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SUMMARY

Among all 3D 8-node hexahedral solid elements in current finite element library, the ‘best’ one can produce
good results for bending problems using coarse regular meshes. However, once the mesh is distorted, the
accuracy will drop dramatically. And how to solve this problem is still a challenge that remains outstanding.
This paper develops an 8-node, 24-DOF (three conventional DOFs per node) hexahedral element based on
the virtual work principle, in which two different sets of displacement fields are employed simultaneously
to formulate an unsymmetric element stiffness matrix. The first set simply utilizes the formulations of the
traditional 8-node trilinear isoparametric element, while the second set mainly employs the analytical trial
functions in terms of 3D oblique coordinates (R, S , T /. The resulting element, denoted by US-ATFH8,
contains no adjustable factor and can be used for both isotropic and anisotropic cases. Numerical examples
show it can strictly pass both the first-order (constant stress/strain) patch test and the second-order patch test
for pure bending, remove the volume locking, and provide the invariance for coordinate rotation. Especially,
it is insensitive to various severe mesh distortions. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Because of relatively higher accuracy and lower computation cost, 8-node hexahedral isoparametric
element is often preferred in analysis of 3D problems [1]. However, for traditional trilinear isopara-
metric element, when dealing with solids and structures with complicated loadings or geometries,
full integration model may suffer from various locking problems and will be very sensitive to mesh
distortions, while reduced integration model may appear hourglass phenomena or lead to incor-
rect results. Among all 3D 8-node hexahedral solid elements in current finite element library, some
incompatible elements [1–5] are usually considered as the models with the best precision because
they can produce good results for bending problems using very coarse regular meshes. However,
once the mesh is distorted, the accuracy will drop dramatically again. This is a living example of the
sensitivity problem to mesh distortion, which is the core inherent difficulty existing in finite element
methods. And how to solve this problem is still a challenge that remains outstanding. Actually, the
same difficulty is also hard to be overcome even for 2D problems. MacNeal has proved that any 4-
node, 8-DOF quadrilateral membrane isoparametric element of trapezoidal shape must either lock

*Correspondence to: Song Cen, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua
University, Beijing 100084, China.

†E-mail: censong@tsinghua.edu.cn

Copyright © 2016 John Wiley & Sons, Ltd.



P.-L. ZHOU ET AL.

in pure bending tests or fail to pass constant stress/strain patch tests [6], and the similar limitation
can be generalized to 3D 8-node hexahedral finite elements [7]. It almost closes out further effort to
design new element models with high distortion resistance.

For past 60 years, numerous efforts have been made to improve performance and capacity of
finite elements, such as the incompatible displacement methods proposed by Wilson et al. [2] and
the modified version by Taylor et al. [3], the reduced or selective reduced integration patterns [8–10]
and the corresponding hourglass control techniques [11–14], the enhanced assumed strain (EAS)
methods [4, 5, 15, 16], the hybrid element methods [17, 18], the analytical interpolation method
[19], and the finite element-meshfree combination method [20]. However, it seems that no element
mentioned previously is truly beyond the limitation shown by MacNeal [6, 7].

Lee and Bathe [21] pointed out that the nonlinear transformation relationship between paramet-
ric and physical coordinates may be one of the reasons that cause the sensitivity problem to mesh
distortions. In order to avoid the troubles caused by this nonlinear relationship, Long et al. succes-
sively established three forms of 2D quadrilateral area coordinate methods (QACM-I, QACM-II,
and QACM-III) [22–26] and a 3D hexahedral volume coordinate method (HVCM) [27], in which
the transformations between these new local coordinates and the Cartesian (physical) coordinates
are always linear, respectively. Subsequently, a series of new quadrilateral plane membrane ele-
ments [25, 26, 28–33] and 3D hexahedral elements [27] were developed. Although many elements
greatly improve the distortion resistance for bending tests, all of them fail to strictly pass the con-
stant stress/strain (C0/ patch tests. So their convergence raised some queries and discussions [34,
35]. Cen et al. [29] and Chen et al. [36] tried to make them pass the C0 patch test, but the distortion
resistance will be destroyed again for bending tests.

For developing distortion-immune elements, some researchers began to look for new formula-
tions from other theoretical space. Rajendran et al. [37–42] adopted the virtual work principle to
establish a kind of unsymmetric finite element method, in which the test and the trial functions for
displacement fields are different, and the resulting element stiffness matrix is unsymmetric. For test
functions, the conventional shape functions of isoparametric elements are selected to exactly satisfy
the minimum inter-element and intra-element displacement continuity requirements; and for trial
functions, the polynomials in terms of Cartesian (physical) coordinates are chosen to satisfy the
completeness requirements in physical space. Since there is no Jacobian determinant in the final for-
mula for evaluating the element stiffness matrix, the resulting elements can still perform well even
when they are severely distorted. However, their method is only effective for constructing high-order
elements, such as 8-node plane quadrilateral element US-QUAD8 [37] and 20-node 3D hexahedral
element US-HEXA20 [38]. Furthermore, because the number of element DOFs usually does not
equal to the number of items for a complete polynomial in terms of Cartesian coordinates, interpo-
lation failure may take place when the element is distorted to certain shapes, and rotational frame
dependence may also appear [43]. So they are not convenient and effective for practical applications.
Cen et al. [44] developed a new 8-node unsymmetric plane element US-ATFQ8 by introducing
analytical trial functions and generalized conforming conditions. This element can overcome all
aforementioned defects and even produce exact solutions in linear bending problems (third-order
patch test).

Recently, some significant progresses have also been made for developing low-order elements.
Cen et al. [45] successfully formulated an unsymmetric 4-node, 8-DOF plane element. The key
technique is that the second displacement field set (trial functions) employs a composite coordinate
interpolation scheme with analytical trial function method, in which the items 1, x, y; and two sets
of analytical solutions for pure bending state in terms of the second form of quadrilateral area coor-
dinates (QACM-II) are applied together. The resulting element US-ATFQ4, which can be used for
both isotropic and anisotropic cases, exhibits amazing performance in rigorous tests. It can satisfy
both the classical first-order (constant stress/strain) patch test and the second-order patch test for
pure bending, and is insensitive to various severe mesh distortions. Due to the isotropy of the natural
local coordinate QACM-II, US-ATFQ4 can provide the invariance for the coordinate rotation. The
appearance of this element seems that the limitation defined by MacNeal’s theorem can be broken
through. Almost at the same time, Xie et al. [46] also utilized similar procedure developed a 4-node
plane element TQ4 and an 8-node hexahedral element TH8. The major different is that they used a
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kind of local oblique coordinate method defined by Yuan et al. [47, 48] together with Cartesian and
isoparametric coordinates in their interpolation formulae. However, these two elements can be used
only for isotropic problems. Furthermore, an adjustable factor ˇ varying from 0.01 to 0.0001 (ˇ D
0.01 was adopted by [46]) is introduced into the interpolation matrix of element TH8 for enhanc-
ing the element accuracy. In fact, because this factor has no definite physical significance, incorrect
results may appear if the factor is not appropriate (Section 4.2 and Tables IV and VI).

The purpose of this paper is to present an 8-node hexahedral element with high distortion resis-
tance as well as no obvious numerical defects. First, nine sets of analytical general solutions for
linear stresses, linear strains, and quadratic displacements in terms of 3D local oblique coordinates
(R, S , T / [47, 48], which are not found in other literatures, are derived. These analytical solutions
are also the Trefftz solutions [49]. Then, a new 8-node hexahedral element is developed based on
the virtual work principle, in which two different sets of displacement fields are employed simul-
taneously to formulate an unsymmetric element stiffness matrix. The first set simply utilizes the
formulations of the 8-node trilinear isoparametric element, while the second set mainly employs the
analytical trial functions in terms of 3D local oblique coordinates. Because the relationship between
the local oblique and Cartesian coordinates is always linear, and there is no Jacobian determinant
needed for computing the element stiffness matrix, the new element is expected to be insensitive to
mesh distortion. The resulting element, denoted by US-ATFH8, contains no adjustable factor and
can be used for both isotropic and anisotropic cases. Numerical examples show it can exactly pass
both the first-order (constant stress/strain) patch test and the second-order patch test for pure bend-
ing, remove the volume locking, and provide the invariance for coordinate rotation. Especially, it is
insensitive to various severe mesh distortions.

2. ANALYTICAL GENERAL SOLUTIONS IN TERMS OF 3D OBLIQUE COORDINATES

As described in previous section, in order to construct finite element models insensitive to mesh
distortion, a local coordinate system that is linearly related to the global Cartesian coordinate system
should be considered. For 3D problems, the most feasible one is the oblique (skew) coordinate
system defined by Yuan et al. [47, 48].

2.1. Definition of 3D oblique coordinate system [47,48]

For an 8-node hexahedral element shown in Figure 1, the Cartesian coordinates (x, y; ´/ can be
expressed in terms of the isoparametric coordinates (� , �, �/ as
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Figure 1. The definition of 3D oblique coordinate system.
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in which (�i , �i , �i / and (xi , yi , ´i / (i D1~8) are the isoparametric and Cartesian coordinates of the
eight corner nodes, respectively.

Yuan et al. [47, 48] defined a kind of 3D oblique coordinates (R, S , T / as follows:
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where J0 denotes the Jacobian matrix at the origin of the isoparametric coordinates (� , �, �/ D
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It can be easily found that the relationship of the oblique coordinates (R, S , T / and the Cartesian
coordinates (x, y; ´/ is always linear. As shown in Figure 1, (R, S , T / and the isoparametric coor-
dinates (� , �, � ) share the same directions, respectively, and their origins also coincide with each
other.
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And the transformation of second-order derivatives is8̂̂
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2.2. The analytical general solutions in terms of 3D oblique coordinate system

In order to improve element performance, the analytical solutions of stresses, strains, or displace-
ments satisfying governing equations in elasticity are often taken as the trial functions in some finite
element methods such as the Trefftz finite element method [49] and the hybrid stress-function ele-
ment method proposed by Cen et al. [50–55]. It is also noteworthy that the usage of the analytical
solutions in terms of the local coordinates [32, 45] may eliminate directional dependence prob-
lem. In this section, nine sets of analytical general solutions for linear stresses, linear strains, and
quadratic displacements in terms of 3D local oblique coordinates will be derived.

