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Abstract We propose a novel method that automatically analyzes stroke-related artistic styles of paintings. A set of

adaptive interfaces are also developed to connect the style analysis with existing painterly rendering systems, so that the
specific artistic style of a template painting can be effectively transferred to the input photo with minimal effort. Different
from conventional texture-synthesis based rendering techniques that focus mainly on texture features, this work extracts,
analyzes and simulates high-level style features expressed by artists’ brush stroke techniques. Through experiments, user
studies and comparisons with ground truth, we demonstrate that the proposed style-orientated painting framework can
significantly reduce tedious parameter adjustment, and it allows amateur users to efficiently create desired artistic styles

simply by specifying a template painting.
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1 Introduction

Painterly rendering techniques automatically create
painting-like images and video frames from real pho-
tos and videos, and the artistic style of painting re-
sults can be adjusted by some parameters. In order
to reduce tedious adjustment of puzzling parameters,
texture-synthesis based painting techniques have been
developed[1-3], where a template painting is employed
to indicate the desired visual effect, and by using some
texture synthesis techniques, the result image is ren-
dered to simulate the texture features of the template.

However, comparing with real paintings of different
artistic styles, it is clear that defining various painting
effects through texture features has some serious limi-
tations: 1) It is difficult, if not impossible, to describe
the visual styles for paintings without significant tex-
ture features; 2) The flexible brush stroke techniques
cannot be well represented and as a result, the rendered
results often appear to be mechanical; 3) It cannot de-
scribe the uniform artistic style reflected in different
paintings that contain totally different texture features
(e.g., the representative artistic style associated with
the same artist and during the same period).

Artistic styles of many paintings are determined by
artists’ specific brush stroke techniques. For exam-
ple, fine brush strokes are used in realist paintings to
depict the detailed reality in a “true-to-life” manner,
while large visible brush strokes are used in impres-
sionist paintings to emphasize the composition, move-
ment of objects, and light contrast. To simulate this,
stroke-based painterly rendering is controlled by a set
of parameters related to stroke properties such as size,
color, distribution and orientation. With the deve-
lopment of painterly rendering techniques, more paint-
ing parameters are included in these more and more
complicated rendering frameworks, making it difficult
for amateur users to obtain desired results without
many trials. However, partially due to the difficulty of
brush-stroke detection in real paintings, there has been
little progress in automatic style analysis and style-
orientated painterly rendering.

In this work, an automatic brush-stroke analysis
technique is proposed and the style analysis results
are converted to painting parameters in a stroke-based
painterly rendering system. It must be admitted that
there are much more other style features rather than
just stroke properties, but for many paintings stroke
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properties are a big aspect. Hence in this paper we
focus on the simulation of high-level style features de-
termined by stroke properties, and it could be a part of
any system which would achieve complete style transfer
in the future.

2 Related Work

Stroke-based painterly rendering techniques[4-10]

produce painting-like results from an input image or
video. In these systems, the painting process is largely
controlled with a set of parameters related to stroke
properties. By exploiting temporal coherence in video
clips, Litwinowicz[4] designed an automatic filter to pro-
duce impressionist animations in a hand-drawing style.
Hertzmann[5] improved this work by proposing a multi-
level stroke distribution strategy and a curved stroke
model, in which the strokes are fitted with a set of con-
trol points, and the painting style can be adjusted by
some experimental parameters. Hays and Essa[6] pro-
posed an RBF-interpolation based technique to com-
pute the stroke orientation and produced impressive
painting results. Kagaya et al.[7] focused mainly on
video, and expressed the result in multiple styles by
using a segmentation-based rendering technique with a
new stroke assignment strategy. In order to preserve
temporal coherence, Huang et al.[8] proposed a video-
layering based painterly rendering technique, which re-
duces the flickering artifacts considerably. Taking into
account the object movement in video clips, Lee et al.[9]

proposed a novel technique to compute the stroke orien-
tation field for an input video sequence. Recently, Zeng
et al.[10] presented a new rendering framework based on
a hierarchical parsing tree to describe the semantic in-
formation of an image, and their approach can provide
lifelike results in oil-painting style. The aforementioned
methods focus mainly on the rendering side and pay
little attention to style analysis. As a result, the style-
related painting parameters need to be set manually,
which may be confusing for amateur users.

To reduce the labor of parameter adjustments,
example-based painting techniques[1-3] were proposed
to produce results that have features similar to those
of given templates. By learning the relationship of a
pair of images A and A′, Hertzmann et al.[1] proposed
a method to synthesize the result B′ based on the in-
put B. Wang et al.[2] proposed a patch-based texture
synthesis technique to speed up the style learning pro-
cess, where only one input template is needed. Lee
et al.[3] added into the traditional fast texture trans-
fer algorithm a new energy term related to the gradi-
ent direction, and the new method can produce results
with the reference template’s texture features while pre-
serving the orientation field of the input image. These

studies treat artistic styles as some low-level texture
features. However, artistic styles are essentially deter-
mined by painting techniques. Defining it with content-
dependent texture features is indirect and as discussed
earlier, has some serious limitations. Therefore, in this
paper, we focus mainly on analyzing and learning some
high-level style features determined by artists’ brush
stroke techniques.

This work is also related to automatic artist
identification[11-13]. Lyu et al.[11] built a statistical
model of an artist from some high-resolution paint-
ing scans, where wavelet statistics are used for iden-
tification of new paintings. Li and Wang[12] proposed a
two-dimensional (2D) multi-resolution hidden Markov
model for Chinese paintings, and by taking the pyra-
mid of wavelet coefficients as features, they achieved an
average identification accuracy of about 70%. Yeliza-
veta et al.[13] proposed a semi-supervised approach for
the annotation of brushwork in paintings, which can be
helpful for the annotation of the painter and the paint-
ing period, etc. These studies focus mainly on artist
identification, but some of the tools and concepts are
also relevant to our work.

