlm

)
− γl1m

(
xlm − xlMl

)∥∥2, (6)

where xlm = (xlm, y
l
m) are Cartesian coordinates of the

corrected sample points on the image plane, and γlmn is
the central angle between sample points m and n on the
viewing sphere.

This line-distortion energy function El is quadratic in
the variables (xlm, y

l
m), the Cartesian coordinates of the

projected sample points. However, the basic unknowns
in the correction mapping are (xi,j , yi,j), the nodal coor-
dinates of the discretization mesh on the image plane.
To express sample points in terms of the discretization
mesh, we use bilinear interpolation [29]: a sample point
P located in a quadrilateral cell ABCD in the image
plane, has Cartesian coordinates

xP = ᾱβ̄xA + αβ̄xB + αβxC + ᾱβxD (7)

where relative coordinates (α, β) are determined from
the corresponding rectangular cell A′B′C ′D′ on the
viewing sphere, and ᾱ = 1 − α, β̄ = 1 − β. Substituting
Eqn. (7) into Eqn. (6), the energy function El becomes
a quadratic form in the Cartesian coordinates of the
discretization mesh.

5.2 Boundary Consistency

In a normal video stream, all frames share the same
image boundary. Hence, we define a new quadratic
energy function to fix the image boundary for the output
video. Let VB denote the complete set of points sampled
on the boundary of the fisheye image and, for each
point P ∈ VB , let xP = (xP , yP ) denote its Cartesian
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coordinates projected on the image plane. The boundary
consistency relation is

xP = xP , P ∈ VB , (8)

where xP = (xP , yP ) is the fixed location for P . The
energy corresponding to the above boundary consistency
relation is defined as

EB =
∑
P∈VB

(
wBP
)2 ‖xP − xP ‖2, (9)

where wBP (P ∈ VB) are fixed weights controlling the
rigidity of the image boundary. The boundary energy
function EB is a quadratic form in the Cartesian coordi-
nates of the sample points. After substituting Eqn. (7)
into Eqn. (9), EB becomes a quadratic form in the
Cartesian coordinates of the discretization mesh.

5.3 Orientation Consistency
Consistency of selected orientations are next considered.
Orientation requirements are specified on dominant
straight features, e.g. the horizon should be horizontal
in the output. Such constraints can be described by a
sequence of sample points located on each prescribed
straight line. Let Mo denote the number of sample points
on a straight orientation feature o in the fisheye image.
The orientation consistency relation is

ao · xP + co = 0, P = 1, · · · ,Mo, (10)

where ao = (ao, bo) is a normal to the user-specified tar-
get orientation, co an unknown parameter fixing the loca-
tion of the straight line feature, and xP (P = 1, · · · ,Mo)
are Cartesian coordinates of the sample points along
it. The orientation energy associated with the above
consistency relation is defined as

Eo =

Mo∑
P=1

‖ao · xP + co‖2, (11)

which is quadratic in the xP and co. Again, bilinear in-
terpolation Eqn. (7), is used to express Eo as a quadratic
form in the nodal coordinates of the discretization mesh
and the unknown co.

5.4 Local Similarity
Significant barrel distortion exists in fisheye images due
to the optical design of fisheye lenses, so, e.g., square
window frames can appear almost elliptical. Such local
geometric features should have their natural shapes in
the corrected image. Thus, the correction mapping must
preserve local similarities from the viewing sphere to the
image plane. We use an energy which has previously
been used for fisheye photograph correction [3].

On the viewing sphere, an infinitesimal line element
with constant φ has length dsθ = cosφdθ, while a line
element with constant θ has length dsφ = dφ. In the
image plane, line elements in x- and y- directions have
lengths dsx = dx, dsy = dy respectively. The Jacobian h

of the mapping gives the local length scaling in each di-
rection upon transformation. To ensure similarity of local
geometric features during transformation, line-element
scaling must be the same in all directions, so

∂x

∂φ
= −∂y

∂θ

1

cosφ
,

∂y

∂φ
=
∂x

∂θ

1

cosφ
; (12)

these are the Cauchy-Riemann equations for conformal
mapping of a sphere to a plane [30].

In terms of the discretization mesh, the above con-
dition for local similarity can be approximated by the
finite-difference form:

xi+1,j − xi,j = −(yi,j+1 − yi,j)/cosφi,j , (13)
yi+1,j − yi,j = (xi,j+1 − xi,j)/cosφi,j .