For 3D problems without body forces, the homogeneous equilibrium equations in the oblique
coordinate system are given by 8̂̂
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The first 27 sets of analytical solutions for aforementioned stresses in terms of 3D oblique coordinate
system are listed in Table I, in which the first three sets, 4th to 12th sets, and 13th to 27th sets are
related to the rigid body, the linear, and the quadratic displacement modes, respectively. Since the
constant stress solutions will not be used later, their explicit forms are not given in the table.

According to equation (4), the stress components in Cartesian coordinates (x, y; ´/ can be
expressed by the stress components in oblique coordinates (R, S , T /:2
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Table I. The first 27 sets of analytical general solutions for stresses in terms of 3D oblique coordinate system.

i 1 2 3 4 5 6 7 8 9 10 11 12

Corresponding Rigid body Linear displacement modes
displacements displacement modes
ui 1 0 0 R 0 0 S 0 0 T 0 0
vi 0 1 0 0 R 0 0 S 0 0 T 0
wi 0 0 1 0 0 R 0 0 S 0 0 T

�Ri 0 0 0
�Si 0 0 0
�T i 0 0 0 Constant stress solutions
�RSi 0 0 0
�ST i 0 0 0
�RT i 0 0 0

i 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Corresponding Quadratic displacement modes
displacements
�Ri 0 0 0 S 0 0 T 0 0 0 -R 0 0 0 -R
�Si R 0 0 0 0 0 0 T 0 S 0 0 -S 0 0
�T i 0 R 0 0 R 0 0 0 0 0 0 -T 0 -T 0
�RSi 0 0 0 0 0 0 0 0 T R S 0 0 0 0
�ST i 0 0 R 0 0 0 0 0 0 0 0 S T 0 0
�RT i 0 0 0 0 0 S 0 0 0 0 0 0 0 R T

Then, the strains in Cartesian coordinate system can be obtained by following stress-strain relations
(generalized Hooke law):
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where C is the elasticity matrix of compliances; E and � are Young’s modulus and Poisson’s ratio,
respectively. Thus, these strains can also be expressed by the stress components in local oblique
coordinates by substituting Equation (12) into (13).

Finally, by using Equation (8) and integrating following geometrical equations
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the displacements u, v, and w in Cartesian coordinate system can be solved.
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Following aformentioned procedure, the analytical general solutions of stresses, strains, and dis-
placements in the global coordinate system, but in terms of the local oblique coordinates R, S , and
T, can be obtained

Only nine sets (i D13~21) of the analytical general solutions for local linear stresses in Table I
related to pure bending and twisting states will be considered in the new finite element formulations,
which are given in Appendix A.

3. CONSTRUCTION OF A NEW UNSYMMETRIC 8-NODE HEXAHEDRAL ELEMENT
US-ATFH8

For a 3D 8-node, 24-DOF (three DOFs per node) finite element model shown in Figure 2, the virtual
work principle [37, 38] can be written asZZZ

V e
ı N©T O¢dV �

ZZZ
V e
ı NuTbdV �

Z
� e
ı NuTTd	 � ı NuT

c fc D 0; (15)

in which V e denotes the element volume; 	 e represents the element boundary face; O¢ is the real
stress vector of the element; b, T, and fc are the real body, surface, and concentrated forces of the
element, respectively; ı Nuc is the vector of virtual displacements at the points of the concentrated
forces; ı Nu is the virtual displacement fields; and ı N© is the corresponding virtual strain fields.

First, the virtual displacement fields ı Nu D Œ ıu ıv ıw 
T should satisfy exactly the minimum
inter-element and intra-element displacement continuity requirements. So, they can be assumed as

ı Nu D NNıqe; (16)
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in which ıui , ıvi , and ıwi (i D1~8) are the nodal virtual displacements along x, y, and ´ direc-
tions, respectively; NNi (i D1~8) are just the shape functions of the traditional 8-node trilinear
isoparametric element that satisfy all continuity requirements and have been given by Equation (2).

Thus, the corresponding virtual strain fields ı N" are

ı N" D
�
ı N"x ı N"y ı N"´ ı N�xy ı N�y´ ı N�´x

�T
D NBıqe; (19)

where NB is the strain matrix of the traditional 8-node trilinear isoparametric element:

NB D L NN D
1

jJj
NB�; (20)

Figure 2. An 8-node hexahedral element.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



P.-L. ZHOU ET AL.

with

L D

2
6666664

@

@x
0 0

@

@y
0

@

@´

0
@

@y
0

@

@x

@

@´
0

0 0
@

@´
0

@

@y

@

@x

3
7777775

T

; (21)

and jJj is the Jacobian determinant,

jJj D

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌
ˇ

@x

@�

@y

@�

@´

@�

@x

@�

@y

@�

@´

@�

@x

@�

@y

@�

@´

@�

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌
ˇ
; (22)

x D

8X
iD1

NNixi ; y D

8X
iD1

NNiyi ; ´ D

8X
iD1

NNi´i : (23)

Second, assume that the real stresses O� in Equation (15) are derived from the following assumed
displacement fields expressed in terms of the local oblique coordinates R, S , and T :

Ou D

8<
:
Ou
Ov
Ow

9=
; D

P˛ D

2
4 1 0 0 R 0 0 S 0 0 T 0 0 U13 � � � U21 RST 0 0

0 1 0 0 R 0 0 S 0 0 T 0 V13 � � � V21 0 RST 0

0 0 1 0 0 R 0 0 S 0 0 T W13 � � � W21 0 0 RST

3
5
8̂<
:̂
˛1
:::

˛24

9>=
>; ;
(24)

where ˛i (i D1~24) are 24 undetermined coefficients; Ui , Vi , and Wi (i D13~21) are the analyti-
cal general solutions for quadratic displacements given by Equations (A.20) to (A.22); the first 12
columns of interpolation matrix P are also displacement analytical general solutions satisfying all
governing equations, as shown in Table I. The last three columns containing the cubic term RST are
not the analytical solutions, but they can keep linear independence between each two columns and
make the resulting stress components invariant for global coordinate rotation.

Substitution of the Cartesian coordinates of eight corner nodes into Equation (24) yields

Od ˛ D qe; (25)

where

Od D

2
6664

OP.x1; y1; ´1/
OP.x2; y2; ´2/

M
OP.x8; y8; ´8/

3
7775 : (26)

qe D Œ u1 v1 w1 � � � u8 v8 w8 
T; (27)

in which ui , vi , and wi (iD1~8) are the nodal displacements along x, y, and ´ directions,
respectively. Then, ˛i (i D1~24) can be solved by

˛ D Od�1qe: (28)
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And the assumed displacement fields Ou given by Equation (24) can be rewritten as

Ou D

8<
:
Ou
Ov
Ow

9=
; D P˛ D P Od�1qe: (29)

Then, the corresponding strains can be obtained by substituting Equation (29) into (14):

O" D
�
O"x O"y O"´ O�xy O�y´ O�´x

�T
D QP Od�1qe D OBqe; (30)

where OB D QP Od�1 is the strain matrix, and

QP D

2
66666666664

0 0 0 a1
J0

0 0 a2
J0

0 0 a3
J0

0 0 "x13 � � � "x21 ua 0 0

0 0 0 0 b1
J0

0 0 b2
J0

0 0 b3
J0

0 "y13 � � � "y21 0 ub 0

0 0 0 0 0 c1
J0

0 0 c2
J0

0 0 c3
J0

"´13 � � � "´21 0 0 uc

0 0 0 b1
J0

a1
J0

0 b2
J0

a2
J0

0 b3
J0

a3
J0

0 �xy13 � � � �xy21 ub ua 0

0 0 0 0 c1
J0

b1
J0

0 c2
J0

b2
J0

0 c3
J0

b3
J0
�y´13 � � � �y´21 0 uc ub

0 0 0 c1
J0

0 a1
J0

c2
J0

0 a2
J0

c3
J0

0 a3
J0
�x´13 � � � �x´21 uc 0 ua

3
77777777775
; (31)

with

uaD
1

J0
.a1STCa2RTCa3RS/; ubD

1

J0
.b1STCb2RTCb3RS/; ucD

1

J0
.c1STCc2RTCc3RS/;

(32)

in which ("xi , "yi , "´i , �xyi , �y´i , �´xi / (iD13~21) are the nine sets of analytical solutions for linear
strains given by Equations (A.3), (A.5), (A.7), (A.9), (A.11), (A.13), (A.15), (A.17) and (A.19),
respectively.

According to the constitutive relation Equation (13), the corresponding stresses can be solved:

O¢ D

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

O�x
O�y
O�´
O�xy
O�y´
O�´x

9>>>>>=
>>>>>;
D DO© D D OBqe D D QP Od�1qe; (33)

where D is the elasticity matrix,

D D C�1 (34)

Substitution of Equations (16), (19), and (30) into (15) yieldsZZZ
V e
ı N©T O�dV �

ZZZ
V e
ı NuTbdV �

Z
� e
ı NuTTd	 � ı NuT

c fc

D

ZZZ
V e
ı N©TDO©dV �

ZZZ
V e
ı NuTbdV �

Z
� e
ı NuTTd	 � ı NuT

c fc

D .ıqe/T
�ZZZ

V e

NBTD OBqedV �
ZZZ

V e

NNTbdV �
Z
� e

NNTTd	 � NNT
c fc

�

D .ıqe/T.Keqe � Fe/

D 0

; (35)

in which

Ke D

ZZZ
V e

NBTD OBdV ; (36)
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Figure 3. Constant stress/strain patch test. Outer dimensions: unit cube; E D 1:0 � Ą106I� D 0:25.