3 Overview

Fig.1 shows some real paintings with different artis-
tic styles. Inspired by these artistic paintings and some
previous work[5,13-15] it can be implied that many artis-
tic styles can be well represented by stroke-related pro-
perties, such as stroke visibility, size, orientation and
its intrinsic texture (which often arises from the light-
ing effect of the pigment). In this work, four stroke
properties including stroke visibility, stroke size (includ-
ing the length and width), stroke orientation and stroke
texture are chosen to form the style space Γ. These fea-
tures are selected because they are the most frequently
used and the most influencing stroke properties in some
latest painterly rendering frameworks (e.g., [6] and [7]).
In fact, it is also noticed that other features such as
shape and color exaggerations are also significant for
artistic styles, while in this work we focus mainly on
strokes, the basic unit in painting, and leave other in-
teresting features for further research.

The framework of our style-orientated painting sys-
tem is shown in Fig.2. Given a style template, its brush
strokes are automatically extracted using a novel detec-
tion technique, which sequentially enables the construc-
tion of a stroke confidence map. Based on this map and
the stroke area it indicates, some analysis specific to the
style space Γ is performed to automatically initialize the
painting parameters for the target image. The details
of the new style-analysis based painting technique are
explained in the following sections.
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Fig.1. Paintings of different artistic styles. (a) A typical impres-

sionist painting. (b) Painted by Van Gogh and also belonging to

impressionism. (c) Painted by Seurat and belonging to pointil-

lism. (d) A typical realist painting. (e) Another impressionist

painting with a different style of stroke texture.

4 Stroke Analysis

Brush strokes in a painting always overlap and cross
with each other, making it difficult to extract and ana-
lyze stroke features. For artist identification[11,13,16-17],
stroke patches are often extracted manually. In this
work, in order to facilitate amateur users and minimize
the tedious labor in producing desired painting effects,
we propose a novel and fully automatic method to de-
tect stroke features in real paintings. The outcome of
the automatic stroke detection is a gray map termed
stroke confidence map, in which the value of each pixel
denotes the confidence level for the pixel to lie in an
area with clear stroke features (e.g., the circled areas
in Figs. 1 (a), 1(b) and 1(e)). This map, which indi-
cates the visibility and distribution of brush strokes in
a painting, is then used as the major reference for fur-
ther analysis of stroke-related artistic styles.

4.1 Criteria for Stroke Identification

As shown in Fig.1, the strokes in some paintings are
more visible than others, and even in the same paint-
ing, the expression of strokes can differ from place to
place. However, it is observed in all these paintings
that the visible strokes always appear as some texture
areas distinguishing themselves from other significant
contours. It is also observed that in local areas contain-
ing strong stroke characteristics, the stroke-like line seg-
ments gather together roughly aligned. Based on these
observations, the basic criteria for stroke identification
can be summarized as:

1) Stroke features always appear in some texture ar-
eas.

2) Stroke features have fine local structures with
clear directionality.

4.2 Stroke Detection

To transform the intuitive stroke detection criteria
discussed above into mathematical models, we analyze
the Gabor responses of the template painting. The Ga-
bor filter[18] has been widely used in the representation
of texture features[19-21], and the 2D case is defined by
Daugman[22] as:

gλ,θ,σ,φ(s, t) = e
−(

s′2

σ2
s

+ t
′2

σ2
t

)
cos

(s′

λ
+ φ

)
, (1)

where s′ = s cos θ + t sin θ and t′ = s sin θ + t cos θ. The
filter response of a signal f can be written as:

Rλ,θ,σ,φ(x, y) =

∫∫

W

f(x−s, y−t)gλ,θ,σ,φ(s, t) ds dt, (2)

where W denotes the filter window, λ is the preferred
spatial-frequency, θ is the normal orientation of the Ga-

Fig.2. Algorithm framework of our style-orientated painting system.
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bor function, σs and σt are parameters of Gaussian en-
velop, and φ is the phase offset defining the real (φ = 0)
and imaginary (φ = π

2 ) parts of the filter response.
More details of Gabor filter can be found in [23].

The new stroke detection algorithm operates in two
steps corresponding to the two detection criteria de-
scribed in Subsection 4.1 respectively:

1) A multi-frequency feature analysis is performed
to extract texture areas and remove significant seman-
tic contours (as shown in Fig.3(d)) from the template
painting.

Fig.3. Superposition Gabor-energy responses at different spa-

tial frequencies. (a) Template painting. (b)∼(d) Superposition

Gabor-energy responses for λ =
√

2, λ = 4
√

2 and λ = 7
√

2,

respectively.

2) Through a multi-orientation feature analysis,
stroke features with clear directionality are extracted
from the remaining texture areas and form a stroke con-
fidence map which indicates the confidence of a pixel
belongs to stroke area.

Multi-Frequency Feature Analysis. For each pixel in
the template painting, the Gabor-energy is defined as:

eλ,θ(x, y) =
√

Rλ,θ,1,0(x, y)2 + R
λ,θ,1,

π
2
(x, y)2, (3)

where a circular Gaussian enveloped with σs = σt = 1
is adopted in all our experiments. The superposition
response at each pixel represents the dominant Gabor-
energy among all directions, and it is numerically de-
fined as:

eλ(x, y) = eλ,θmax
(x, y) + eλ,θmax−1

(x, y)+

eλ,θmax+1
(x, y), (4)

where θi = iπ
8 for i = 0, . . . , 7, the subscript max cor-

responds to the discretized orientation with the maxi-
mum Gabor-energy, and the subscripts max − 1 and
max + 1 indicate the neighboring orientations. In
(4), the Gabor-energies of each pixel are computed for

eight discretized orientations iπ
8 , and adding together

the maximum energy response and the neighboring re-
sponses ensures a good capture of the dominant Gabor-
energy that can occur at any direction in the continuous
range θ ∈ [0, π).