The squared residuals of the above relations are used
to define a quadratic energy function measuring local
similarity:

ES =
∑(

wSij
)2

[cosφi,j (xi+1,j − xi,j) + (yi,j+1 − yi,j)]2

+
∑(

wSij
)2

[cosφi,j (yi+1,j − yi,j)− (xi,j+1 − xi,j)]2
,

where sums are taken over the discretization mesh, and
the weights wSij adjust the stiffness of local similarities
across the fisheye video frame.

5.5 Homogeneity
During correction of fisheye videos, the local similarity
criterion above essentially allows local geometric fea-
tures on the viewing sphere to undergo a rigid motion
and an isotropic scale change when transformed to the
the image plane. To produce a natural looking result, we
must avoid large differences in scale change throughout
the image, particularly between neighboring features.

Local scaling from the viewing sphere to the image
plane is given by the Jacobian h defined earlier. To obtain
homogeneous scaling, the gradient of h, ∇h, must be set
to zero, where

∇h =

(
∂2x
∂θ2

1
cosφ

∂2x
∂φ∂θ

1
cosφ + ∂x

∂θ
sinφ
cos2φ

∂2x
∂θ∂φ

∂2x
∂φ2

∂2y
∂θ2

1
cosφ

∂2y
∂φ∂θ

1
cosφ + ∂y

∂θ
sinφ
cos2φ

∂2y
∂θ∂φ

∂2y
∂φ2

)
.

This differential condition for homogeneous local de-
formations can again be approximated in terms of the
discretization mesh, leading to a finite-difference form

Hi,j =



(xi,j+1 − 2xi,j + xi,j−1) cosφi,j
(xi+1,j+1 − xi+1,j − xi,j+1 + xi,j) cosφi,j

+ (xi,j+1 − xi,j) sinφi,j
(yi,j+1 − 2yi,j + yi,j−1) cosφi,j
(yi+1,j+1 − yi+1,j − yi,j+1 + yi,j) cosφi,j

+ (yi,j+1 − yi,j) sinφi,j
(xi+1,j+1 − xi,j+1 − xi+1,j + xi,j) cos2φi,j
(xi+1,j − 2xi,j + xi−1,j) cos2φi,j
(yi+1,j+1 − yi,j+1 − yi+1,j + yi,j) cos2φi,j
(yi+1,j − 2yi,j + yi−1,j) cos2φi,j


,

and in turn, a homogeneity energy:

EH =
∑(

wHij
)2‖Hi,j‖2, (14)
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where the weights wHij adjust the homogeneity stiffness
across the image.

A similar concept (termed smoothness by the authors)
was introduced in [3] for fisheye photograph correction,
but a different mathematical formulation was used in
an empirical manner. The main advantage of our new
homogeneity energy is its robustness and wide applica-
bility to different video frames, as demonstrated in our
results later.

5.6 Temporal Coherence

Temporal coherence is an essential requirement in video
processing. In this case, it requires the correction map-
ping for a fisheye video stream to be a smooth function
of time. Our correction mapping is a sequence of mesh
transformations from the viewing sphere to the image
plane, one for each video frame. We must thus ensure
that interframe changes in this mapping are sufficiently
small to be invisible when viewing the corrected video.

The mesh on the viewing sphere remains fixed, and
only the projected mesh on the image plane changes. In
successive frames, grid cells on the image plane have
different shapes but identical connectivity. The amount
of interframe mesh deformation can be expressed by the
total strain energy of the grid cells [31].

We thus define the temporal coherence energy as

ET =
∑
e∈VE

1

2
(X∗e −Xe)

T
Ke (X∗e −Xe), (15)

where VE is the set of quadrilateral grid cells in the mesh,
X∗e is a vector representing the eight nodal coordinates
of cell e for the current frame, Xe represents its nodal
coordinates for the previous frame, and Ke is the 8 × 8
stiffness matrix of cell e determined from the previous
frame. If matrix Ke degenerates to an identity matrix, the
energy ET becomes an elementary deformation measure
defined as the the sum of squared nodal displacements.
Eqn. (15) is a standard finite element definition of strain
energy [32]. For completeness, the stiffness matrix Ke is
given without proof: Ke = AeB

T
eDeBe where Ae is the

area of cell e determined from the previous frame, De is
a 3× 3 constant matrix

De =
(
wTe
)2 2 1 0

1 2 0
0 0 1/2

 , (16)

where the weight wTe adjusts the temporal-coherence
stiffness of cell e, and Be is a 3× 8 constant matrix