Table II. List of element models for comparison.

No. Symbol Explanation of elements References

1 C3D8 Eight-node trilinear hexahedral element with full integration in ABAQUS [1]
2 C3D8R Eight-node trilinear hexahedral element with reduced integration and [1]

hourglass control in ABAQUS
3 C3D8I Eight-node incompatible hexahedral element in ABAQUS [1]
4 C3D8H Eight-node hybrid hexahedral element in ABAQUS [1]
5 Wilson_H8 Eight-node incompatible hexahedral element by Wilson’s method [2]
6 HEXA(8) Eight-node hexahedral element by MacNeal et al. [56]
7 ASQBI Eight-node hexahedral element by Belytschko and Bindeman [15]
8 NEWHEX Eight-node brick element based on EAS method [16]
9 HVCC8/ Eight-node incompatible hexahedral elements using hexahedral volume [27]

-ES/ EM coordinate method and cannot strictly pass the constant
strain patch test.

10 TH8 Unsymmetric 8-node hexahedral element with adjustable factor [46]
ˇ.D 0:01/

Fe D
ZZZ

V e

NNTbdV C
Z
� e

NNTTd	 C NNT
c fc : (37)

Due to the arbitrariness of ıqe in Equation (35), the following finite element equation can be
obtained:

Keqe � Fe D 0; (38)

where Fe is the nodal equivalent load vector of the element; Ke is the element stiffness matrix, and
it is an unsymmetric matrix. Substitution of Equations (20) and (33) into (36), the final element
stiffness matrix can be obtained:

Ke D

ZZZ
V e

NBTD OBdV D
Z 1

�1

Z 1

�1

Z 1

�1

NB�T

jJj
D OB jJj d�d�d�

D

Z 1

�1

Z 1

�1

Z 1

�1

NB�TD OBd�d�d� D
Z 1

�1

Z 1

�1

Z 1

�1

NB�TD QP Od�1d�d�d�

: (39)

Because there is no Jacobian determinant existing in aforementioned expression, the resulting model
will avoid troubles caused by ill-conditioned shape and be insensitive to mesh distortions. All afore-
mentioned formulations can be expressed in terms of isoparametric coordinates � , �, and � by using
Equations (4) and (23), and a 2�2�2Gauss integration scheme is found to be enough for evaluating
Ke given by Equation (39), although the 3 � 3 � 3 scheme is theoretically needed.
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The equivalent nodal load vector Fe can be determined by the same procedure for the traditional
8-node trilinear isoparametric element. And the stresses at any point can be directly calculated
by substituting the isoparametric, or Cartesian coordinates of this point within an element into
Equation (33).

The new element is denoted by US-ATFH8.

Figure 4. Cheung and Chen beam tests. E D 1500I� D 0:25.
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4. NUMERICAL EXAMPLES

In this section, some classical benchmark problems are employed to assess the performance of the
new element US-ATFH8, and results obtained by other 8-node hexahedral elements listed in Table II
are also given for comparisons.

4.1. Constant stress/strain patch test (Figure 3)

A unit cube as shown in Figure 3 is divided by seven irregular hexahedral elements. Nodes 1 to 8 are
the inner nodes, and their locations are also given in Figure 3. The displacement fields corresponding
to the constant strain are

u D 10�3.2x C y C ´/=2; v D 10�3.x C 2y C ´/=2; w D 10�3.x C y C 2´/=2: (40)

And the corresponding stress solutions are

�x D �y D �´ D 2000; �xy D �y´ D �´x D 400: (41)

Table III. The x coordinates of nodes 1, 2, 3, and 4 in Meshes 2 to 10
(Figure 4).

Mesh

x-coordinates (2) (3) (4) (5) (6) (7) (8) (9) (10)

x1 5 5 5 5 2 2 6 8 8
x2 5 5 4 6 8 5 5 5 8
x3 5 6 5 6 8 5 5 6 8
x4 5 6 6 5 2 8 8 2 2

Table IV. The normalized deflections at point A for Cheung and Chen tests (Figure 4).

Model TH8

Mesh C3D8 C3D8R C3D8I Wilson_H8 HVCC8 ˇ D0.01 ˇ D0.0001 US-ATFH8

Load M : normalized deflections at point A, exact solution is 100

1 0.0956 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.3382 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 0.2684 0.8756 0.8931 0.9397 1.0027 1.0000 1.0000 1.0000
4 0.2529 0.7652 0.7911 0.8962 1.0020 1.0000 1.0000 1.0000
5 0.2441 0.7738 0.7717 0.8836 1.0000 1.0000 1.0000 1.0000
6 0.0919 0.4516 0.4085 0.7875 1.0000 1.0000 1.0000 1.0000
7 0.1435 7.0712 0.2638 — — 1.0000 1.0000 1.0000
8 0.1570 11.4629 0.5900 — — 1.0000 1.0000 1.0000
9 0.1322 6.8514 0.1923 — — 1.0000 1.0000 1.0000
10 0.0956 4.4017 0.2111 — — 1.0000 1.0000 1.0000
11 0.8013 0.9956 0.9578 0.9826 1.0000 1.0000 1.0000 1.0000
12 0.6905 46.0988 0.7228 — — 1.0000 1.0000 1.0000

LoadP : normalized displacements at point A, exact solution is 102.6
1 0.0942 0.7554 0.7554 0.7554 0.7554 0.7554 0.7554 0.7554
2 0.3329 0.9367 0.9353 0.9340 0.9340 0.9380 0.9381 0.9340
3 0.2648 0.8440 0.8445 0.8773 0.9254 0.9370 0.9358 0.9262
4 0.2692 0.7650 0.7696 0.8479 0.9295 0.9378 0.9367 0.9270
5 0.2485 0.7694 0.7658 0.8491 0.9383 0.9380 0.9381 0.9343
6 0.1330 0.5368 0.4800 0.8723 1.2292 1.0038 1.0039 1.0135
7 0.1829 22.2781 0.3260 — — 0.8595 0.8586 0.8615
8 0.1787 23.9254 0.6263 — — 0.9529 0.9491 0.9929
9 0.1713 21.3401 0.2803 — — 0.8052 0.8002 0.9026
10 0.1275 18.0603 0.2549 — — 0.7409 0.7368 0.7062
11 0.8690 0.9922 0.9536 0.9770 0.9999 0.9889 0.9889 0.9875
12 0.7733 49.7021 0.7717 — — 0.9618 �2:6592 0.9926
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The displacements of the boundary nodes are treated as the displacement boundary conditions. Exact
results of the displacements and stresses at the inner nodes can be obtained by the new element US-
ATFH8. Furthermore, the exact stresses at any point (by substituting the Cartesian coordinates into
Equation (33)) can also be obtained. It can be concluded that the element US-ATFH8 can strictly
pass the constant stress/strain patch test.

Elements Wilson_H8 [2] and HVCC8 series [27] in Table II cannot pass this patch test.

4.2. Cheung and Chen beam tests [17] (Figure 4)

This example was proposed by Cheung and Chen [17] for testing the performance of 8-node hexahe-
dral elements. The geometric, material, and displacement boundary conditions are given in Figure 4.

Table V. The results of stress at point B for Cheung and Chen tests (Figure 4).

Model TH8

Mesh C3D8 C3D8R C3D8I Wilson_H8 HVCC8 ˇ D0.01 ˇ D0.0001 US-ATFH8 Exact

Load M
1 �131:1 2:51 � 10�12 �3000 �3000 �3000 �3000 �3000 �3000 �3000

2 �463:8 9:99 � 10�13 �3000 �3000 �3000 �3000 �3000 �3000 �3000

3 �377:7 �2:33 � 10�13 �2632 �2775 �3007 �3000 �3000 �3000 �3000
4 �380:3 �24:16 �2249 �3161 �3003 �3000 �3000 �3000 �3000
5 �238:8 �18:30 �2404 �2251 �3000 �3000 �3000 �3000 �3000
6 �30:63 277.5 �1950 �241:3 �3000 �3000 �3000 �3000 �3000

7 �187:5 7:79 � 10�13 �719:9 — — �3000 �3000 �3000 �3000
8 �270:8 �130:8 �1500 — — �3000 �3000 �3000 �3000
9 �154:6 40.72 �636:2 — — �3000 �3000 �3000 �3000
10 �82:50 204.1 �925:5 — — �3000 �3000 �3000 �3000
11 �1316 �321:9 �2999 �2340 �3000 �3000 �3000 �3000 �3000
12 �1266 �261:6 �2810 — — �3000 �3000 �3000 �3000

Load P
1 �98:36 2:76 � 10�12 �2250 �2250 �2250 �2250 �2250 �2250 �2250

2 �427:4 5:66 � 10�13 �2841 �3375 �3375 �3375 �3375 �3375 �3375
3 �320:6 0.00 �2419 �3037:2 �3211:4 �3257:5 �3252:2 �3229:6 �3262:5
4 �360:9 �18:14 �2212 �3667 �3348 �3408:8 �3403:4 �3373:5 �3375
5 �219:6 �6:908 �2243 �2518 �3238 �3225 �3225 �3226:6 �3150
6 �57:09 208.1 �1823 �209:8 �3641 �3150 �3150 �3198:9 �2700
7 �332:1 755.3 �925:9 — — �2883:6 �2877:9 �3038:6 �3375
8 �229:5 �124:2 �1647 — — �3239:5 �3226:7 �3369:9 �3375
9 �2922 22.04 �820:7 — — �2695:9 �2677:9 �3083:2 �3262:5
10 �1091 197.0 �6672 — — �2248:8 �2234:6 �2170:9 �2700
11 �1781 �371:0 �3947 �3234 �4179 �4125:4 �4125:4 �4125:5 �4050
12 �1746 �321:4 �3738 — — �4123:4 �4123:7 �4125:3 �4050

Figure 5. Rotation dependence test: cantilever beam problem and mesh. E D 100:0I� D 0:3.
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Twelve meshes divisions are designed to analyze this cantilever beam subjected to a pure bending
moment M and a transverse shear force P at the free end, in which the x coordinates of nodes 1, 2,
3, and 4 in Meshes (2) to (10) are listed in Table III. The normalized deflections at point A and the
results of stresses at point B are given in Tables IV and V, respectively, and the results of deflections
at points a1, a2, a3, and a4in selected mesh divisions under loadingP are also given in Table VI.