In our implementation, the superposition responses
eλ(x, y) are calculated for seven different spatial fre-
quencies λi = i

√
2, i = 1, . . . , 7, and these pixel-wise re-

sponses are re-scaled to [0, 255] across the image. Fig.3
shows an example of the superposition Gabor-energy
responses for different spatial frequencies. The results
are consistent with the perception of human eyes: peo-
ple can see clearly the small-scale details of a compli-
cated object when they are sufficiently close to the tar-
get; and as they move away from the object, the texture
details start to blur and disappear in the view, leav-
ing only an outline shape (as demonstrated in [18]). It
means that with the increase of spatial frequencies, Ga-
bor responses in the texture-like and the contour-like
areas vary differently. In texture areas, the response
decreases as the scale increases, but for contours, the
response always increases or stays roughly unchanged.
In addition, it is observed in the superposition response
of any fixed frequency that the spatial correlation is
also important, i.e., the neighborhood of a texture/non-
texture pixel is more likely to be part of a texture/non-
texture feature.

Based on the above observations, the texture map
M(x, y) of a template painting T can be determined
as:

M(x, y) =
∑6

i=1
Mi(x, y)μ(Mi), (5)

where Mi(x, y) is the initial estimation of texture areas
at the scale λi, and μ(Mi) is the adjustment term due
to spatial correlation. Specifically, the texture areas at
different scales are calculated by comparing the differ-
ence between superposition Gabor-energy responses at
neighboring scales, i.e.,

Mi(x, y) = (eλi
− eλi+1

)sign(eλi
− eλi+1

), (6)

where sign(z) denotes the sign function that equals 1
if z > 0 and equals 0 if z � 0. The spatial correlation
adjustment is calculated by counting the texture-map
responses in the neighborhood of each pixel, i.e.,

μ(Mi) =
∑

(x′,y′)∈Ω
Mi(x

′, y′), (7)

where Ω denotes the neighborhood of the pixel p(x, y).
The radius of the neighborhood Ω is set to 2 in all our
experiments.

Multi-Orientation Feature Analysis. The pixel value
of the texture map M(x, y) (calculated by (5)) indicates
the likelihood of the pixel p(x, y) to be part of a texture
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feature. Taking M(x, y) as the input and fixing the spa-
tial frequency at the smallest scale λ =

√
2, we compute

the Gabor-energy responses of the texture map for eight
different orientations, denoted by Eθi

(x, y) for θi = iπ
8

and i = 0, . . . , 7. This is done in a way similar to (3).
Stroke features have clear directionality, and can be

approximately detected by comparing the deviation of
Gabor-energy responses Eθi

(x, y) for different orienta-
tions. Specifically, we define the directionality map as

MD(x, y) =
Eθmax

+ Eθmax−1
+ Eθmax+1

− Ēθ

Eθmax
+ Eθmax−1

+ Eθmax+1

, (8)

where Eθmax
denotes the maximum Gabor-energy

among eight orientations θi = iπ
8 for i = 0, . . . , 7,

θmax−1 and θmax+1 denote the neighboring orientations
of θmax , and Ēθ is the average Gabor-energy of Eθi

(x, y)
without contributions from the orientation θmax or its
immediate neighbors (i.e., θmax−1 and θmax+1). The
directionality map MD(x, y) examines the orientation-
wise variation of Gabor-energy responses, and it is clear
that MD(x, y) takes values in [0, 1]. For a fixed pixel
p(x, y), a larger value of MD(x, y) indicates the Gabor-
energy of the texture map has a more dominant direc-
tion, and consequently the pixel p(x, y) is more likely to
be on a stroke feature; a smaller value of MD(x, y) indi-
cates the Gabor-energy of the texture map has weaker
directionality, and hence the pixel p(x, y) is less likely
to be part of a stroke feature.

Similar to the texture map defined in (5), the neigh-
borhood of a stroke/non-stroke pixel is more likely to be
part of a stroke/non-stroke feature. Thus, we compute
the stroke confidence map as

S(x, y) = MD(x, y)μ(MD), (9)

where μ(MD) is the adjustment term due to spatial cor-
relation, and it is calculated in a way similar to (7). The
stroke confidence map S(x, y) represents the visibility
and distribution of brush strokes in the given template
painting, and the value of each pixel p(x, y) indicates
the confidence level of the pixel to be part of a stroke
feature.

An example of the stroke detection process is shown
in Fig.4. Fig.4(a) is the input style template, Fig.4(b)
is the superposition Gabor-energy response correspond-
ing to frequency λ =

√
2, Fig.4(c) is the texture map

obtained from the multi-frequency feature analysis,
Fig.4(d) is the stroke confidence map obtained from the
multi-orientation feature analysis, and Fig.4(e) visual-
izes stroke distribution on the original template paint-
ing (using bright red color).

5 Stroke-Based Style Analysis and Rendering

The stroke confidence map provides the reference
ground for further analysis of stroke-related style fea-
tures, and based on the rendering framework of our pre-
vious work[8,24], we develop some adaptive interfaces to
automatically connect the style statistics described in
Section 5 with the painting parameters for the render-
ing of different artistic styles.