Be =

 u1 0 u2 0 u3 0 u4 0
0 v1 0 v2 0 v3 0 v4
v1 u1 v2 u2 v3 u3 v4 u4

 . (17)

The above matrix entries are defined as(
u1 u2 u3 u4
v1 v2 v3 v4

)
=

1

4
J−1e

(
1 −1 −1 1
1 1 −1 −1

)
,

where Je is the 2× 2 matrix

Je =

(
1/4 −1/4 −1/4 1/4
1/4 1/4 −1/4 −1/4

)
xe1 ye1
xe2 ye2
xe3 ye3
xe4 ye4

 ,

determined by the nodal coordinates (xei , y
e
i ) i = 1, · · · , 4

of cell e in the previous frame.
This temporal coherence energy is a quadratic form in

the nodal displacements of the projection mesh for the
current frame. It can be intuitively viewed as a weighted
sum of squared nodal displacements, where the weights
appear in the form of the constant stiffness matrix Ke

which is determined by the mesh configuration in the
previous frame. Comparing to a direct sum of nodal
displacements (i.e. setting Ke = I), this definition is more
precise: the simpler measure cannot distinguish between
different deformations caused by grid nodes moving
along different directions but by the same distance.
In our limited experiments, we have found that the
Mahalanobis distance in Eqn. (15) consistently performs
better than an unweighted temporal term (i.e. Ke = I).

For the first frame, there is no previous frame, so we
simply set ET = 0.

5.7 Minimizing the Total Energy
Six quadratic energy functions have been defined above,
measuring different aspects of natural appearance of the
output video stream. We combine these to give the
overall objective function for fisheye video correction:

E =
∑
l∈VL

(
wLl
)2
El+EB +

∑
o∈VO

(
wOo
)2
Eo+ES +EH +ET ,

where VL denotes the complete set of straight features,
VO denotes the complete set of orientation features, the
weight wLl controls the impact of straight feature l, and
the weight wOo controls the impact of orientation feature
o. This is a quadratic form in the nodal coordinates of
the discretization mesh and the location parameters co
in the orientation energy Eo. The correction mapping
represented by the discretization mesh on the image
plane is given by the global minimizer of E.

All correction criteria represented by the six energy
terms above must be carefully balanced using appropri-
ate weight factors (which have fixed values throughout
the video). The straight line factor wLl , the boundary
factor wBP and the orientation factor wOo mainly affect
the global appearance of the video, while the local
similarity factor wSij , the homogeneity factor wHij and the
temporal coherence factor wTe have more local effects.
As we aim to preserve straightness, the straight line
and orientation terms should be dominant in the total
energy, and we typically choose these weights as 100.
Local similarity and homogeneity control dispersion of
distortion throughout the image, and although we could
allow user control, in practice it is desirable to set these
proportional to the importance map W ∗i (see Eqn. (4)),
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multiplied by 1 and 10 respectively. To achieve a smooth
result over time, we find it is best to set the temporal
coherence weight to a fixed value of 15 in most cases.
The boundary weight is less important as it only affects
the overall shape of the corrected image, and we simply
set it to 1.

The overall quadratic objective function depends only
on the mesh transformations of a small window of
frames for each successive video frame, allowing our
approach to correct fisheye video in a streaming manner,
frame by frame (with reinitialization at scene changes).
Flickering and related artifacts commonly encountered
in video processing are avoided through three measures.
First, the user specified correction requirements are en-
forced on each frame, keeping shapes smooth. Secondly,
future saliency is taken into account by estimating the
temporal context using a window of k + 1 frames; the
resulting latency is unimportant. Thirdly, the addition
of the temporal coherence energy term allows the best
visual quality to be achieved as a balanced consensus.

The quadratic objective function E can be minimized
using a symmetric positive-definite linear system (i.e.
Ax = b 6= 0) by setting its derivatives to zero. As each
node is only directly linked to its neighboring nodes
in the formulation of E, a sparse linear system results.
The boundary condition in Eqn. (8) ensures uniqueness
of the solution. The major computational cost in our
approach to fisheye video correction is in solving this
linear system; standard linear solvers are used. Having
a closed-form solution, our least squares formulation is
extremely efficient: it avoids issues of slow convergence,
instability and local minima that can be encountered in
some nonlinear approaches using iterative solvers.