From Tables IV and V, it can be seen that exact displacements and stresses under pure bending
state can be obtained by element TH8 (ˇ D0.01 and 0.0001) [46] and the new element US-ATFH8,
no matter how meshes are distorted, and no matter whether the four corner nodes of the interface are

Table VI. The results of deflections at points a1, a2, a3, and a4
under loadP (Figure 4).

Mesh Node TH8 ˇ D0.01 TH8 ˇ D0.0001 US-ATFH8

(7) a1 88.20 88.09 88.39
a2 88.18 88.09 88.40
a3 65.01 �2292:81 88.87

a4 112.29 2469.91 88.97

(8) a1 97.57 97.19 100.44
a2 97.77 97.38 101.87
a3 95.92 �11:72 100.42

a4 99.64 206.51 102.01

(9) a1 81.87 81.33 91.71
a2 82.62 82.10 92.61
a3 99.02 1694.96 92.49

a4 66.23 �1530:77 92.59

(10) a1 75.20 74.73 69.19
a2 76.01 75.60 72.45
a3 82.38 831.37 69.54

a4 69.15 �680:72 72.38

(12) a1 105.17 476.83 102.35

a2 98.68 �272:84 101.84
a3 102.04 102.14 102.31
a4 101.72 101.76 101.77

Reference solution: 102.6.

Table VII. Results of the displacement at point A calculated for the rotational frame invariance test
(Figure 5).

˛1 ˛2 uA vA wA

q
u2A C v

2
A C w

2
A Normalized

0ı 0ı �0.235778E-01 �0.454176E-01 0.336472E-03 0.051174 0.96260

0ı 40ı �0.182779E-01 �0.454176E-01 �0.148978E-01 0.051174 0.96260
10ı �0.258869E-01 �0.415536E-01 �0.148978E-01 0.051174 0.96260
20ı �0.327094E-01 �0.364271E-01 �0.148978E-01 0.051174 0.96260
30ı �0.385379E-01 �0.301938E-01 �0.148978E-01 0.051174 0.96260
40ı �0.431956E-01 �0.230430E-01 �0.148978E-01 0.051174 0.96260
45ı �0.450395E-01 �0.191906E-01 �0.148978E-01 0.051174 0.96260
50ı �0.465407E-01 �0.151921E-01 �0.148978E-01 0.051174 0.96260
60ı �0.484717E-01 �0.687962E-02 �0.148978E-01 0.051174 0.96260
70ı �0.489300E-01 0.164193E-02 �0.148978E-01 0.051174 0.96260
80ı �0.479015E-01 0.101136E-01 �0.148978E-01 0.051174 0.96260
90ı �0.454176E-01 0.182779E-01 �0.148978E-01 0.051174 0.96260

90ı 90ı �0.454176E-01 0.336472E-03 �0.235778E-01 0.051174 0.96260

Overkill solution — — — 0.53162 1.00000
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coplanar or not. Furthermore, it is worth mentioning that the new element US-ATFH8 can produce
exact pure bending solutions in all directions when various distorted meshes are used. For the linear
bending case, the new element US-ATFH8 can also present relatively good and stable solutions in
all mesh cases. But the results obtained by element TH8 deeply depend on the adjustable factor ˇ
and are not stable. Especially, when ˇ D0.0001, even wrong solutions will appear in some cases
(see displacement result for load P using Mesh (12) in Table IV). This problem is more clear in
Table VI, many incorrect results for deflections at four different end points of the beam obtained by
element TH8 appear when ˇ D0.0001 and the results obtained by TH8 (ˇ D0.01) are not stable in
some occasions.

4.3. Rotational frame dependence test on a cantilever beam with fully fixed end (Figure 5)

Because the trial functions for displacements Ou given in Equation (24) may be not completed in
the global Cartesian coordinates, rotational frame dependence test should be performed for the new
element US-ATFH8.

Figure 6. Cook’s skew beam problem and a typical 2 � 2 � 2 mesh.

Table VIII. Results of Cook’s skew beam problem (Figure 6).

Mesh

Element 2 � 2 � 1 2 � 2 � 2 4 � 4 � 4 8 � 8 � 4 8 � 8 � 8 16 � 16 � 16

Deflection at point C: vC (reference solution: 23.86a/
C3D8 13.95 14.05 19.81 22.48 22.50 23.36
C3D8R 20.56 20.50 22.51 23.32 23.32 23.58
C3D8I 20.39 20.32 22.50 23.32 23.32 23.58
TH8 ˇ D0.01 22.73 22.59 23.27 23.67 23.67 23.81
US-ATFH8 22.67 22.56 23.27 23.67 23.67 23.81

Maximum principle stress at point A: �Amax (reference solution: 0.2352a/

C3D8 0.1389 0.1423 0.1889 0.2164 0.2159 0.2267
C3D8R 0.1299 0.1300 0.1861 0.2138 0.2134 0.2248
C3D8I 0.1741 0.1746 0.2172 0.2320 0.2317 0.2340
TH8 ˇ D0.01 0.1952 0.1949 0.2218 0.2326 0.2324 0.2345
US-ATFH8 0.1973 0.1952 0.2214 0.2325 0.2322 0.2345

Minimum principle stress at point B: �Bmin(reference solution: - 0.2023a/

C3D8 �0.0970 �0.0974 �0.1337 �0.1747 �0.1727 �0.1912
C3D8R �0.0664 �0.0664 �0.1282 �0.1666 �0.1663 �0.1848
C3D8I �0.1689 �0.1664 �0.1804 �0.1976 �0.1963 �0.2013
TH8 ˇ D0.01 �0.1548 �0.1534 �0.1869 �0.1979 �0.1977 �0.2013
US-ATFH8-A �0.1554 �0.1574 �0.1874 �0.1976 �0.1975 �0.2013

aResults by traditional 20-node hexahedral isoparametric element using 46 � 46 � 46 mesh in
Abaqus [1].
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The geometric and displacement boundary conditions of a cantilever beam divided by two dis-
torted elements are given in Figure 5. The Young’s modulus E D100.0, and the Poisson ratio
� D0.3. Let the Cartesian coordinate system xyz rotate counterclockwise from ˛1 D 0o to 90o in
steps of 10o around ´-axis and then rotate counterclockwise ˛2 D 40o around y-axis, the displace-
ments at point A are solved at each step. The magnitude of displacement

p
u2 C v2 C w2 at point

A is monitored to study the rotational frame-dependent behavior. The results obtained by the new
element US-ATFH8 are given in Table VII. The magnitude of displacements based on an ‘overkill’
solution is used as a reference solution, which is obtained by using 50,000 20-node hexahedral
isoparametric elements of Abaqus [1]. It can be seen that the present model US-ATFH8 provides
the invariance for the coordinate rotation.

4.4. Bending problems for skew beam, curving beam and twisted beam

4.4.1. Cook’s skew beam problem (Figure 6). This example shown in Figure 6 was proposed by
Cook [56] to test the convergence of elements. A skew cantilever is subjected to a shear uniformly
distributed load at the free edge. The geometric, material, and displacement boundary conditions are
given in Figure 6. The results of vertical deflection at point C, the maximum principal stress at point
A, and the minimum principal stress at point B are all listed in Table VIII. Those results obtained
by the models that can pass the constant strain/stress patch test are also given for comparison. It can
be seen that the present element US-ATFH8 exhibits good convergence.

Figure 7. Bending of a thin curved beam.

Table IX. Normalized deflections at point A for a thin curved beam subjected to an in-plane shear P1
(Figure 7).

Number Wilson TH8
of elements C3D8 C3D8R C3D8I ASQBI NEWHEX _H8 HVCC8 ˇ D0.01 US-ATFH8

2 0.006 0.049 0.049 0.669 0.669 0.107 1.043 0.947 0.909
4 0.033 0.581 0.580 0.895 0.895 0.717 1.015 0.991 0.974
6 0.077 0.883 0.881 0.978 0.978 0.935 1.012 1.002 0.992
8 0.136 0.966 0.964 0.997 0.997 0.984 1.011 1.007 0.999
10 0.208 0.992 0.990 1.003 1.003 0.999 1.011 1.009 1.003
12 0.289 1.002 1.000 — — 1.004 1.011 1.010 1.005
14 0.378 1.006 1.005 — — 1.007 1.011 1.011 1.007
16 0.471 1.009 1.007 — — 1.009 1.011 1.012 1.008
20 0.664 1.011 1.010 — — 1.010 1.012 1.012 1.009

Analytical 1.000a

aStandard solution is 0.08734.
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4.4.2. Thin curved beam (Figure 7). A thin curved beam with fully fixed end is shown in Figure 7.
The inner radius Ri , thickness h, and width t of the beam are 4.12, 0.2, and 0.1, respectively. The
Young’s modulus E D 1:0 � 107, and the Poisson ratio � D0.3. Two load cases are considered:
in-plane shear P1 and out-of-plane shear P2. The results of the deflection at point A are listed in
Tables IX and X, respectively. Again, the new element US-ATFH8 performs well for this test.