Stroke Visibility. As shown in Fig.1, brush strokes
in Fig.1(d) are almost invisible on the canvas which
is significantly different from the other figures. So for
a template painting T whose stroke confidence map is
S(x, y), the average intensity S̄(T ) of the map S(x, y)
is designed to measure stroke visibility, which distin-
guishes realism from other artistic styles painted with
expressive brush strokes. For realist paintings, the ave-
rage intensity S̄(T ) will be very small.

On the rendering side, we employ a color blending
model[25]. The main idea of this model is to define the
color C(x, y) of a pixel p(x, y) in the canvas by both its
current color Cc(x, y) and the stroke color Cs, depend-
ing on which color looks closer to the reference color
Cr(x, y) in the reference image. That is:

C(x, y) = (1 − W ) × Cc(x, y) + W × Cs. (10)

The weight W in the above equation is

{
(1 − α)Gσ(|dc(p) − ds(p)|), if dc(p) � ds(p),

1 − (1 − α)Gσ(|dc(p) − ds(p)|), if dc(p) > ds(p).
(11)

Fig.4. Stroke detection process. (a) Input template painting. (b) Superposition Gabor-energy response with λ =
√

2. (c) Texture map

detected from the multi-frequency feature analysis. (d) Stroke confidence map obtained from the multi-orientation feature analysis.

(e) Visualization of strokes on the original painting.
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where dc(x, y) is the difference between Cc(x, y) and
Cr(x, y), and ds(x, y) is the difference between Cs and
Cr(x, y). Function Gσ ∈ (0, 1] is the normalized Gaus-
sian function with mean 0 and standard deviation σ.
The parameter α controls the accuracy of the painting
result, and a larger/smaller value of α gives a more/less
realistic result.

Then to transform the stroke visibility feature to
the rendering framework, the average intensity S̄(T )
of the template painting T is connected to the paint-
ing parameter α in two operational modes: the hard
mode and the soft mode. The hard mode aims to find
an empirical threshold for S̄(T ), distinguishing realism
and other artistic styles with expressive brush strokes.
The critical threshold is determined by using an SVM-
based classification algorithm[26]. In our experiments,
30 training samples consisting of 15 realist paintings
and 15 non-realist paintings are used to determine the
critical value for the average stroke intensity, and about
50 test samples are used to verify the method, from
which we find that the typical threshold for S̄(T ) is 3.54
and the recognition accuracy is about 82%. However,
the consequence of potential failure of this hard mode
can be severe, because once the template is misrecog-
nized the painting result will appear in a completely
different style. Therefore, a soft mode is also designed
for critical cases, and it is expressed by a Hyperbdic
Tangent function as α = 1 − tanh(φ × S̄(T )), where
φ is a tuning factor set to 0.2 in our implementation.
All experiments in this paper are performed in the hard
mode because it produces better results when the paint-
ing style of the template has been correctly recognized.

Stroke Size. Stroke size is another important factor
greatly affecting paintings’ artistic styles. Based on the
stroke confidence map, we design a statistical character
that is related to stroke size. Figs. 5(a) and 5(c) show
the stroke confidence maps computed from two tem-
plate paintings in Fig.4(a) and Fig.1(a), respectively.
For Fig.4(a) whose stroke size is relatively small, the
corresponding stroke confidence map in Fig.5(a) tends
to be discrete and dispersive; and for Fig.1(a) whose
stroke size is larger, the corresponding confidence map
in Fig.5(c) presents a more continuous pattern with a
larger area. Based on this observation, we use the con-
nectivity (which is denoted as L(T )) of the stroke map
S(x, y) as an indicator for stroke size. First, stroke fea-
tures in a stroke confidence map are clustered automati-
cally using the mean shift algorithm[27]. To obtain bet-
ter results, a binarization processing is applied before
clustering, for which we employ a moment-preserving
method[28] to automatically determine the threshold.
This scheme selects an optimal threshold such that the
resulting binary image preserves the first three mo-

ments of the input image. Corresponding to the stroke
confidence maps in Figs. 5(a) and 5(c), the clustering
results are shown in Figs. 5(b) and 5(d), respectively.
Then, the connectivity L(T ) is measured by the ave-
rage area of each individual cluster, as indicated by the
color patches in Figs. 5(b) and 5(d). It is also noticed
that the image size may affect the connectivity mea-
surement to some degree, so the template image needs
to be processed in a similar size.

Fig.5. Stroke size analysis. (a) Stroke confidence map of Fig.4(a).

(b) Clustering result of (a). (c) Stroke confidence map of Fig.1(a).

(d) Clustering result of (c).

Then in the painting system[24], different areas in the
canvas are rendered with different stroke sizes, depend-
ing on the levels of details of the target image. Hence,
we link the connectivity L(T ) to the largest stroke size,
which is then used to proportionally determine the sizes
of smaller strokes. For the largest stroke, its size l is
computed as

l =
L(T ) − Lmin

Lmax − Lmin
× (lmax − lmin), (12)

where Lmin and Lmax denote the empirical range of
L(T ) with typical values of Lmin = 10 and Lmax = 470,
and lmin and lmax denote the usual range of stroke sizes
in the painting system with typical values of lmin = 1
and lmax = 40. It is observed in our experiments that
the results will be rendered into a pointillism style if
the value of l is less than 3. Therefore, the stroke size l
is taken as the main reference to recognize such style.

Stroke Orientation. Stroke orientation also has a
large impact on the artistic styles of many paintings.
However, finding a comprehensive representation for
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stroke-orientation style can be very challenging because
both the image content and the painter’s techniques
have strong and complicated influences on the stroke
distribution. In this paper, we focus on a small but sig-
nal aspect of the stroke orientation, where variance of
the stroke orientation field is measured, and such fea-
ture is then used as a simple indicator for the level of
disorder of stroke orientation.

