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A robust and efficient algorithm is proposed to reconstruct two-phase composite materials with random
morphology, according to given samples or given statistical characteristics. The new method is based on
nonlinear transformation of Gaussian random fields, where the correlation of the underlying Gaussian
field is determined explicitly rather than through iterative methods. The reconstructed media can meet
the binary-valued marginal probability distribution function and the two point correlation function of the
reference media. The new method, whose main computation is completed using fast Fourier transform
(FFT), is highly efficient and particularly suitable for reconstructing large size random media or a large
number of samples. Its feasibility and performance are examined through a series of practical examples
with comparisons to other state-of-the-art methods in random media reconstruction.
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1. Introduction IðxÞ ¼
0; if the material at x is in black phase

�
: ð1Þ
Multi-phase random media such as rocks, concrete, alloy and
composite materials are ubiquitous in the natural environment
and engineering. Their mechanical, thermal and electrical etc.
properties exhibit a strong random nature with discontinuities
on the interfaces between different phases. The responses of mul-
ti-phase random media subjected to force, thermal or other type of
loading are often of great interest to engineers and researchers, and
such responses should be analyzed in the sense of statistics due to
the inherent heterogeneity. At present, Monte Carlo methods re-
main the most popular and versatile approach for simulating the
randomness of multi-phase random media and estimating their
stochastic responses. The effectiveness of Monte Carlo methods re-
lies largely on rapid reconstruction of large amounts of samples
that can accurately represent the diversity and variation of the
practical random media under simulation.

The main focus of this work is on the reconstruction of two-
phase composite materials with random morphology, based on
statistical characteristics derived from a few measured samples.
The proposed reconstruction method is general and applicable to
other types of random media as well, and instead of using the term
‘‘composite’’, we will use the general term ‘‘random media’’ for the
remainder of the paper.

For a two-phase (black & white) random medium D, the indicator
function I(x), "x 2 D is defined as
1; if the material at x is in white phase

Due to the random nature of phase distribution, the indicator func-
tion is often treated in the context of probability as a binary valued
random field, denoted by I(x, x) where x indicates a basic random
event.

In practice, the random field I(x, x) is often assumed to be sta-
tionary (also termed as statistically homogeneous in [1–3]) up to
the second order, so that its mean l and variance r2 are invariant
when shifted in space. In addition, the autocorrelation function be-
tween points x and x + s depends only on the relative position s of
the two points, i.e.

RIðsÞ ¼
E½ðIðx;xÞ � lÞðIðxþ s;xÞ � lÞ�

r2 ; 8x; ð2Þ

where E() is the expectation operator. The range of RI(s) is �1 6
RI(s) 6 1 (Schwarz inequality).

Another assumption of I(x, x) is ergodicity. That is, the ensem-
ble average of statistical parameters can be derived by the space
average of these parameters over a sufficiently large sample.

Given a few, or even only one, realizations of the random media,
the task of reconstruction is to extract statistical parameters (l, r2

and RI(s) etc.) regarding the random field I(x, x) and generate sam-
ples that obey the same statistics as the reference realizations.

2. Overview

2.1. Related work

Over the past few decades, random media reconstruction has
attracted growing attention from both academia and industry, in
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particular in the fields of composite materials, geostatistics and
computational mechanics. To date, there are four main categories
of reconstruction methods: the random set method, the stochastic
optimization method, the maximum entropy method and the iter-
ative nonlinear transformation method.

The random set method [4–6] is based on Boolean operations
(union, intersection, dilation, erosion, et al. [7]) of random sets.
This method is fast but it is limited to a few types of random
media with relatively simple morphology, e.g. composites with
sphere or polygon inclusions or Voronoi cell structure. For exam-
ple, if the inclusion phase is spheres, their centers can be gener-
ated following a Poisson distribution; the radius can be similarly
assumed to obey certain probability distribution; and adjacent
spheres need to be trimmed if they overlap. However, for com-
posites with complicated structures, e.g. amorphous phases, the
random set objects are difficult to locate and operate, leading to
deterioration in efficiency. In short, the random set method is fast
and effective for certain types of random media, but is not a uni-
versal method.

Yeong and Torquato [1,8] introduced a simulated annealing
method for generating digitalized random media realizations.
Given a scanned image of the target random medium, this method
starts from an initial configuration satisfying the volume fraction,
and for the simulated image it successively performs random
exchanges of pixels with different colors to minimize certain
‘‘energy’’ that measures the difference in correlation function,
two-point cluster function [9] or n-point correlation function [10]
etc. between the reference image and the simulated image. If the
energy decreases after the exchange, the new configuration is con-
sidered superior to the old one, and the exchange is accepted. If the
energy increases after the exchange, the new configuration is con-
sidered possible to be a transitional state from ‘‘local optimum’’ to
‘‘global optimum’’, and hence the exchange is accepted with a
probability, which depends on the energy of the old and the new
configurations and the annealing temperature [1]. Recently, sev-
eral other stochastic optimization approaches were developed to
overcome the low efficiency of the simulated annealing method,
including genetic algorithm, Tabu-list and hybrid optimization
methods [3,11]. The stochastic optimization method is perhaps
the most flexible method for reconstructing random media sam-
ples, and it allows a wide range of statistical characteristics to be
incorporated in sample generation. Its disadvantage is the expen-
sive computational burden when large samples (either in size or
in number) are required.