4.4.3. Twisted beam problem (Figure 8). This example was proposed by MacNeal and Harder [57]
to test the effect of warping. As shown in Figure 8, a cantilever beam is twisted 90o from root to
tip. This twisted beam is fixed at the root and subjected to unit in-plane and out-of-plane forces at
the tip. The length, width, and thickness are 12, 1.1, and 0.32, respectively. The Young’s modulus
E D 2:9 � 107, and the Poisson ratio � D0.22. Different meshes used for this example are also
given in Figure 8, in which meshes (a), (b), (c), and (d) are distorted meshes newly designed by

Table X. Normalized deflections at point A for a thin curved beam subjected to an out-of-plane
shear P2 (Figure 7).

Number TH8
of elements C3D8 C3D8R C3D8I Wilson_H8 HVCC8 ˇ D0.01 US-ATFH8

2 0.132 0.192 0.160 0.190 0.799 0.896 0.968
4 0.202 0.604 0.570 0.666 0.890 0.952 0.934
6 0.230 0.847 0.821 0.865 0.920 0.964 0.945
8 0.250 0.920 0.901 0.918 0.934 0.969 0.952
10 0.269 0.944 0.929 0.936 0.942 0.972 0.956
12 0.289 0.953 0.942 0.945 0.947 0.973 0.960
14 0.311 0.958 0.948 0.949 0.950 0.974 0.962
16 0.334 0.960 0.952 0.952 0.952 0.975 0.964
20 0.386 0.962 0.956 0.956 0.955 0.976 0.966

Analytical 1.000a

aStandard solution is 0.5022.

Figure 8. Twisted beam problem and meshes. E D 2:9 � 107; � D 0:22.
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Table XI. Normalized deflections at point A for a twisted
beam subjected to an in-plane force (Figure 8).

Mesh C3D8 C3D8I TH8 ˇ D0.01 US-ATFH8

4 � 2 0.0313 0.9750 1.0646 1.0567
8 � 2 0.1145 0.9911 1.0155 1.0106
8 � 4 0.1144 0.9977 1.0090 1.0057
16 � 2 0.3728 0.9967 1.0035 1.0014
16 � 4 0.3767 0.9992 1.0023 1.0009
16 � 8 0.3799 1.0000 1.0023 1.0010
a 0.0584 0.6137 1.0407 1.0235
b 0.0528 0.6238 1.0388 1.0289
c 0.0446 0.1024 1.1403 1.0203
d 0.0374 0.0842 1.3741 0.7756

Exact 1.0000a

aThe standard value is 0.005424.

Table XII. Normalized deflections at point A for a twisted
beam subjected to an out-of-plane force (Figure 8).

Mesh C3D8 C3D8I TH8 ˇ D 0:01 US-ATFH8

4 � 2 0.0834 0.9246 1.0222 1.0252
8 � 2 0.2297 0.9780 1.0029 1.0033
8 � 4 0.2242 0.9820 0.9974 0.9985
16 � 2 0.4998 0.9926 0.9991 0.9991
16 � 4 0.4909 0.9942 0.9980 0.9983
16 � 8 0.4912 0.9947 0.9980 0.9982
a 0.1538 0.8886 0.9472 0.9885
b 0.1377 0.8925 0.9359 0.9995
c 0.1377 0.3056 1.0361 1.0094
d 0.1156 0.2679 1.1296 1.0613
Exact 1.0000a

aThe standard value is 0.001754

cutting the beam with different planes. And most of these cutting planes are parallel to new plane xy
after x-axis rotates 45o or �45o around y-axis. The normalized solutions at tip point A are listed in
Tables XI and XII. It can be seen that the new element US-ATFH8 can produce better results, even
when the severely distorted meshes are used.

4.5. Nearly incompressible problems (Figure 9)

A thick-walled cylinder is subjected to a uniformly distributed internal pressure p D1. This example
proposed by MacNeal [57] is used to test volume locking problem when the Poisson’s ratio is very
close to 0.5. As shown in Figure 9, due to symmetry, only a quarter of the cylinder with unit thickness
is considered. The nodal displacements along thickness direction are all constrained. The exact
solution of the radial displacement ur is same as that for the plane strain state and given by [57]:

ur D
.1C �/pR21
E
�
R22 �R

2
1

� �R22=r C .1 � 2�/r� ; (42)

where R1 is the inner radius, and R2 is the outer radius. In this example, let R1 D 3, R2 D 9. When
the Poisson’s ratio is � D 0:49; 0:499; 0:4999, the corresponding radial displacement ur at r D R1
are 5:0399 � 10�3; 5:0602 � 10�3; 5:0623 � 10�3, respectively.

The normalized results of the radial displacement ur at r D R1 are given in Table XIII. It can
be seen that the standard 8-node trilinear isoparametric element suffers from volumetric locking
problem, while other improved models can give good results. Although the solutions obtained by
element US-ATFH8 are not the best answers, it is clearly shown that the new element is free of the
volumetric locking.
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Figure 9. A quarter of thick-walled cylinder and mesh division.

Table XIII. Normalized radial displacements at inner radius for a thick-walled cylinder (Figure 9).

Poisson’s ratio H8a C3D8H C3D8I HEXA(8) ASQBI TH8 ˇ D0.01 US-ATFH8

0.49 0.849 0.993 0.986 0.986 0.988 0.978 0.978
0.499 0.361 0.993 0.986 0.986 0.987 0.978 0.978
0.4999 0.053 0.993 0.986 0.986 0.987 0.978 0.978

aH8 means the standard 8-node trilinear isoparametric element.

5. CONCLUSIONS

After successful development of plane 4-node, 8-DOF quadrilateral element US-ATFQ4 [45], which
can break through the limitation defined by MacNeal [6, 7], a new 3D 8-node hexahedral element
US-ATFH8 is constructed by employing the unsymmetric element method, the analytical trial func-
tion method and the oblique coordinate method. This new 3D low-order element, which can be
treated as an extension from the plane element US-ATFQ4, possesses following advantages superior
to most existing 8-node hexahedral element models:

(i) Its formulations contain no adjustable factor, and can be used for both isotropic and
anisotropic cases;

(ii) It can strictly pass both the first-order (constant stress/strain) patch test and the second-order
patch test for pure bending (free of trapezoidal locking), which cannot be achieved by most
other existing finite element models;

(iii) It is free of volume locking and provides the invariance for coordinate rotation;
(iv) It is insensitive to various mesh distortions and can produce stable and better solutions for

higher-order problems (the orders of the displacement fields are higher than first order and
second order).

The appearance of aforementioned new low-order elements with high accuracy and distortion resis-
tance may open a way for establishing new finite element system, which can relax the requirements
for hexahedron mesh generation. This point may have great significance for further development of
the finite element method. Although the element stiffness matrix is unsymmetric, it is not a seri-
ous issue in most of the problems in structural analyses: many solvers can handle this situation
easily [1, 58].

Of course, before this new model can be really applied in practical engineering, many further
technique problems must be solved. Whether the present method can be extended to the applications
of shell and nonlinear problems is still a valuable and challenging research topic that should be paid
attention to. Some related developments will be reported in near future.
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APPENDIX A: NINE SETS OF ANALYTICAL GENERAL SOLUTIONS FOR GLOBAL
LINEAR STRESSES, STRAINS, AND QUADRATIC DISPLACEMENTS IN TERMS OF

R, S , AND T

Let

h1 D Nb2 Nc3 C Nb3 Nc2; h2 D Na2 Nc3 C Na3 Nc2; h3 D Na2 Nb3 C Na3 Nb2

h4 D Nb1 Nc3 C Nb3 Nc1; h5 D Na1 Nc3 C Na3 Nc1; h6 D Na1 Nb3 C Na3 Nb1

h7 D Nb1 Nc2 C Nb2 Nc1; h8 D Na1 Nc2 C Na2 Nc1; h9 D Na1 Nb2 C Na2 Nb1

: (A.1)

Then, from Equations (11) to (14), the resulting solutions for global linear stresses, strains, and
quadratic displacements can be written as follows.

A.1. Nine sets of analytical general solutions for global linear stresses and strains in terms of
R, S , and T

(1) The 13th set of solutions for global stresses and strains.
Stresses:

�x13 D Na
2
2R; �y13 D

Nb22R; �´13 D Nc
2
2R; �xy13 D Na2

Nb2R; �y´13 D Nb2 Nc2R; �´x13 D Na2 Nc2RI
(A.2)

Strains:
for isotropic case,8̂̂

<
ˆ̂:

"x13 D
1
E

�
Na22 � �

Nb22 � � Nc
2
2

�
R D Ax13R; "y13 D

1
E

�
Nb22 � � Na

2
2 � � Nc

2
2

�
R D Ay13R

"´13 D
1
E
. Nc22 � � Na

2
2 � �

Nb22/R D A´13R; �xy13 D
2.1C�/
E
Na2 Nb2R D Axy13R

�y´13 D
2.1C�/
E
Nb2 Nc2R D Ay´13R; �´x13 D

2.1C�/
E
Na2 Nc2R D A´x13R

;