6 RESULTS AND DISCUSSION

We have tested our system with many examples, con-
firming the effectiveness of our method for transform-
ing fisheye videos into natural looking output streams.
Video clips taken with different types of fisheye lenses
were used in testing, with horizontal angles of view
ranging from 160◦ to 180◦, covering half of the entire
viewing sphere or just the central part of it. All input
videos contained severe barrel distortion, leading to vis-
ibly misshapen human faces and bent straight lines. For
single still images, we have verified that our algorithm
produces results comparable to state-of-the-art fisheye
image correction methods, while for video correction,
the new method is clearly superior to a naive extension
of existing image correction methods, in terms of both
visual quality and performance.

6.1 Image Correction Comparison
First, we compare our approach to still fisheye image
correction methods. Intuitively, one might expect that
corrected results should have the shape expected under
perspective projection, in which straight lines appear
naturally straight. However, the human visual system

tends to concentrate on the central part of the scene, and
people rarely notice the fact that perspective projection
actually leads to extreme stretching when the visual
angle is large. Conformal spherical projections often
trade off different types of distortion, and are suitable
when it is desirable to preserve small objects (e.g. human
faces) in a large scene, so we also make a comparison
with Mercator and stereographic projections.

Fig. 6 shows an example comparing our results with
those of various other still fisheye distortion correction
methods. Global projections do not give a satisfactory
effect. In conformal projections, small faces are preserved
well, but it is clear that neither projection completely
removes distortion. Mercator projection corrects vertical
lines well, but fails on horizontal lines lying across the
visual field. Stereographic projection trades off differ-
ent types of distortion, and works best for scene lines
crossing the optical axis of the lens. Carroll’s content-
preserving projection is perhaps the best for still fish-
eye photo correction, but the results appear stretched
near the poles, distorting objects nearby. This artifact is
partially caused by the lack of direction protection for
image boundaries, and partially by the lack of control
of line scaling during straight line correction. (For a fair
comparison we chose the same line marks as Carroll.)
Our result combines the advantages of these methods,
in general. By introducing a boundary energy term into
the quadratic objective function, the boundary shape is
protected by enforcing it to be a circle, as in stereographic
projection. Along straight features, the aspect ratios of
background objects are retained by using geometric in-
formation on the viewing sphere to determine the line
scaling, but the distorted lines and compressed poses are
corrected.

6.2 Video Examples

When performing fisheye video correction, we must
eliminate distortion while keeping fixed scene elements
(like background buildings) stable. It is clear that global
projection does not consider this problem. Our supple-
mental video shows that our method is able to produce
coherent and visually pleasant video output streams. A
number of examples of correcting fisheye video frames
in different situations are provided, including a video
with a fixed background and moving objects, and oth-
ers with moving cameras and both fixed and moving
content. We compare our results with perspective pro-
jection, Zorin’s one parameter correction [7], and a naive
extension of Carroll’s non-linear optimization image cor-
rection approach [3], where the video stream is corrected
frame by frame with the same user annotations as those
in the new method. The tuning parameters and weights
required in [7] and [3] were manually adjusted to give
the best results. In addition, for a fair comparison, we
excluded specific saliency measurements like face and
object detection to allow the comparison to be performed
on a common basis.
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Input with 16 lines Perspective Mercator Stereographic Carroll’09 Our method

Fig. 6. Output of various still fisheye photograph correction methods.

Input video with
7 line constraints

Perspective

Zorin

Carroll

Our method

Frame 663 Frame 792 Frame 935

Uncropped

Perspective Zorin Carroll Our method

Fig. 7. Output of various fisheye video correction approaches (horizontal angle of view: 160◦).

Fig. 7 shows three video frames generated by each
of these methods (also see our accompanying video).
For perspective projection, the stretch distortion changes
dramatically when the object or camera moves, making
the output hard to watch and difficult to follow. Zorin’s

method trades off different types of cartographic projec-
tion, but due to its global nature, distortions still remain.
The naive extension of Carroll’s method produces visu-
ally acceptable results for most individual frames, but
when played back as a video stream, severe flickering
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Metro, 16 line constraints Without orientation constraints With orientation constraints

Fig. 8. Effectiveness of orientation constraints (horizontal angle of view: 160◦).

3 lines 8 lines 18 lines

Fig. 9. An example of interactive fisheye video correction. Global visual quality is determined by three crucial
orientation constraints, while details are refined by adding further minor constraints (horizontal angle of view: 180◦).

artifacts occur due to lack of spatio-temporal coherence.
In the naive extension of Carroll’s method, objects distort
when many straight constraints are close to each other,
a phenomenon which does not occur in our approach.
Further results in the supplemental video demonstrate
the effectiveness of our spatio-temporal coherence en-
ergy terms.