In the maximum entropy method [10,12,13], random media are
modeled as Markov random fields. The joint probability distribu-
tion of Markov random fields is the Gibbs distribution [14], which
is exactly the probability distribution that maximizes the entropy
under expectation-type confinements (e.g. l, r2, RI(s), etc)
[15,16]. The explicit formation of the Gibbs distribution cannot be
obtained because it is an infinite dimensional function. Thus, Mar-
kov chain Monte Carlo (MCMC) methods [17] are employed to sam-
ple from the Gibbs distribution, for which the Metropolis–Hastings
algorithm [18,19] (a random walk MCMC method) has been a pop-
ular choice. Similar to the stochastic optimization method, which
can be viewed as a special type of the Metropolis–Hastings algo-
rithm [19,20], a large number of random walk steps are often
required to achieve the equilibrium distribution status of the
Markov chain. For practical use, the maximum entropy method is
criticized to be even slower than the stochastic optimization meth-
od, and not suitable for large size problems [3].

The nonlinear transformation of Gaussian fields has been exten-
sively used in modeling multivariate distributions [21,22]. The
marginal distribution of the non-Gaussian field is met exactly,
and the covariance of the underlying Gaussian field is computed
numerically to satisfy the two point covariance requirement of
the non-Gaussian field. This approach has been employed to model
two-phase random media [2,23,24]. However, the relationship be-
tween the covariance of the non-Gaussian field and that of the
Gaussian field is ignored in [23,24], while using an iterative algo-
rithm the covariance function of the underlying Gaussian field is
calculated in [2]. The most costly part of the nonlinear transforma-
tion approach is to determine the nonnegative definite covariance
function (nonnegative definite covariance matrix in the discrete
case) of the underlying Gaussian field. In most of the literature
[2] and [25–28], the Gaussian field is constructed from an initial
power spectral density (PSD) structure and an iterative algorithm
is adopted to repeatedly update the PSD of the Gaussian field in or-
der to make the PSD of the non-Gaussian field meet the target, and
this can be a very slow process for practical problems. Another lim-
itation of this method is that the marginal distribution and the
covariance of the non-Gaussian field need to satisfy a compatibility
relation in advance [29].

In this paper, the relationship between the correlation of the
binary field and that of the Gaussian field is derived explicitly to
avoid the costly iteration procedure commonly employed in exist-
ing nonlinear transformation approaches. The compatibility rela-
tion between the marginal distribution and the autocorrelation of
binary valued fields are also rigorously investigated, and proved
to be not a critical restriction. These new developments signifi-
cantly improve the efficiency of sample generation, allowing thou-
sands of large samples to be generated within a few minutes. The
main limitation of the method is that it does not utilize other sta-
tistical characteristics (e.g. n-point correlation and lineal-path
function). However, numerical examples demonstrate that the
new method is suitable for a variety of types of two-phase random
media, as two-point correlation contains considerable information
on random morphology.

2.2. Preliminary knowledge: spectral decomposition of stationary
random fields

The Wiener–Khinchin theorem [30,31] states that the PSD f(X)
of a stationary second-order random field a(x, x) is the Fourier
transform of the corresponding autocorrelation function R(s). If
a(x, x) is a periodical stochastic process [32,33] with a period of
2N, i.e. aðx1; . . . ; xn;xÞ ¼ aðx1 þ 2N1; . . . ; xn þ 2Nn;xÞ, the discrete
version of the Wiener–Khinchin theorem can be written as [34,35]:

f ðX1; . . . XnÞ ¼
XN1

s1¼�N1þ1

. . .
XNn

sn¼�Nnþ1

Rðs1; . . . ; snÞe
�
Xn

j¼1

pi
Nj

Xjsj

;

Xj ¼ ½�Nj þ 1;Nj� ð3Þ

Rðs1; � � � ; snÞ ¼
1Q

jð2NjÞ
XN1

X1¼�N1þ1

� � �
XNn

Xn¼�Nnþ1

f ðX1; � � �XnÞe

Xn

j¼1

pi
Nj

Xjsj

;

sj ¼ ½�Nj þ 1;Nj� ð4Þ

where i is the imaginary unit, Nj are positive integers, the integer
coordinates s1; . . . ; sn denote the space domain, the integer coordi-
nates X1; . . . Xn denote the frequency domain, and f ðX1; . . . XnÞ is real
and nonnegative valued due to the nonnegative definite property of
Rðs1; . . . ; snÞ.