First the mean shift segmentation[27] is applied to
the template painting T at a large scale to obtain
a macroscopical representation T =

∑N

k=1 Tk of the
whole image. Then, for each sub-image Tk, the stroke
orientation field Θk is calculated from the correspond-
ing part on the stroke confidence map. Specifically,
for each stroke pixel indicated on the stroke confi-
dence map, its orientation corresponds to the maxi-
mum Gabor-energy response (3) among eight directions
θi = iπ

8 , i = 0, . . . , 7, with the spatial frequency set to

the finest resolution λ =
√

2. Next, to reduce the noise
from the Gabor-energy responses, the stroke orienta-
tion field Θk is locally averaged in a circular window
(the radius is set to 20 in all our experiments) to form
an averaged field Θ̄k. Finally, for the whole template
painting, the variance of the stroke orientation field is
determined as

V (T ) =

∑N

k=1 Ak × Var(Θ̄k)∑N

k=1 Ak

, (13)

where N is the total number of sub-images obtained
from the image segmentation, Ak is the area of the
sub-image Tk, Var(Θ̄k) is the variance of the locally
averaged stroke orientation field Θ̄k for the sub-image
Tk.

To express the stroke orientation with different de-
grees of exaggeration, we introduce a set of “style
points” whose orientations are influenced by the sur-
rounding feature points and the disorder level of the
template painting. The stroke orientation field is then
interpolated using both feature and style points. The
orientations of style points are computed as:

Os(x, y) = γ × Of (x′, y′) + (1 − γ) × O0
s(x, y), (14)

where Os(x, y) denotes the orientation of a style point
p(x, y), Of (x′, y′) the orientation of the “nearest” fea-
ture point p(x′, y′), O0

s(x, y) the initial orientation of
the style point which is determined by RBF interpola-
tion of feature points, and γ ∈ [0, 1] the weight factor.
Increasing the weight factor γ makes the stroke orien-
tation field more chaotic in the painting process. To
control the orientation exaggeration, we set the weight
factor γ according to the disorder level of the template

painting which is described by:

γ(x, y) = tanh
(
ϕ × G(x′, y′) × V (T )

‖p(x, y), p(x′, y′)‖
)
, (15)

where G(x′, y′) is the gradient magnitude (calculated
using the Sobel operator) of the nearest feature point
p(x′, y′), V (T ) the variance of stroke orientation in the
template painting, ‖p(x, y), p(x′, y′)‖ the distance be-
tween the style point p(x, y) and the nearest feature
point p(x′, y′), and ϕ is a tuning factor controlling the
changing rate between the orientation fields of different
styles with typical values ϕ ∈ [8.0, 15.0].

Stroke Texture. Artistic styles of real paintings
are also represented by stroke texture, as shown in
Figs. 6(a) and 6(d). Visual effects of stroke texture are
mainly observed in two aspects: 1) the texture variation
of individual strokes, which is significantly affected by
the choice of brushes and pigment materials; and 2) the
overlying effect between strokes, which is largely deter-
mined by different painting techniques. To extract in-
formation of stroke textures, we use empirical mode de-
composition (EMD)[29]. Compared with standard data
analysis tools such as Fourier and wavelet decompo-
sitions, the EMD technique decomposes the complex
signal into a small number of intrinsic mode functions
(IMFs), and for efficient implementation, we follow the
approach by Gao et al.[30].

Fig.6. Stroke texture analysis. (a) Template painting. (b) The

first IMF of (a). (c) The second IMF of (a). (d) Another tem-

plate painting. (e) The first IMF of (d). (f) The second IMF of

(d).

Specifically, the template painting is converted into
a gray image (we use the “L” channel extracted from
the Lab color space for easy implementing, and better
color to grayscale conversion techniques could be used),
which is then decomposed into two IMFs, as shown in
Fig.6. In terms of stroke features, the first IMF (IMF 1)
(Figs. 6(b) and 6(e)) extracts information at a smaller
scale, and both inner- and inter-stroke features can be



Yu Zang et al.: Stroke Style Analysis for Painterly Rendering 769

observed; the second IMF (IMF 2) (Figs. 6(c) and 6(f))
extracts information at a larger scale, and mainly re-
flects inter-stroke features.

Hence, for the painting template T with stroke con-
fidence map S(x, y), we define

F1(T ) =

∑
p(x,y)∈T1−T2

IMF 1(x, y)S(x, y)
∑

p(x,y)∈T1

IMF 1(x, y)S(x, y)
, (16)

to measure the visibility of inner-stroke textures, where
T1 and T2 denote the pixel sets in the first and the
second IMFs respectively whose intensity values are
greater than a given threshold. In (16), the stroke pix-
els are selected by filtering with the stroke map S(x, y),
and the stroke-boundary pixels are further removed by
taking the set difference between the visible pixel sets
T1 and T2. A higher value of F1(T ) indicates a more vi-
brant characteristic of bristle textures. The inter-stroke
features are measured by:

F2(T ) =

∑
p(x,y)∈T2

IMF 2(x, y)S(x, y)
∑

p(x,y)∈T2

S(x, y)
. (17)

A higher value of F2(T ) indicates a more distinguish-
able overlaying effect between strokes.