The example in Fig. 8 (also see the supplemental
video) further shows the flexibility of our algorithm in
allowing control over the overall effects in the corrected
video, by specifying fixed orientations for lines. This
helps to produce stable results as perceived by human
vision. This is particularly helpful when the horizon is
a major feature in the scene.

6.3 Performance and Usability

We tested our algorithm on a PC with an Intel 2.5Ghz
Core 2 Duo CPU and 2GB memory. The algorithm speed

depends mainly on the mesh density. In all cases shown
in this paper, fisheye video frames were mapped onto the
front half of the viewing sphere, divided into a spherical
mesh with 181 by 181 (about 32700) vertices. To assess
the performance of our method, it was compared with
the naive extension of Carroll’s method [3], in which
frame optimizations are solved using a linearized two-
step iteration scheme. On this PC platform, our approach
supports interactive video processing, with a runtime of
around 0.42s per frame. The naive extension of Carroll’s
method can sometimes produce visually comparable re-
sults for individual frames after 2–3 iterations, but takes
on average 8–10 two-step iterations for the optimization
procedure to converge; a single iteration step usually
costs more than 1s, giving an average time per frame
of over 12s. The computational cost of Carroll’s method
varies linearly with the number of iterations, while our
new approach is faster and takes a constant time (due to
its closed form solution). As video correction algorithms
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Fig. 10. An unsuccessful case in which a large circular
structure remains distorted; note that several straight line
constraints pass through the circle.

must work with frames having significantly different
contents and constraints, a fixed and predictable high
performance is a desirable property, especially in an
interactive scenario. We believe that our method could
provide real-time performance using GPU acceleration,
but this is beyond the scope of the present work and is
left for future investigation.

Our fisheye video correction system is easy to use
for novice users. As shown in Fig. 9, global visual
quality is determined by a few dominant straight-line
and orientation constraints, and the influence of minor
line constraints is more local yet still intuitive. In our
investigation, new users (graduate students in computer
science without a particular background in image edit-
ing) were almost immediately able to produce acceptable
results by following a few simple rules to ensure that
dominant line and orientation constraints do not conflict.
After a simple introduction from the authors and a short
self-training session (20–30 minutes), novice users were
able to obtain good results for many new video clips
using only a few trial runs.

6.4 Limitations
Our method has some minor limitations which we now
discuss. As we correct distortion by warping a spherical
mesh with user specified constraints, a sufficiently large
mesh must be used to allow user constraints to be
satisfied. Typically 40 constraints can be met with a
181 by 181 vertex mesh. Increasing the mesh resolution
will provide more freedom for distortion correction and
consequently allow more line constraints in the image,
but a larger linear system results, requiring an increased
solution time. Once the mesh resolution is sufficient
for correcting the distortion marked by line constraints,
further increases in mesh density provide little extra
benefit in terms of visual quality.

We explicitly try to prevent global straight line distor-
tion in the output (i.e. to ensure that straight lines are
straight), but there is no guarantee that distortion will
not noticeably affect other simple shapes covering large
areas of the scene (see e.g. the funfair wheel in Fig. 10).

Our algorithm also relies on successful video feature
tracking. Current video tracking algorithms tend to fail
when processing video with significant discontinuities
caused by occlusion, and objects leaving or entering the
scene, so manual adjustments are inevitably needed.

While boundary consistency is ensured in the cor-
rected video stream, the frame boundaries often appear
as irregular shapes as a result of ensuring the best visual
quality for salient video content (see e.g. Fig. 7). We
could additionally use video completion methods to
present a rectangular video, but for simplicity we just
let users crop a rectangular region manually.

Our correction algorithm also assumes knowledge of
the lens projection (or that it can be estimated by fitting
a pre-existing camera model).

7 CONCLUSIONS AND FUTURE WORK

We have presented a novel approach to constructing
optimized transformations which turn distorted fisheye
video into a natural-looking sequence. Our method pro-
vides an effective and efficient approach to eliminate
distortion from a continuous video clip. Our method
preserves salient objects and straight features in a spatia-
temporally coherent manner, leading to natural looking
output video which is easy to watch.

The energy terms defined in our system could also be
used in other applications such as image resizing and
camera calibration. A possible extension of our work
is to perform explicit foreground-background segmen-
tation, to separate salient objects from possibly highly
detailed but unimportant background. Finally, a more
sophisticated saliency detection strategy, and automatic
line detection, could improve the overall visual effects
while minimizing the user interaction required.
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