Then, a(x, x) can be represented by an orthogonal increment
process:
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aðx1; . .. ;xn;xÞ¼Eðaðx1; . .. ;xn;xÞÞ

þ 1Qn
j¼1ð2NjÞ

XN1

X1¼�N1þ1

. . .
XNn

Xn¼�Nnþ1

nðX1;. . .Xn;xÞe

Xn

j¼1

pi
Nj

Xjxj

;

xj¼½�Njþ1;Nj� ð5Þ

where nðX1; . . . Xn;xÞ are uncorrelated, complex valued random
variables satisfying

EðnðXa1; . . . Xan;xÞÞ ¼ 0 8Xaj 2 Z½�Nj þ 1;Nj� ð6Þ

and

EðnðXa1;. . .Xan;xÞnðXb1; .. .Xbn;xÞÞ

¼
Yn

j¼1

ð2NjÞf ðXa1; � ��XanÞr2 if Xaj¼Xbj;8j

0 else

8><
>: 8Xaj;Xbj 2Z½�Njþ1;Nj�:

ð7Þ

Especially, if aðx1; . . . ; xn;xÞ is a Gaussian random field, then
nðX1; . . . Xn;xÞ are all independent complex Gaussian random
variables.

The Wiener–Khinchin theorem, which is a second order statisti-
cal decomposition method, plays an important role in the analysis
of stationary Gaussian fields as Gaussian fields are completely
determined by their first two statistical moments. However, for
non-Gaussian random fields, it is difficult to directly generate sam-
ples because the uncorrelated random variables nðX1; . . . Xn;xÞ are
not independent and their joint probability distribution is un-
known a priori.

3. Nonlinear transformation of Gaussian fields

Let G(x, x) be a stationary Gaussian field with zero mean and
unit variance, and let RG(s) denote its autocorrelation function.
The Gaussian field G(x, x) is uniquely determined by RG(s). The
marginal distribution of G(x, x) can be expressed as

FGðyÞ ¼
1
2

1þ erf
yffiffiffi
2
p
� �� �

ð8Þ

where erf() denotes the error function.
To reconstruct the two-phase random medium defined by I(x,

x) in Eq. (1), we aim to find a transformation of G(x, x) such that
RG(s) can be explicitly specified to give the transformed Gaussian
field the same mean, variance, covariance (or autocorrelation)
and marginal distribution as I(x, x). Let p0 denote the volume frac-
tion of the black phase. It is then trivial to obtain the mean and var-
iance of I(x, x) as

l ¼ 1� p0; ð9Þ

r2 ¼ p0ð1� p0Þ: ð10Þ

Define a transformation function T(y) as

TðyÞ ¼
0 if y 6 F�1

G ðp0Þ
1 if y > F�1

G ðp0Þ

(
ð11Þ

where F�1
G ðp0Þ is the separation point at which the distribution func-

tion FG(y) takes the value of p0. Let

I�ðx;xÞ ¼ TðGðx;xÞÞ: ð12Þ

It is easy to verify that the transformed random field I⁄(x, x) is sta-
tionary and has the same marginal distribution, mean and variance
as I(x, x). The next step is to determine RG(s) so that I⁄(x, x) follows
the same autocorrelation RI(s). Once RG(s) is determined, it is
straightforward to generate samples of G(x, x) following the
Wiener–Khinchin theorem (3)–(7), which can be further trans-
formed to produce samples of I(x, x) .
3.1. The relationship between autocorrelations RG(s) and RI(s)

For any two points x1 and x2 = x1 + s in the medium, the auto-
correlation function of the transformed two-phase random med-
ium I⁄(x, x) can be computed by substituting Eq. (12) into Eq.
(2), i.e.

R�I ðsÞ ¼
E½ðTðGðx1;xÞÞ � lÞðTðGðx2;xÞÞ � lÞ�

r2

¼
Z þ1

�1

Z þ1

�1

ðTðy1Þ � lÞðTðy2Þ � lÞ
r2 fg2ðy1; y2;RGðsÞÞdy1dy2

ð13Þ

where

fg2ðy1; y2;RGðsÞÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RGðsÞ2

q

� exp
�1

2ð1� RGðsÞ2Þ
ðy2

1 þ y2
2 � 2RGðsÞy1y2Þ

 !

ð14Þ

is the joint probability density function (PDF) of a standard bivariate
Gaussian distribution with zero mean, unit variance and autocorre-
lation RGðsÞ .

Following Eq. (11), the integrand ðTðy1Þ�lÞðTðy2Þ�lÞ
r2 in Eq. (13) can be

computed as

ðTðy1Þ � lÞðTðy2Þ � lÞ
r2

¼

ð1� p0Þ=p0 if y1 2 �1; F�1
G ðp0Þ

i�
; y2 2 ð�1; F�1

G ðp0ÞÞ

�1 if y1 2 �1; F�1
G ðp0Þ

i�
; y2 2 ðF

�1
G ðp0Þ;1Þ

�1 if y1 2 ðF
�1
G ðp0Þ;1Þ; y2 2 �1; F�1

G ðp0Þ
i�

p0=ð1� p0Þ if y1 2 ðF�1
G ðp0Þ;1Þ; y2 2 ðF�1

G ðp0Þ;1Þ

8>>>>>>><
>>>>>>>:

:ð15Þ

Substituting Eqs. (15) into (13) yields

R�I ðsÞ ¼ �1þ 1
p0

Z F�1
G ðp0Þ

�1

Z F�1
G ðp0Þ

�1
fg2ðy1; y2;RGðsÞÞdy1dy2

þ 1
1� p0

Z þ1

F�1
G ðp0Þ

Z þ1

F�1
G ðp0Þ

fg2ðy1; y2;RGðsÞÞdy1dy2: ð16Þ

Due to the symmetry of fg2ðy1; y2;RGðsÞÞ (14), i.e. fg2ðy1; y2;RGðsÞÞ ¼
fg2ð�y1;�y2;RGðsÞÞ, the autocorrelation R�I ðsÞ can be further simpli-
fied into