In rendering side, based on the painting framework
of Huang et al.[8,24], a set of nonuniform brush mod-
els are employed as shown in Fig.7, where each visible
pixel represents a bristle on the brush. The pixel inten-
sity indicates the contact status between the bristle and
the canvas, and white means completely touched while
black means completely separated. To reflect the tem-
plate painting’s inner-stroke texture features, we adjust
each nonuniform brush model B with a random pertur-
bation controlled by the F1(T ) factor, i.e.,

Ib(D) = Ib(D) + β × F1(T ), (18)

where Ib denotes the intensity of a bristle pixel, D ⊆ B
a randomly selected subset of the original brush model
B, and β ∈ [−255, 255] a perturbation number initial-
ized randomly for every stroke drawing. The size of the
subset D is also set proportionally to the F1(T ) factor

Fig.7. Nonuniform brush models.

such that the larger/smaller value of F1 is, the
more/less bristle pixels will be adjusted.

The overlaying effect between strokes is simulated by
a color adjustment scheme based on a height map. To
reflect the inter-stroke features of the template paint-
ing, we integrate the F2(T ) factor into this color ad-
justment scheme. Specifically, the pixel intensity of the
painted result is adjusted as

Δh(x, y) = h(x + cos d, y + sin d) − h(x, y),

I ′(x, y) = I(x, y) + tanh(κ × F2(T )) × Δh(x, y)×
(min(I(x, y), 255 − I(x, y))/127.5), (19)

where d represents the direction perpendicular to the
stroke orientation O(x, y), i.e., d = O(x, y) + π/2, h
denotes the corresponding pixel intensity on the height
map, I(x, y) denotes the pixel intensity of the result
image, κ is a tuning parameter set as 0.16 in our ex-
periments, and I ′(x, y) the pixel intensity after adjust-
ment. Corresponding to larger/smaller value of F2(I),
the intensity adjustment in (19) makes the overlaying
effect between strokes more/less visible.

6 Experimental Results and Evaluation

A series of experiments, including parameters detec-
tion accuracy, painterly rendering tests, comparisons
and user studies, are implemented to demonstrate the
performance of the new style-oriented painterly render-
ing framework. All experiments in this paper are per-
formed on a PC with an Intel� 3.0GHz Dual Core CPU
and a GeForce 9600 GT video card. For an input image
with size 800 × 800, the analysis process takes about
8∼10 seconds and the painting process takes about 9
seconds.

Evaluation of Stroke-Based Style Analysis. The
artistic style of paintings is often a subjective con-
cept, depending on the artistic knowledge and prefer-
ence of the viewer. Hence, to evaluate the effectiveness
of the proposed stroke-based style analysis technique,
we carry out a user study with 20 art students who
do not have knowledge of computer painterly render-
ing. As shown in Figs. 8(a)∼8(o), a variety of painting
styles are used for testing and these templates are also
with different content, including realism, impression-
ism, pointillism, landscape, static objects and moving
scenes, etc. The automatic style analysis results, in-
cluding stroke visibility S̄(T ), stroke size L(T ), stroke
orientation V (T ) and stroke texture F1(T ) and F2(T ),
are listed in Table 1 as the first value in each table cell.
For each template painting, the participant viewers are
asked to mark within [1, 10] for five stroke-related style
features, with a higher mark indicating clearer stroke
visibility, larger average stroke size, more disordered
stroke orientation, more varying brush textures and
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Fig.8. Stroke-based style analysis. (a)∼(o) are 15 style templates and (p)∼(s) are comparison results between the automatic style

analysis and the user evaluation.

Table 1. Comparison Between Our Stroke Detection Results and User Perception

Image T Stroke Visibility S̄(T ) Stroke Size L(T ) Stroke Orientation V (T ) Stroke Texture F1(T ) Stroke Texture F2(T )

a 11.33 (7.80/1.3) 116.48 (4.35/1.6) 0.77 (7.90/1.6) 0.33 (5.35/1.7) 17.03 (9.10/0.8)

b 12.84 (9.30/0.8) 138.92 (5.10/1.1) 0.71 (8.15/0.9) 0.38 (6.80/1.7) 18.87 (9.40/0.5)

c 8.07 (7.45/1.5) 208.75 (6.25/1.0) 0.39 (5.20/1.1) 0.27 (4.50/1.2) 13.15 (8.30/0.9)

d 7.01 (6.85/1.2) 365.88 (7.80/0.8) 0.17 (2.30/0.6) 0.64 (7.55/1.0) 9.89 (6.40/1.3)

e 19.48 (9.60/0.7) 467.88 (8.75/1.9) 0.10 (2.15/0.6) 0.53 (7.05/2.0) 16.17 (8.55/1.1)

f 2.71 (2.70/1.7) XX XX XX XX

g 2.32 (2.20/1.4) XX XX XX XX

h 6.63 (5.65/1.6) 31.33 (1.10/0.5) XX XX XX

i 7.83 (6.95/1.4) 27.58 (1.15/0.6) XX XX XX

j 5.88 (4.95/2.0) 288.71 (7.35/0.8) 0.10 (2.00/0.8) 0.41 (6.85/1.8) 4.41(4.15/1.9)

k 4.93 (3.10/0.7) 179.84 (6.05/1.2) 0.15 (2.40/0.7) 0.09 (2.30/1.6) 3.97 (3.20/1.0)

l 8.54 (7.95/1.3) 332.39 (8.05/1.1) 0.49 (5.85/1.6) 0.68 (7.10/0.9) 17.27 (9.30/0.8)

m 9.18 (7.50/1.7) 301.32 (7.10/1.7) 0.56 (6.35/1.3) 0.70 (7.40/1.1) 13.66 (7.95/1.4)

n 7.43 (6.30/1.1) 402.64 (8.35/1.3) 0.16 (2.45/1.0) 0.10 (2.45/1.3) 16.33 (8.55/1.0)

o 8.48 (7.10/1.4) 387.85 (8.15/1.2) 0.37 (4.85/1.2) 0.14 (2.80/1.4) 16.01 (8.10/0.6)

Note: The first value in each table cell: the automatic style analysis result; the first value in each pair of brackets: the
corresponding mean value of user evaluations; the second value in each pair of brackets: the standard deviation of user
evaluations. For features not relevant to specific template painting, the corresponding cells are filled with “XX”.
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more distinguishable individual strokes respectively.
The mean value and the standard deviation of the
user evaluation are listed in the corresponding ta-
ble cell, within the bracket. To give a clear compa-
rison, the automatic style analysis results are scaled to
[1, 10] and plotted together with the user evaluation in
Figs. 8(p)∼8(s). It can be seen that for all stroke-based
style features, the automatic style analysis is consistent
with the user evaluation.