(A.3a)

for anisotropic case,8̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

"x13 D
�
Na22C11 C

Nb22C12 C Nc
2
2C13 C Na2

Nb2C14 C Nb2 Nc2C15 C Na2 Nc2C16
�
R D Ax13R

"y13 D
�
Na22C21 C

Nb22C22 C Nc
2
2C23 C Na2

Nb2C24 C Nb2 Nc2C25 C Na2 Nc2C26
�
R D Ay13R

"´13 D
�
Na22C31 C

Nb22C32 C Nc
2
2C33 C Na2

Nb2C34 C Nb2 Nc2C35 C Na2 Nc2C36
�
R D A´13R

�xy13 D
�
Na22C41 C

Nb22C42 C Nc
2
2C43 C Na2

Nb2C44 C Nb2 Nc2C45 C Na2 Nc2C46
�
R D Axy13R

�y´13 D
�
Na22C51 C

Nb22C52 C Nc
2
2C53 C Na2

Nb2C54 C Nb2 Nc2C55 C Na2 Nc2C56
�
R D Ay´13R

�´x13 D
�
Na22C61 C

Nb22C62 C Nc
2
2C63 C Na2

Nb2C64 C Nb2 Nc2C65 C Na2 Nc2C66
�
R D A´x13R

:

(A.3b)

(2) The 14th set of solutions for global stresses and strains
Stresses:

�x14 D Na
2
3R; �y14 D

Nb23R; �´14 D Nc
2
3R; �xy14 D Na3

Nb3R; �y´14 D Nb3 Nc3R; �´x14 D Na3 Nc3RI
(A.4)

Strains:
for isotropic case,

8̂̂
<
ˆ̂:

"x14 D
1
E

�
Na23 � �

Nb23 � � Nc
2
3

�
R D Ax14R; "y14 D

1
E

�
Nb23 � � Na

2
3 � � Nc

2
3

�
R D Ay14R

"´14 D
1
E

�
Nc23 � � Na

2
3 � �

Nb23
�
R D A´14R; �xy14 D

2.1C�/
E
Na3 Nb3R D Axy14R

�y´14 D
2.1C�/
E
Nb3 Nc3R D Ay´14R; �´x14 D

2.1C�/
E
Na3 Nc3R D A´x14R

;

(A.5a)
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for anisotropic case,

8̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:̂

"x14 D
�
Na23C11 C

Nb23C12 C Nc
2
3C13 C Na3

Nb3C14 C Nb3 Nc3C15 C Na3 Nc3C16
�
R D Ax14R

"y14 D
�
Na23C21 C

Nb23C22 C Nc
2
3C23 C Na3

Nb3C24 C Nb3 Nc3C25 C Na3 Nc3C26
�
R D Ay14R

"´14 D
�
Na23C31 C

Nb23C32 C Nc
2
3C33 C Na3

Nb3C34 C Nb3 Nc3C35 C Na3 Nc3C36
�
R D A´14R

�xy14 D
�
Na23C41 C

Nb23C42 C Nc
2
3C43 C Na3

Nb3C44 C Nb3 Nc3C45 C Na3 Nc3C46
�
R D Axy14R

�y´14 D
�
Na23C51 C

Nb23C52 C Nc
2
3C53 C Na3

Nb3C54 C Nb3 Nc3C55 C Na3 Nc3C56
�
R D Ay´14R

�´x14 D
�
Na23C61 C

Nb23C62 C Nc
2
3C63 C Na3

Nb3C64 C Nb3 Nc3C65 C Na3 Nc3C66
�
R D A´x14R

:

(A.5b)

(3) The 15th set of solutions for global stresses and strains
Stresses:

�x15D2 Na2 Na3R; �y15D2 Nb2 Nb3R; �´15D2 Nc2 Nc3R; �xy15 D h3R; �y´15 D h1R; �´x15 D h2RI

(A.6)

Strains:
for isotropic case,

8̂̂
<
ˆ̂:

"x15D
2
E

�
Na2 Na3�� Nb2 Nb3�� Nc2 Nc3

�
RDAx15R; "y15D

2
E

�
Nb2 Nb3�� Na2 Na3�� Nc2 Nc3

�
RDAy15R

"´15D
2
E

�
Nc2 Nc3�� Na2 Na3�� Nb2 Nb3

�
RDA´15R; �xy15D

2.1C�/
E

�
Na2 Nb3C Na3 Nb2

�
RDAxy15R

�y´15D
2.1C�/
E

�
Nb2 Nc3C Nb3 Nc2

�
RDAy´15R; �´x15D

2.1C�/
E

. Na2 Nc3C Na3 Nc2/RDA´x15R

;

(A.7a)

for anisotropic case,

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

"x15 D
�
2 Na2 Na3C11 C 2 Nb2 Nb3C12 C 2 Nc2 Nc3C13 C h3C14 C h1C15 C h2C16

�
R D Ax15R

"y15 D
�
2 Na2 Na3C21 C 2 Nb2 Nb3C22 C 2 Nc2 Nc3C23 C h3C24 C h1C25 C h2C26

�
R D Ay15R

"´15 D
�
2 Na2 Na3C31 C 2 Nb2 Nb3C32 C 2 Nc2 Nc3C33 C h3C34 C h1C35 C h2C36

�
R D A´15R

�xy15 D
�
2 Na2 Na3C41C2 Nb2 Nb3C42C2 Nc2 Nc3C43Ch3C44 C h1C45 C h2C46

�
R D Axy15R

�y´15 D
�
2 Na2 Na3C51C2 Nb2 Nb3C52C2 Nc2 Nc3C53Ch3C54 C h1C55Ch2C56

�
R D Ay´15R

�´x15 D
�
2 Na2 Na3C61C2 Nb2 Nb3C62C2 Nc2 Nc3C63Ch3C64 C h1C65 C h2C66

�
R D A´x15R

:

(A.7b)

(4) The 16th set of solutions for global stresses and strains
Stresses:

�x16 D Na
2
1S; �y16 D

Nb21S; �´16 D Nc
2
1S; �xy16 D Na1

Nb1S; �y´16 D Nb1 Nc1S; �´x16 D Na1 Nc1S I

(A.8)
Strains:

for isotropic case,

8̂̂
<
ˆ̂:
"x16 D

1
E

�
Na21 � �

Nb21 � � Nc
2
1

�
S D Ax16S; "y16 D

1
E

�
Nb21 � � Na

2
1 � � Nc

2
1

�
S D Ay16S

"´16 D
1
E

�
Nc21 � � Na

2
1 � �

Nb21
�
S D A´16S; �xy16 D

2.1C�/
E
Na1 Nb1S D Axy16S

�y´16 D
2.1C�/
E
Nb1 Nc1S D Ay´16S; �´x16 D

2.1C�/
E
Na1 Nc1S D A´x16S

;

(A.9a)
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for anisotropic case,

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

"x16 D
�
Na21C11 C

Nb21C12 C Nc
2
1C13 C Na1

Nb1C14 C Nb1 Nc1C15 C Na1 Nc1C16
�
S D Ax16S

"y16 D
�
Na21C21 C

Nb21C22 C Nc
2
1C23 C Na1

Nb1C24 C Nb1 Nc1C25 C Na1 Nc1C26
�
S D Ay16S

"´16 D
�
Na21C31 C

Nb21C32 C Nc
2
1C33 C Na1

Nb1C34 C Nb1 Nc1C35 C Na1 Nc1C36
�
S D A´16S

�xy16 D
�
Na21C41 C

Nb21C42 C Nc
2
1C43 C Na1

NbC44 C Nb1 Nc1C45 C Na1 Nc1C46
�
S D Axy16S

�y´16 D . Na
2
1C51 C

Nb21C52 C Nc
2
1C53 C Na1

Nb1C54 C Nb1 Nc1C55 C Na1 Nc1C56/S D Ay´16S

�´x16 D
�
Na21C61 C

Nb21C62 C Nc
2
1C63 C Na1

Nb1C64 C Nb1 Nc1C65 C Na1 Nc1C66
�
S D A´x16S

:

(A.9b)
(5) The 17th set of solutions for global stresses and strains

Stresses:

�x17 D Na
2
3S; �y17 D

Nb23S; �´17 D Nc
2
3S; �xy17 D Na3

Nb3S; �y´17 D Nb3 Nc3S; �´x17 D Na3 Nc3S I

(A.10)
Strains:

for isotropic case,

8̂
<̂
ˆ̂:

"x17 D
1
E
. Na23 � �

Nb23 � � Nc
2
3/S D Ax17S; "y17 D

1
E

�
Nb23 � � Na

2
3 � � Nc

2
3

�
S D Ay17S

"´17 D
1
E

�
Nc23 � � Na

2
3 � �

Nb23
�
S D A´17S; �xy17 D

2.1C�/
E
Na3 Nb3S D Axy17S

�y´17 D
2.1C�/
E
Nb3 Nc3S D Ay´17S; �´x17 D

2.1C�/
E
Na3 Nc3S D A´x17S

;

(A.11a)
for anisotropic case,

8̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

"x17 D
�
Na23C11 C

Nb23C12 C Nc
2
3C13 C Na3

Nb3C14 C Nb3 Nc3C15 C Na3 Nc3C16
�
S D Ax17S

"y17 D
�
Na23C21 C

Nb23C22 C Nc
2
3C23 C Na3

Nb3C24 C Nb3 Nc3C25 C Na3 Nc3C26
�
S D Ay17S

"´17 D
�
Na23C31 C

Nb23C32 C Nc
2
3C33 C Na3

Nb3C34 C Nb3 Nc3C35 C Na3 Nc3C36
�
S D A´17S

�xy17 D
�
Na23C41 C

Nb23C42 C Nc
2
3C43 C Na3

Nb3C44 C Nb3 Nc3C45 C Na3 Nc3C46
�
S D Axy17S

�y´17 D
�
Na23C51 C

Nb23C52 C Nc
2
3C53 C Na3

Nb3C54 C Nb3 Nc3C55 C Na3 Nc3C56
�
S D Ay´17S

�´x17 D
�
Na23C61 C

Nb23C62 C Nc
2
3C63 C Na3

Nb3C64 C Nb3 Nc3C65 C Na3 Nc3C66
�
S D A´x17S

:

(A.11b)
(6) The 18th set of solutions for global stresses and strains

Stresses:

�x18 D 2 Na1 Na3S; �y18 D 2 Nb1 Nb3S; �´18 D 2 Nc1 Nc3S; �xy18 D h6S; �y´18 D h4S; �´x18 D h5S I

(A.12)
Strains:

for isotropic case,

8̂
<̂
ˆ̂:

"x18D
2
E
. Na1 Na3�� Nb1 Nb3�� Nc1 Nc3/SDAx18S; "y18D

2
E
. Nb1 Nb3�� Na1 Na3�� Nc1 Nc3/SDAy18S

"´18D
2
E
. Nc1 Nc3�� Na1 Na3�� Nb1 Nb3/SDA´18S; �xy18D

2.1C�/
E

. Na1 Nb3 C Na3 Nb1/SDAxy18S

�y´18D
2.1C�/
E

. Nb1 Nc3 C Nb3 Nc1/S D Ay´18S; �´x18 D
2.1C�/
E

. Na1 Nc3 C Na3 Nc1/S D A´x18S

;

(A.13a)
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for anisotropic case,

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂:

"x18 D .2 Na1 Na3C11 C 2 Nb1 Nb3C12 C 2 Nc1 Nc3C13 C h6C14 C h4C15 C h5C16/S D Ax18S

"y18 D .2 Na1 Na3C21 C 2 Nb1 Nb3C22 C 2 Nc1 Nc3C23 C h6C24 C h4C25 C h5C26/S D Ay18S

"´18 D .2 Na1 Na3C31 C 2 Nb1 Nb3C32 C 2 Nc1 Nc3C33 C h6C34 C h4C35 C h5C36/S D A´18S

�xy18 D .2 Na1 Na3C41 C 2 Nb1 Nb3C42 C 2 Nc1 Nc3C43 C h6C44 C h4C45 C h5C46/S D Axy18S

�y´18 D .2 Na1 Na3C51 C 2 Nb1 Nb3C52 C 2 Nc1 Nc3C53 C h6C54 C h4C55 C h5C56/S D Ay´18S

�´x18 D .2 Na1 Na3C61 C 2 Nb1 Nb3C62 C 2 Nc1 Nc3C63 C h6C64 C h4C65 C h5C66/S D A´x18S

:

(A.13b)

(7) The 19th set of solutions for global stresses and strains
Stresses:

�x19 D Na
2
1T; �y19 D

Nb21T; �´19 D Nc
2
1T; �xy19 D Na1

Nb1T; �y´19 D Nb1 Nc1T; �´x19 D Na1 Nc1T I
(A.14)

Strains:
for isotropic case,

8̂̂
<
ˆ̂:

"x19 D
1
E

�
Na21 � �

Nb21 � � Nc
2
1

�
T D Ax19T; "y19 D

1
E

�
Nb21 � � Na

2
1 � � Nc

2
1

�
T D Ay19T

"´19 D
1
E

�
Nc21 � � Na

2
1 � �

Nb21
�
T D A´19T; �xy19 D

2.1C�/
E
Na1 Nb1T D Axy19T

�y´19 D
2.1C�/
E
Nb1 Nc1T D Ay´19T; �´x19 D

2.1C�/
E
Na1 Nc1T D A´x19T

;

(A.15a)

for anisotropic case,

8̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

"x19 D
�
Na21C11 C

Nb21C12 C Nc
2
1C13 C Na1

Nb1C14 C Nb1 Nc1C15 C Na1 Nc1C16
�
T D Ax19T

"y19 D
�
Na21C21 C

Nb21C22 C Nc
2
1C23 C Na1

Nb1C24 C Nb1 Nc1C25 C Na1 Nc1C26
�
T D Ay19T

"´19 D
�
Na21C31 C

Nb21C32 C Nc
2
1C33 C Na1

Nb1C34 C Nb1 Nc1C35 C Na1 Nc1C36
�
T D A´19T

�xy19 D
�
Na21C41 C

Nb21C42 C Nc
2
1C43 C Na1

NbC44 C Nb1 Nc1C45 C Na1 Nc1C46
�
T D Axy19T

�y´19 D
�
Na21C51 C

Nb21C52 C Nc
2
1C53 C Na1

Nb1C54 C Nb1 Nc1C55 C Na1 Nc1C56
�
T D Ay´19T

�´x19 D
�
Na21C61 C

Nb21C62 C Nc
2
1C63 C Na1

Nb1C64 C Nb1 Nc1C65 C Na1 Nc1C66
�
T D A´x19T

:

(A.15b)

(8) The 20th set of solutions for global stresses and strains
Stresses:

�x20 D Na
2
2T; �y20 D

Nb22T; �´20 D Nc
2
2T; �xy20 D Na2

Nb2T; �y´20 D Nb2 Nc2T; �´x20 D Na2 Nc2T I
(A.16)

Strains:
for isotropic case,

8̂̂
<
ˆ̂:

"x20 D
1
E

�
Na22 � �

Nb22 � � Nc
2
2

�
T D Ax20T; "y20 D

1
E

�
Nb22 � � Na

2
2 � � Nc

2
2

�
T D Ay20T

"´20 D
1
E

�
Nc22 � � Na

2
2 � �

Nb22
�
T D A´20T; �xy20 D

2.1C�/
E
Na2 Nb2T D Axy20T

�y´20 D
2.1C�/
E
Nb2 Nc2T D Ay´20T; �´x20 D

2.1C�/
E
Na2 Nc2T D A´x20T

;

(A.17a)
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for anisotropic case,
8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
:

"x20 D
�
Na22C11 C

Nb22C12 C Nc
2
2C13 C Na2

Nb2C14 C Nb2 Nc2C15 C Na2 Nc2C16
�
T D Ax20T

"y20 D
�
Na22C21 C

Nb22C22 C Nc
2
2C23 C Na2

Nb2C24 C Nb2 Nc2C25 C Na2 Nc2C26
�
T D Ay20T

"´20 D
�
Na22C31 C

Nb22C32 C Nc
2
2C33 C Na2

Nb2C34 C Nb2 Nc2C35 C Na2 Nc2C36
�
T D A´20T

�xy20 D
�
Na22C41 C

Nb22C42 C Nc
2
2C43 C Na2

Nb2C44 C Nb2 Nc2C45 C Na2 Nc2C46
�
T D Axy20T

�y´20 D
�
Na22C51 C

Nb22C52 C Nc
2
2C53 C Na2

Nb2C54 C Nb2 Nc2C55 C Na2 Nc2C56
�
T D Ay´20T

�´x20 D
�
Na22C61 C

Nb22C62 C Nc
2
2C63 C Na2

Nb2C64 C Nb2 Nc2C65 C Na2 Nc2C66
�
T D A´x20T

:

(A.17b)

(9) The 21st set of solutions for global stresses and strains
Stresses:

�x21D2 Na1 Na2T; �y21 D 2 Nb1 Nb2T; �´21 D 2 Nc1 Nc2T; �xy21 D h9T; �y´21 D h7T; �´x21 D h8T I
(A.18)

Strains:
for isotropic case,

8̂
<̂
ˆ̂:

"x21D
2
E

�
Na1 Na2�� Nb1 Nb2�� Nc1Nc2

�
TDAx21T; "y21D

2
E

�
Nb1Nb2�� Na1 Na2�� Nc1 Nc2

�
TDAy21T

"´21D
2
E
. Nc1 Nc2�� Na1 Na2�� Nb1 Nb2/T DA´21T; �xy21D

2.1C�/
E

. Na1 Nb2 C Na2 Nb1/T D Axy21T

�y´21D
2.1C�/
E

�
Nb1 Nc2 C Nb2 Nc1

�
T DAy´21T; �´x21D

2.1C�/
E

. Na1 Nc2 C Na2 Nc1/ T D A´x21T

;

(A.19a)

for anisotropic case,8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:̂

"x21 D
�
2 Na1 Na2C11 C 2 Nb1 Nb2C12 C 2 Nc1 Nc2C13 C h9C14 C h7C15 C h8C16

�
T D Ax21T

"y21 D
�
2 Na1 Na2C21 C 2 Nb1 Nb2C22 C 2 Nc1 Nc2C23 C h9C24 C h7C25 C h8C26

�
T D Ay21T

"´21 D
�
2 Na1 Na2C31 C 2 Nb1 Nb2C32 C 2 Nc1 Nc2C33 C h9C34 C h7C35 C h8C36

�
T D A´21T

�xy21 D
�
2 Na1 Na2C41 C 2 Nb1 Nb2C42 C 2 Nc1 Nc2C43 C h9C44 C h7C45 C h8C46

�
T DAxy21T

�y´21 D
�
2 Na1 Na2C51 C 2 Nb1 Nb2C52 C 2 Nc1 Nc2C53 C h9C54 C h7C55 C h8C56

�
T DAy´21T

�´x21 D
�
2 Na1 Na2C61 C 2 Nb1 Nb2C62 C 2 Nc1 Nc2C63 C h9C64 C h7C65 C h8C66

�
T DA´x21T

:

(A.19b)

A.2. Nine sets of analytical general solutions for quadratic displacements in terms of R, S and T

(1) The 13th~15th sets of solutions for displacements (i D13~15)

Ui D
1

2J0

®�
Na1J0Axi C .J0 � Na1a1/. Na1Axi C Nb1Axyi C Nc1A´xi /

�a1
�
Nb21Ayi C Nc

2
1A´i C

Nb1 Nc1Ay´i
��
R2 � a1

�
Na22Axi

CNb22Ayi C Nc
2
2A´i C Na2

Nb2Axyi C Nb2 Nc2Ay´i C Na2 Nc2A´xi
�
S2

� a1
�
Na23Axi C

Nb23Ayi C Nc
2
3A´i C Na3

Nb3Axyi C Nb3 Nc3Ay´i

CNa3 Nc3A´xi / T
2 C

�
J0
�
2 Na2Axi C Nb2Axyi C Nc2A´xi

�
�2a1

�
Na1 Na2Axi C Nb1 Nb2Ayi C Nc1 Nc2A´i

�
� a1

�
h9Axyi C h7Ay´i C h8A´xi

��
RS

C
�
J0.2 Na3Axi C Nb3Axyi C Nc3A´xi / � 2a1. Na1 Na3Axi C Nb1 Nb3Ayi C Nc1 Nc3A´i /