R�I ðsÞ ¼ �1þ 1
p0

Z F�1
G ðp0Þ

�1

Z F�1
G ðp0Þ

�1
fg2ðy1; y2;RGðsÞÞdy1dy2

þ 1
1� p0

Z �F�1
G ðp0Þ

�1

Z �F�1
G ðp0Þ

�1
fg2ðy1; y2;RGðsÞÞdy1dy2

¼ �1þ 1
p0

Fg2ðF�1
G ðp0Þ; F�1

G ðp0Þ;RGðsÞÞ

þ 1
1� p0

Fg2ð�F�1
G ðp0Þ;�F�1

G ðp0Þ;RGðsÞÞ ð17Þ

where

Fg2ðy1; y2;RGðsÞÞ ¼
Z y1

�1

Z y1

�1
fg2ðz1; z2;RGðsÞÞdz1dz2 ð18Þ

is the cumulative distribution function corresponding to the PDF
fg2(y1, y2, RG(s)).

In Eq. (17), the relationship between R�I ðsÞ and RG(s) depends on
the volume fraction p0. Due to the symmetry of the PDF fg2(y1, y2,
RG(s)), it is straightforward to prove that
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R�I ðs;p0Þ ¼ R�I ðs;1� p0Þ: ð19Þ

For a fixed volume fraction p0, Eq. (17) explicitly expresses
R�I ðsÞ, the autocorrelation of the transformed two-phase random
media, as a nonlinear function of RG(s), the autocorrelation of the
underlying Gaussian random field. Given the value of R�I ðsÞ, the
corresponding RG(s) can be solved, at least in principle, through
an iterative solver. It is proved in the following section that R�I ðsÞ
is monotonic with respect to RG(s). Hence, the solution of RG(s)
can be significantly simplified through precomputation.

3.2. Compatibility relation between marginal distribution and
autocorrelation

Following Eq. (17), the derivative of R�I ðsÞ with respect to RG(s)
can be expressed as
−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 1. Precomputed R�I ðsÞ � RGðsÞ curves.
Fig. 2. Comparison 1, image size 400 � 400 pixels. (a) The reference random media samp
method in [1]; (c) a random media sample directly generated by our simulated annealing
reconstructed by the iterative nonlinear transformation method; (f) a random media sa
dR�I ðsÞ
dRGðsÞ

¼ 1
p0

Z F�1
G ðp0Þ

�1

Z F�1
G ðp0Þ

�1

dfg2ðy1; y2;RGðsÞÞ
dRGðsÞ

dy1dy2

þ 1
1� p0

Z �F�1
G ðp0Þ

�1

Z �F�1
G ðp0Þ

�1

dfg2ðy1; y2;RGðsÞÞ
dRGðsÞ

dy1dy2 ð20Þ

where

dfg2ðy1; y2;RGðsÞÞ
dRGðsÞ

¼ �RGðsÞðy2
1 þ y2

2Þ þ ðRGðsÞ2 þ 1Þy1y2 þ RGðsÞð1� RGðsÞ2Þ
ð1� RGðsÞ2Þ2

� fg2ðy1; y2;RGðsÞÞ: ð21Þ

It can be computed that

Z z

�1

Z z

�1

dfg2ðy1;y2;RGðsÞÞ
dRGðsÞ

dy1dy2 ¼
exp � z2

1þRGðsÞ

� 	
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�RGðsÞ2

q 8z2 ½�1;þ1�:

ð22Þ
Thus, the derivative (20) can be simplified as

dR�I ðsÞ
dRGðsÞ

¼ 1
p0
þ 1

1� p0

� � exp � ðF
�1
G ðp0ÞÞ2

1þRGðsÞ

� 	
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RGðsÞ2

q � 0: ð23Þ

Eq. (23) implies that R�I ðsÞ is monotonically increasing with respect
to RG(s). Hence, the range of R�I ðsÞ can be determined as:

maxðR�I ðsÞÞ ¼ lim
RGðsÞ!1

Z þ1

�1

Z þ1

�1

ðTðy1Þ � lÞðTðy2Þ � lÞ
r2

� fg2ðy1; y2;RGðsÞÞdy1dy2 ¼ 1; ð24Þ
minðR�I ðsÞÞ ¼ lim
RGðsÞ!�1

Z þ1

�1

Z þ1

�1

ðTðy1Þ � lÞðTðy2Þ � lÞ
r2

� fg2ðy1; y2;RGðsÞÞdy1dy2 ¼ �
minðp0;1� p0Þ
maxðp0;1� p0Þ

: ð25Þ
le from [1]; (b) the random media sample reconstructed by the simulated annealing
code; (d) the final sample after median filtering of (c); (e) a random media sample

mple reconstructed by the proposed method.
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The above equations set the upper and lower limits of the autocor-
relation R�I ðsÞ, which depend on the volume fraction p0. They form a
necessary condition for reconstructing the target random medium
through the proposed nonlinear transformation of the Gaussian
field. That is, a two-phase random medium with volume fraction
p0 and autocorrelation RI(s) can be reconstructed only if