Evaluation of the Whole System. The new method is
first applied to render different input images following
the same template (Fig.1(b)). The results are shown in
Fig.9, where Figs. 9(a)∼9(c) are different types of in-
puts, and Figs. 9(d)∼9(f) are corresponding rendering
results, and from which it can be viewed that the style
of a specific template can be transformed to different
images.

Fig.9. Same template emulated by different inputs, where

Fig.1(b) is selected as the template. (a)∼(c) Different input im-

ages. (d)∼(f) Corresponding rendering results.

Then the method is applied to render an im-
age following different style templates. As shown in
Figs. 10(a)∼10(g), seven template paintings are cho-
sen for the test. Fig.10(a) is a realist painting, whose
strokes are almost invisible. Fig.10(b) is painted by
Vincent Van Gogh, exhibiting a unique curly stroke
style. Fig.10(c) is a typical impressionist painting,
which uses bold and rough strokes emphasizing the
depth-field composition. Painted by Seurat, a rep-
resentative of pointillism, Fig.10(d) is created by us-
ing tiny dot strokes. The strokes in Fig.10(e) are
scraped after painting, so that the canvas appears clean
and neat. As a result of using dry pigments, strokes
in Fig.10(f) appear complicated and show an intense
stroke overlaying effect. Such overlaying effect is also
visible in Fig.10(g), in which individual strokes are
much smoother. Fig.10(h) is the input photo for ren-
dering, and to acquire high quality rendering results,
some abstraction[31-32] and colorization[33-34] studies
are involved as a pre-rendering processing, and the re-
sults are shown in Fig.10(i). The remaining images
Figs. 10(j)∼10(p) show painterly rendering results fol-
lowing the templates Figs. 10(a)∼10(g) respectively.

Verification of the Rendering Results. The painterly
rendering accuracy is examined by comparing the
automatically detected painting parameters with the
ground truth. The first part of Table 2 shows the
painting parameters and the corresponding style statis-
tics (in brackets), which are automatically obtained by
the style analysis algorithm according to the templates
in Figs. 10(a)∼10(g). For comparison, the stroke-based
style analysis is performed again on the rendered results

Table 2. Painting Parameters Recommended by Our System Compared with the Ground Truth

Images Stroke Visibility Stroke Size Stroke Orientation Stroke Texture Stroke Texture

α (S̄(T )) l(L(T )) V (T ) F1(T ) F2(T )

Template a 0.95 (2.32) XX XX XX XX

b 0.10 (12.84) 11 (138.92) 0.71 0.38 18.87

c 0.10 (7.01) 31 (365.88) 0.17 0.64 9.89

d 0.10 (6.63) 2 (31.33) XX XX XX

e 0.10 (5.88) 23 (288.71) 0.10 0.41 4.41

f 0.10 (8.54) 26 (332.39) 0.49 0.68 17.27

g 0.10 (7.43) 35 (402.64) 0.16 0.10 16.33

Results j 0.95 (2.43) XX XX XX XX

k 0.10 (12.18) 12 (159.65) 0.74 0.41 16.93

l 0.10 (6.72) 28 (349.23) 0.13 0.69 9.27

m 0.10 (6.88) 1 (25.25) XX XX XX

n 0.10 (5.21) 23 (286.33) 0.11 0.40 5.88

o 0.10 (8.93) 28 (348.97) 0.45 0.61 16.47

p 0.10 (5.98) 35 (397.69) 0.13 0.09 17.23

Average Error (Parameters) (%) 5.0 4.2 8.8 6.2 7.2

Average Error (Statistics) (%) 9.7 8.1 8.8 6.2 7.2

Note: Shown in the top part of the table are the painting parameters and style statistics obtained from the templates in
Figs. 10(a)∼10(g). Shown in the center part of the table are the painting parameters and style statistics obtained from the
rendered results in Figs. 10(j)∼10(p). Shown in the bottom part of the table are the average errors of painting parameters and
style statistics, which are calculated from an extended experiment using 20 test images. For statistics not relevant to specific
template painting, the corresponding cells are filled with “XX”.
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Fig.10. Experimental results. (a)∼(g) Style templates. (h) Input photo. (i) Intermediate result after pre-processing. (j)∼(p) Painting

results corresponding to the templates (a)∼(g).

in Figs. 10(i)∼10(o), and the automatically detected
painting parameters and style statistics are shown in
the second part of Table 2. It can be observed that
the recommended painting parameters and style statis-
tics from the templates are consistent with the detected
painting parameters and style statistics from the ren-
dered results. To confirm the accuracy, such experi-
ments are performed for another 20 images to test the
average error of our system. The relative errors of both
painting parameters and style statistics are shown in
the third part of Table 2, which are all under 10%.