RIðsÞ 2 � minðp0 ;1�p0Þ
maxðp0 ;1�p0Þ

;1
h i

. Note that, for practical random media with

irregular structures, the autocorrelation functions are almost al-
ways above zero [9]. Hence, conditions (24)–(25) do not form a seri-
ous restriction for the proposed method.
Fig. 3. Comparison 2, image size 400 � 400 pixels. (a) The reference random media samp
method in [1]; (c) a random media sample directly generated by our simulated annealin
reconstructed by the iterative nonlinear transformation method; (f) a random media sa
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Fig. 4. Autocorrelation functions of the samples in the first comparison. (a) The autocorrela
3.3. Computational issues

Given the autocorrelation RI(s) of the target two-phase random
medium, to solve the autocorrelation RG(s) of the underlying
Gaussian random field from the nonlinear Eq. (17) is potentially
time consuming, if an iterative solver has to be adopted. Noting
that the relationship between R�I ðsÞ and RG(s) is monotonic, one
can precompute the function curve between R�I ðsÞ and RG(s) to save
the costly procedure of solving nonlinear equations. An example is
shown in Fig. 1, where according to Eq. (17), the RGðsÞ ! R�I ðsÞ
curves are computed for five volume fractions p0 ¼ 0:1;
le from [1]; (b) the random media sample reconstructed by the simulated annealing
g code; (d) the final sample after median filtering of (c); (e) a random media sample
mple reconstructed by the proposed method.
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tion along the horizontal direction; (b) the autocorrelation along the vertical direction.
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Fig. 5. Autocorrelation functions of the samples in the second comparison. (a) The autocorrelation along the horizontal direction; (b) the autocorrelation along the vertical direction.
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Fig. 6. Convergence curves of the simulated annealing method.
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Fig. 7. Convergence curves of the iterative nonlinear transformation method.
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0:2; . . . ;0:5. Due to the symmetry relation in Eq. (19), the
RGðsÞ ! R�I ðsÞ curves for p0 ¼ 0:6;0:7; . . . ;0:9 are symmetric. Thus,
given the volume fraction p0 and the target autocorrelation RI(s),
the corresponding autocorrelation RG(s) for the underlying Gauss-
ian field can be readily obtained from these precomputed curves
through interpolation. Doing so avoids the expensive solution pro-
cedure of the nonlinear RGðsÞ ! R�I ðsÞ equation, and can signifi-
cantly accelerate sample reconstruction.

In the discrete case, function RG(s) can be expressed as a covari-
ance matrix with unit diagonal entries and the absolute values of
off diagonal entries less than one. Due to numerical approximation,
the resulting matrix RG(s) may contain a few small negative eigen-
values, violating the nonnegative definite requirement for a covari-
ance matrix. Hence, a ‘‘nearest correlation matrix’’ [36–38] should
be constructed, which is a common practice for multivariate anal-
ysis. To do this, we compute the PSD of RG(s) (see Eq. (3)) and set
the negative PSD entries to zero, after which the truncated PSD is
transformed back following Eq. (4) to form a nonnegative definite
covariance matrix, ready for use on the Gaussian field.
4. Summary of the algorithm

The algorithm framework of the proposed sample generation
method is summarized below.
Given a reference sample I(x, x), count the volume fraction p0

and estimate its autocorrelation function RI(s) through FFT
(fast Fourier transform) of the sample spectrum. This is a
standard practice of random signal processing, for which
detailed description can be found in [39,40] and [41]. Note:
the random medium is assumed with a 2N periodic
boundary as shown in Eqs. (3) and (4). The period 2N is
larger than the size of the random medium and selected as
a power of 2 to enhance the efficiency of FFT, thus padding
with 0 is required [39,40].

For the measured volume fraction p0, plot the R�I ðsÞ � RGðsÞ
curve according to Eq. (17). The result is monotonic and
example curves are shown in Fig. 1.

Construct the covariance matrix of the underlying Gaussian
field, by registering the R�I ðsÞ � RGðsÞ curve with the
measured autocorrelation RI(s) of the target two-phase
random medium.

Generate Gaussian field samples G(x, x), by using the spectral
decomposition method (3)–(7). This step is performed with
FFT.

Generate samples of I(x, x) through the nonlinear
transformation (11).



Fig. 8. 2D random media reconstruction. (a1–e1) The reference random media samples; (a2–e2) the random media samples reconstructed by the proposed method; (a3–e3)
the random media samples reconstructed by the simulated annealing method.

Table 1
Computational cost of sample reconstruction.

Example no. Simulated annealing Iterative nonlinear transformation The proposed method

Comparison 1 635 s 10070 s, 20 iterations 4 s, no iteration
Comparison 2 696 s 9694 s, 20 iterations 4 s, no iteration
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The main computational cost of the proposed algorithm is the

FFT operation involved in step 4, whose computational complexity
is log L proportional to the reconstructed sample size L. This high
computational efficiency allows large sample sets (in terms of both
sample size and sample number) to be reconstructed on a commod-
ity computer with moderate cost. The efficiency and accuracy of the
proposed method are demonstrated by a number of examples in the
next section with comparisons to other state-of-the-art methods.

A free MATLAB� code of the proposed method is available upon
request.

5. Examples

A number of examples are presented in this section to demon-
strate the performance of the proposed method. First, the new
method is compared with other state-of-the-art methods in the lit-
erature, including the simulated annealing method [1] and the iter-
ative nonlinear transformation method [26,28]. The random set
method [4–6] and the maximum entropy method [10,12,13] are
not chosen for comparison, because the former is limited to a
few special geometries, and the latter has high computational
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Fig. 9. Autocorrelation functions of the 2D random media samples in Fig. 8. Left: the au
vertical direction.
and implementation complexity. After the comparison, the new
method is applied to a wide range of different random media to
demonstrate its accuracy and applicability. Finally, large-scale 3D
cases are considered, and the new method is used to reconstruct
3D samples for nuclear graphite Gilsocarbon measured from
three-dimensional X-ray scanning.

All examples are simulated on a PC with an Intel Core i7
3.40 GHz processor and 16 GB memory.

5.1. Comparison

To help examine the performance of the proposed method, we
have also implemented the simulated annealing method [1] and
the iterative nonlinear transformation method [26,28]. For com-
parison, we took two random media samples from [1], and recon-
structed the associated samples using three different methods.
Shown in Fig. 2(a) and (b) are a random media example and a
reconstructed sample taken from [1]. Fig. 2(c) and (d) is a sample
reconstructed using our own implementation of the simulated
annealing method and for fair comparison, we adopted the same
algorithmic parameters as [1]. As the pixel exchanges are operated
on disks with a diameter of 17 pixels, the direct reconstruction
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(Fig. 2(c)) inevitably contains ‘‘salt and pepper’’ noises [10], which
are removed by 2D median filtering to produce the reconstructed
sample (Fig. 2(d)). Fig. 2(e)–(f) are two samples reconstructed
using the iterative nonlinear transformation method and our new
method, respectively. For a random media sample with different
morphology, a similar comparison is presented in Fig. 3.

Comparing the simulated annealing results in Figs. 2(b) and (d)
and 3(b) and (d), it can be seen that our implementation produces
similar results as the original work in [1]. To further examine the
accuracy of the different methods, the autocorrelation functions
calculated from Figs. 2(d)–(f) and 3(d)–(f) are plotted in Figs. 4
and 5 respectively, where Figs. 4(a) and 5(a) show the autocorrela-
tions along the horizontal direction, and Figs. 4(b) and 5(b) show
the autocorrelations along the vertical direction. It can be seen that
all three methods achieve similar levels of accuracy in the sense of
autocorrelation.
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Both the simulated annealing method and the iterative nonlin-
ear transformation method require repeatedly comparing the auto-
correlations of the target random field and the reconstructed
random field. To retain the nonnegative definite property of the
autocorrelation, the comparison is usually performed through
comparing the PSD f(X) in Eq. (3). Let ft(X) and fc(X) denote respec-
tively the PSD of the target random field and the reconstructed ran-
dom field, and define the error function e as:

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðfcðXÞ � ftðXÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ftðXÞ2
q ; ð26Þ

where the sum operation is performed over all discretized frequen-
cies. In the simulated annealing method, the function e is taken as
Table 2
Performance data for 2D random media reconstruction.

Random media no. a b

Image size (pixel � pixel) 564 � 710 436 �
CPU time cost of the proposed method (s) 0.023 0.010
CPU time cost of simulated annealing (s) 3474 1826
p0 0.5226 0.144
Measured bounds of RI(s) [�0.0416,1] [�0.0
Compatibility bounds of RI(s) [�0.9136,1] [�0.1

Fig. 10. 3D random media reconstruction. (a1–d1) The reference random media samp
the energy function and a pixel exchange is accepted if e decreases;
and vice versa. In the iterative nonlinear transformation method,
the function e is used as the stopping criterion [28], and the itera-
tion is terminated if e is reduced below a given threshold. The main
computational cost in the simulated annealing method and the iter-
ative nonlinear transformation method arise from the repeated
computation of fc(X). For the simulated annealing method, fc(X) is
computed after each pixel exchange step, through FFT of the recon-
structed image [39]. For the iterative nonlinear transformation
method, fc(X) is computed in each iteration step as the FFT of the
autocorrelation function of the reconstructed sample, which is cal-
culated through a probability integral of the underlying Gaussian
field [28].

Shown in Fig. 6 are the convergence curves for the simulated
annealing method, and shown in Fig. 7 are the convergence curves
c d e

438 685 � 684 682 � 682 657 � 909
0.029 0.025 0.035
2951 5022 3926

2 0.8085 0.5451 0.3484
344,1] [�0.0535,1] [�0.0796,1] [�0.1794,1]
686,1] [�0.2369,1] [�0.8345,1] [�0.5348,1]

les; (a2–d2) the random media samples reconstructed by the proposed method.
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for the iterative nonlinear transformation method. The computa-
tional efficiencies for all three methods are listed in Table 1, in
which the CPU time is recorded for the reconstruction of a single
sample. It is noted that for multiple sample reconstruction, the to-
tal time cost will increases proportionally using the simulated
annealing approach, while for the iterative nonlinear transforma-
tion method and the proposed method, the cost of additional sam-
ple reconstruction is negligible. It can be seen from Table 1 that the
proposed method is significantly faster than existing methods. The
very large efficiency improvement is due to the fact that the rela-
tionship between the target binary valued random field and the
underlying Gaussian field is explicitly determined, such that the
Gaussian fields and the associated random media samples can be
directly reconstructed without costly iterations.
Table 3
Performance data for 3D random media reconstruction.