To further verify whether the styles of the template
are correctly imitated, the structural similarity index
(SSIM)[35], a widely used method for measuring the
similarity between two images, along with a user eva-
luation is employed. For the SSIM investigation, we
convert both template paintings and rendered results
into gray images (the “L” channel extracted from the
Lab color space), and adjust their brightness and con-
trast to a similar level. Then, according to the stroke
confidence map of each template/result image, 2∼4
most visible stroke patches are selected from the ad-
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justed gray images for calculating SSIM indices. The
averaged SSIM indices are listed in Table 3, where the
first column shows the self-similarity between stroke
patches taken from the same template painting, and
columns 2∼7 show the similarity between each template
painting and each rendered result. It can be seen that
the SSIM index for self-similarity ranges in [0.23, 0.33],
and among all SSIM indices obtained between template
paintings and rendered results, the targeted template-
result pairs have the dominant SSIM values as shown in
the diagonal entries in the table. Taking the ratio be-
tween the SSIM index of the targeted template-result
pair and the self-similarity SSIM index of the corre-
sponding template, the relative similarity is computed
and listed in the last column of the table. It can be
seen that for all template paintings, the correspond-
ing rendered results have achieved a relative similarity
above 85%. This confirms that in terms of the struc-
tural similarity measure, the proposed style-oriented
painterly rendering framework can produce images in
similar stroke styles as indicated by template paintings.

An independent user evaluation is also performed to
check the effectiveness of the proposed style-oriented
painterly rendering framework. Two groups of rando-
mly ordered images, including 10 template paintings
and 10 rendered results correspondingly generated by
our system, are presented to 20 amateur users (10 males
and 10 females) who do not have specialized art knowle-

dge. Each participant is required to find a one-to-one
match between the template and result images, accord-
ing to their stroke-related artistic styles. Fig.11 shows
the matching statistics, with 176 successful matches
(88%) and 24 failed matches (12%). Although the
artistic style of paintings is a subjective concept, the
user evaluation confirms that the new style-oriented
painterly rendering system can successfully simulate the
stroke-related style features of many template paint-
ings.

Fig.11. Evaluation of the visual appearance — statistics of user

evaluations.

Comparison with Manually-Controlled Painterly Re-

ndering Approach. We also compare our work with
previous painterly rendering framework controlled by
user interaction. Fig.12(a) is the original input photo;
Figs. 12(b)∼12(e) are the multi-style painting results of
Hays[6], which are painted using a set of manually spec-
ified painting parameters; Figs. 12(f)∼12(j) show some
similar painting results automatically produced by our

Table 3. Evaluation of the Visual Appearance — SSIM Indices Between the Template Paintings and Rendered Results in Fig.10

Images Self-Similarity Similarity Between Template Paintings and Rendered Results Relative Similarity

(Template) Result k Result l Result m Result n Result o Result p (%)

b 0.2878 0.2453 0.1199 0.1721 0.1942 0.1737 0.1902 85.2

c 0.2367 0.1974 0.2439 0.1786 0.1772 0.1242 0.1916 103.0

d 0.2654 0.1608 0.1179 0.2258 0.1893 0.1789 0.1816 85.1

e 0.3267 0.1765 0.1375 0.2006 0.3184 0.2114 0.2001 97.5

f 0.2432 0.1391 0.1791 0.1564 0.1889 0.2238 0.1701 92.0

g 0.2887 0.1423 0.1232 0.1919 0.2410 0.1982 0.2662 90.8

Fig.12. Comparison with the painting results of Hays[6]. (a) Input image. (b)∼(e) Painting results of Hays[6] based on user-specified

painting parameters. (f)∼(j) Painting results of our method based on style templates.
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system based on style templates. For better compa-
rison, we select some typical stroke patch, and zoom
the gray version in top right corner (as highlighted in
the red box). From the comparison it can be observed
that our new method can produce a variety of painting
results with different stroke-based styles, and by speci-
fying the style template it avoids tedious adjustment of
tuning parameters.

7 Discussion of Failure Cases

Failures of our system can occur in two cases: 1) the
strokes in the template are heavily smeared; 2) when
the template painting contains a significant amount of
threadlike semantic structures, as the strokes may be
wrongly detected. The stroke detection results are not
tractable in these two cases, and the misrecognition is
particularly misleading for realist paintings. The first
case is easy to understand, and a failure example is pre-
sented specific to the second case. As shown in Fig.13,
the comb and the table top are misrecognized as stroke
features in the stroke confidence map. The misrecog-
nized stroke areas then give wrong style statistics, in-
dicating high stroke visibility, which is opposite to the
realist template. A practical way to overcome this prob-
lem is to mask the threadlike semantic content before
the automatic stroke detection.

Fig.13. Failed example.

8 Conclusions

This paper presented a novel method that automati-
cally extracts stroke features from paintings and ana-
lyze stroke-related artistic styles. The new style analy-
sis is compatible with existing stroke-based painterly
rendering algorithms, and can be readily connected to
standard painterly rendering platforms as a separate
module to automatically initialize stroke-related paint-
ing parameters. The effectiveness of the new system
was examined and verified through a number of exam-
ples, comparisons and user studies. The new style-
oriented painterly rendering framework supports the
simulation of a variety of stroke-related artistic styles,
and is not content-sensitive to the input photo or tem-
plate painting. Compared with previous user-controlled
painterly rendering approaches, the new method is

highly efficient and significantly reduces the need for
tedious parameter adjustment and trial paintings.

Style transfer by painting features is a challenging
problem because it is quite difficult to simulate profes-
sional painters’ skills. This work focuses mainly on the
stroke properties, and many of other aspects are left for
further research, such as the overall composition, exag-
gerated shapes, and the harmony and variety stroke
orientation. These aspects are equally important and
should be followed up in future research to fully achieve
style transfer.
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