Random media no. a

3D media size (pixel � pixel � pixel) 512 � 512 � 512
p0 0.5627
CPU time cost (s) 27
Measured bounds of RI(s) [�0.1017,1]
Predicated compatibility bounds of RI(s) [�0.7772,1]
5.2. Two-dimensional random media reconstruction

Five 2D random media with different morphologies are consid-
ered in this example, and for comparison, they are reconstructed
using the proposed and the simulated annealing method. The
reconstruction results are shown in Fig. 8, in which the first col-
umn shows the reference random media, the second column shows
the samples reconstructed with the proposed method, and the
third column shows the de-noised samples reconstructed using
the simulated annealing method. It can be seen that the new meth-
od is effective for the reconstruction of a wide range of random
media with different morphologies. To examine the accuracy, the
autocorrelation functions are plotted in Fig. 9, in which the auto-
correlations along the horizontal direction are shown on the left
b c d

512 � 512 � 512 512 � 512 � 512 512 � 512 � 512
0.9222 0.5 0.25
27 27 27
[�0.0568,1] (0, 1] (0, 1]
[�0.0844,1] [�1, 1] [�0.3333,1]
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and the autocorrelations along the vertical direction are shown on
the right. The autocorrelation comparison confirms that both the
proposed method and the simulated annealing method can achieve
good approximation to the target random media, while the pro-
posed method exhibits slightly better accuracy. The reconstruction
does have some limitations, causing small but visible differences
between the original and the reconstructed media, which will be
further investigated in Section 6.
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Fig. 11. Autocorrelation functions of the 3D random media samples in Fig. 10. Left: the au
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The performance data of these 2D examples are listed in Table
2. For the proposed method, the CPU time listed in the table is
the per-sample time cost averaged over 1000 sample reconstruc-
tions. For the simulated annealing method, the CPU time is re-
corded for a single sample reconstruction, and it will increase
proportionally if multiple samples are reconstructed. It can be seen
that the proposed method is four orders faster than the simulated
annealing method. The volume fraction and the measured
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autocorrelation function are also listed in the table together with
the theoretical compatibility bound predicted by our method (see
Eqs. (23), (24)). Given a reference random media sample, the pre-
dicted compatibility bounds allow a user to determine in prior
whether samples can be reconstructed through nonlinear transfor-
mation of Gaussian fields, without tedious trial and error attempts.
5.3. Three-dimensional random media reconstruction

The benefits from the high computational efficiency of the pro-
posed method can also be used to reconstruct large-size 3D ran-
dom media samples. Statistical characteristics of a 3D random
medium can be derived from its 2D slices [8,42–44]. Especially, if
the 3D random medium is isotropic, a single 2D slice is sufficient
to obtain all the statistical information required. Four random
media samples are considered in this example, as shown in
Fig. 10, where the reference random media are shown on the left
and the corresponding reconstructed random media samples are
shown on the right. Fig. 10(a) and (b) are samples of nuclear graph-
ite Gilsocarbon [45], an isotropic graphite material with porous
microstructure. Nuclear graphite Gilsocarbon is widely used as
in-core structures of advanced gas-cooled reactors in the UK, and
these 3D samples are obtained through three-dimensional X-ray
scans. Fig. 10(c) and (d) are two theoretical random media models
specified by their statistical characteristics, i.e. the volume fraction
Fig. 12. A failure case for 2D random medium reconstruction. (a) The reference rando
method; (c) a random medium sample reconstructed by the simulated annealing metho
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Fig. 13. Autocorrelation functions of the 2D random media in Fig. 12. (a) The autocorr
direction.
and the autocorrelation function. The four reference random media
samples have very different morphologies, and their volume frac-
tions and autocorrelations are listed in Table 3. The reconstruction
results shown in Fig. 10(e)–(h) demonstrate that the proposed
method can successfully generate large-size 3D random media
samples that conform to the given references.

The accuracy of the reconstruction is examined in Fig. 11
through the autocorrelation function. In Fig. 11, the first, second
and last columns show the autocorrelation functions along the
x-axis, y-axis and z-axis, respectively. A good reconstruction accu-
racy is observed in all four examples. The performance data are
listed in Table 3. All four random media have the same size,
512 � 512 � 512 pixels, and the sample is reconstructed in around
27 s. The measured bound of autocorrelation and the predicted
compatibility bound are also listed in Table 3, and they can be used
to determine a priori if the sample can be successfully recon-
structed through the proposed method.
6. Limitation discussion

The first- and second- order statistical moments cannot com-
pletely characterize a general random field. Thus, the random med-
ia reconstructed using the proposed method can only be treated as
an approximation of the original random medium sample, and they
share the same statistical features measured by the expectation
m medium sample; (b) a random medium sample reconstructed by the proposed
d.
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and auto-correlation functions. We tested our method on a wide
range of practical random media with different types of random
patterns, and the proposed method is found to produce good
reconstructions in most cases. However, failure cases are observed
for random media with structured and continuous patterns. A typ-
ical failure case is shown in Fig. 12, where (a) is the reference med-
ium sample and (b) and (c) are the reconstruction samples using
the proposed method and the simulated annealing method
respectively.

The reconstructed samples shown in Fig. 12(b) and (c) are
clearly different from the original sample shown in Fig. 12(a). Mea-
sured by expectation, the volume fraction of all three samples are
identical. To investigate the difference, we plot the autocorrelation
functions in Fig. 13, where (a) shows the autocorrelation measured
along the horizontal direction and (b) shows the autocorrelation
measured along the vertical direction. It can be seen that all three
samples have very similar second-order statistics. The reconstruc-
tion failed because the autocorrelation is not able to completely
characterize a non-Gaussian field. Thus it is necessary to seek for
other measures to identify the morphological difference among
the three random media in Fig. 12.

Higher order statistics [46] is a category of methods for testing
non-Gaussianity. One widely used higher order statistics measure
is higher order moments [47], which are higher order generaliza-
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Fig. 14. A calculation path for three-point correlation under polar coordinate
system.
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Fig. 15. Three-point correlations of the random media in Fig. 12. (a) Is computed along
q2 = 2 and h1 = 0�.
tions of the first and second order statistical moments. The
three-point correlation R3I(s1, s2) of the stationary real random
field I(x, x) is defined as [48–50]:

R3Iðs1; s2Þ ¼
E½ðIðx;xÞ � lÞðIðxþ s1;xÞ � lÞðIðxþ s2;xÞ � lÞ�

E½ðIðx;xÞ � lÞ3�
; 8x

ð27Þ

where s1 and s2 are the relative displacements of the three points:
x, x + s1 and x + s2. Due to the stationary assumption, R3I(s1, s2) de-
pends only on s1 and s2, rather than x. The three-point correlation is
a third order statistical moment, and up to N-point correlation func-
tions can be defined in a similar manner as Eq. (27).

To better examine the 2D random media in Fig. 12 using the
three-point correlation R3I(s1, s2), we represent s1 and s2 in a polar
coordinate system as (q1, h1) and (q2, h2), where qi denotes the dis-
tance to the origin and hi the angle measured from a fixed direc-
tion. For a direct graphical demonstration, the measured R3I(s1,
s2) is only shown along some specific paths. Specifically, q1, h1

and q2 are fixed, while h2 is altered from 0� to 360� as shown in
Fig. 14. The three-point correlations for all three samples in
Fig. 12 are plotted in Fig. 15.

As shown in Fig. 15, the three samples in Fig. 12(a)–(c) exhibit
distinct statistical features in the sense of three-point correlation.
Non-negligible differences may also exist in other higher order cor-
relations (e.g. 4-point correlation, 5-point correlation, etc.). The
proposed method, utilizing only the marginal probability distribu-
tion (p0) and the first two order moments, do not produce a unique
and ‘‘exact’’ solution. The accuracy of the proposed method de-
pends on how much information regarding the morphology are
contained by the first two order moments. Higher order statistics
offers a tool for detecting the information omitted by the first
two order moments [48–51] and thus could be applied to make a
rough judgement in advance for the reconstruction quality of the
proposed method.

It is worth to note that higher order statistics is an active yet
immature technique. The challenges of higher order statistics in-
clude: higher dimensions, requiring much more data, oversensitive
to outliers. However, to efficiently incorporate higher order statis-
tics for random media reconstruction is not within the scope of this
paper.
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7. Conclusion

A highly efficient method is developed for reconstructing two-
phase composite materials with random morphology. It can be
used for Monte Carlo simulations which require rapid reconstruc-
tion of large amounts of samples according to statistical character-
istics derived from a few measured samples (reference samples).
The new method is based on nonlinear transformation of Gaussian
random fields. The explicitly reconstructed media are able to meet
the binary-valued marginal probability distribution function and
the two point correlation function of the reference media. The
new method has the following advantages:

� It is thousands of times faster than the simulated annealing
method, which is considered as the benchmark method for
random media reconstruction. Unlike the simulated anneal-
ing method, where the simulation parameters need to be
determined empirically (e.g. shape and size for pixel block
exchange, annealing temperature and median filter et.),
the proposed method is easy to implement and requires
only the reference media sample as the input.

� Though the joint probability function of all points is needed
to uniquely determine a random field, the marginal distri-
bution plus covariance can offer considerable information
for the morphology of practical random media. The pro-
posed method shows sound reconstruction results for vari-
ous types of 2D and 3D random media, as demonstrated by
the examples.

It is possible to extend the proposed approach to multi-phase
random media, for which the simulated annealing method is com-
putationally prohibitive. It is also possible to combine the proposed
method with other statistical reconstruction techniques to incor-
porate higher order statistical measures. These important aspects
will be pursued in future work.
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