�a1
�
h6Axyi C h4Ay´i C h5A´xi

��
RT � a1

�
2 Na2 Na3Axi C 2 Nb2 Nb3Ayi C 2 Nc2 Nc3A´i

Ch3Axyi C h1Ay´i C h2A´xi
�
ST

¯
(A.20a)
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Vi D
1

2J0

®�
Nb1J0Ayi C .J0 � Nb1b1/. Na1Axyi C Nb1Ayi C Nc1Ay´i /

�b1
�
Na21Axi C Nc

2
1A´i C Na1 Nc1A´xi

��
R2 � b1

�
Na22Axi

CNb22Ayi C Nc
2
2A´i C Na2

Nb2Axyi C Nb2 Nc2Ay´i C Na2 Nc2A´xi
�
S2

� b1
�
Na23Axi C

Nb23Ayi C Nc
2
3A´i C Na3

Nb3Axyi C Nb3 Nc3Ay´i

CNa3 Nc3A´xi / T
2 C

�
J0
�
Na2Axyi C 2 Nb2Ayi C Nc2Ay´i

�
� 2b1

�
Na1 Na2Axi C Nb1 Nb2Ayi C Nc1 Nc2A´i

�
� b1

�
h9Axyi C h7Ay´i

Ch8A´xi /
 RS C
�
J0
�
Na3Axyi C 2 Nb3Ayi C Nc3Ay´i

�
� 2b1

�
Na1 Na3Axi C Nb1 Nb3Ayi C Nc1 Nc3A´i

�
� b1

�
h6Axyi C h4Ay´i

Ch5A´xi /
 RT � b1
�
2 Na2 Na3Axi C 2 Nb2 Nb3Ayi C 2 Nc2 Nc3A´i

Ch3Axyi C h1Ay´i C h2A´xi
�
ST

¯

; (A.20b)

Wi D
1

2J0

®�
Nc1J0A´i C .J0 � Nc1c1/. Na1A´xi C Nb1Ay´i C Nc1A´i /

�Nc1
�
Na21Axi C

Nb21Ayi C Na1
Nb1Axyi

��
R2 � c1

�
Na22Axi

CNb22Ayi C Nc
2
2A´i C Na2

Nb2Axyi C Nb2 Nc2Ay´i C Na2 Nc2A´xi
�
S2

� c1
�
Na23Axi C

Nb23Ayi C Nc
2
3A´i C Na3

Nb3Axyi C Nb3 Nc3Ay´i

CNa3 Nc3A´xi / T
2 C

�
J0
�
Na2A´xi C Nb2Ay´i C 2 Nc2A´i

�
� 2c1

�
Na1 Na2Axi C Nb1 Nb2Ayi C Nc1 Nc2A´i

�
� c1

�
h9Axyi C h7Ay´i

Ch8A´xi /
 RS C
�
J0
�
Na3A´xi C Nb3Ay´i C 2 Nc3A´i

�
� 2c1

�
Na1 Na3Axi C Nb1 Nb3Ayi C Nc1 Nc3A´i

�
� c1

�
h6Axyi C h4Ay´i

Ch5A´xi /
 RT � c1
�
2 Na2 Na3Axi C 2 Nb2 Nb3Ayi C 2 Nc2 Nc3A´i

Ch3Axyi C h1Ay´i C h2A´xi
�
ST

¯

(A.20c)

(2) The 16th~18th sets of solutions for displacements (i D16~18)

Ui D
1

2J0

®
�a2

�
Na21Axi C

Nb21Ayi C Nc
2
1 A´i C Na1

Nb1Axyi C Nb1 Nc1Ay´i C Na1 Nc1A´xi
�
R2

C
�
Na2J0Axi C .J0 � Na2a2/. Na2Axi C Nb2Axyi C Nc2A´xi /

�a2
�
Nb22Ayi C Nc

2
2A´i C

Nb2 Nc2Ay´i
��
S2 � a2

�
Na23Axi C

Nb23Ayi C Nc
2
3 A´i C Na3

Nb3Axyi

C Nb3 Nc3Ay´i C Na3 Nc3A´xi /T
2 C

�
J0.2 Na1Axi C Nb1Axyi C Nc1A´xi /

� 2a2. Na1 Na2Axi C Nb1 Nb2Ayi C Nc1 Nc2A´i / � a2.h9Axyi C h7Ay´i

Ch8A´xi /
 RS � a2
�
2 Na1 Na3Axi C 2 Nb1 Nb3Ayi C 2 Nc1 Nc3A´i

Ch6Axyi C h4Ay´i C h5A´xi
�
RT C

�
J0
�
2 Na3Axi C Nb3Axyi C Nc3A´xi /

�2a2
�
Na2 Na3Axi C Nb2 Nb3Ayi C Nc2 Nc3A´i

�
� a2

�
h3Axyi C h1Ay´i C h2A´xi

��
ST

¯
(A.21a)
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Vi D
1

2J0

®
�b2

�
Na21Axi C

Nb21Ayi C Nc
2
1 A´i C Na1

Nb1Axyi C Nb1 Nc1Ay´i C Na1 Nc1A´xi
�
R2

C Œ Nb2J0Ayi C .J0 � Nb2b2/. Na2Axyi C Nb2Ayi C Nc2Ay´i /

�b2
�
Na22Axi C Nc

2
2A´i C Na2 Nc2A´xi

�

S2 � b2

�
Na23Axi C

Nb23Ayi C Nc
2
3 A´i

CNa3 Nb3Axyi C Nb3 Nc3Ay´i C Na3 Nc3A´xi
�
T 2 C ŒJ0. Na1Axyi C 2 Nb1Ayi C Nc1Ay´i /

� 2b2. Na1 Na2Axi C Nb1 Nb2Ayi C Nc1 Nc2A´i / � b2.h9Axyi C h7Ay´i

C h8A´xi /
RS � b2.2 Na1 Na3Axi C 2 Nb1 Nb3Ayi C 2 Nc1 Nc3 A´i C h6Axyi

C h4Ay´i C h5A´xi /RT C ŒJ0. Na3Axyi C 2 Nb3Ayi

CNc3Ay´i /�2b2. Na2 Na3AxiC Nb2 Nb3AyiC Nc2 Nc3A´i /�b2.h3AxyiCh1Ay´iCh2A´xi /
ST
¯

(A.21b)

Wi D
1

2J0
¹�c2. Na

2
1Axi C

Nb21Ayi C Nc
2
1 A´i C Na1

Nb1Axyi C Nb1 Nc1Ay´i C Na1 Nc1A´xi /R
2

C
�
Nc2J0A´iC.J0� Nc2c2/. Na2A´xiC Nb2Ay´iC Nc2A´i /�c2. Na

2
2AxiC

Nb22AyiC Na2
Nb2Axyi /

�
S2

� c2. Na
2
3Axi C

Nb23Ayi C Nc
2
3 A´i C Na3

Nb3Axyi C Nb3 Nc3Ay´i C Na3 Nc3A´xi /T
2

C ŒJ0. Na1A´xi C Nb1Ay´i C 2 Nc1A´i / � 2c2. Na1 Na2Axi C Nb1 Nb2Ayi C Nc1 Nc2A´i /

� c2.h9Axyi C h7Ay´i C h8A´xi /
RS � c2.2 Na1 Na3Axi C 2 Nb1 Nb3Ayi C 2 Nc1 Nc3A´i

C h6Axyi C h4Ay´i C h5A´xi /RT C ŒJ0. Na3A´xi C Nb3Ay´i C 2 Nc3A´i /

� 2c2. Na2 Na3Axi C Nb2 Nb3Ayi C Nc2 Nc3A´i / � c2.h3Axyi C h1Ay´i C h2A´xi / 
ST
¯

(A.21c)

(3) The 19th~21st sets of solutions for displacements (i D19~21)

Ui D
1

2J0

®
�a3

�
Na21Axi C

Nb21Ayi C Nc
2
1A´i C Na1

Nb1Axyi C Nb1 Nc1Ay´i C Na1 Nc1A´xi
�
R2

� a3
�
Na22Axi C

Nb22Ayi C Nc
2
2 A´i C Na2

Nb2Axyi C Nb2 Nc2Ay´i C Na2 Nc2A´xi /S
2

C Œ Na3J0Axi C .J0 � Na3a3/. Na3Axi C Nb3Axyi C Nc3A´xi /

�a3
�
Nb23Ayi C Nc

2
3A´i C

Nb3 Nc3Ay´i
��
T 2 � a3.2 Na1 Na2Axi C 2 Nb1 Nb2Ayi

C 2 Nc1 Nc2 A´i C h9Axyi C h7Ay´i C h8A´xi /RS

C
�
J0.2 Na1Axi C Nb1Axyi C Nc1A´xi / � 2a3. Na1 Na3Axi C Nb1 Nb3Ayi C Nc1 Nc3A´i /

�a3.h6Axyi C h4Ay´i C h5A´xi /
�
RT C

�
J0.2 Na2Axi C Nb2Axyi C Nc2A´xi /

�2a3
�
Na2 Na3Axi C Nb2 Nb3Ayi C Nc2 Nc3 A´i

�
� a3.h3Axyi C h1Ay´i C h2A´xi /

�
ST

¯
(A.22a)

Vi D
1

2J0

®
�b3

�
Na21Axi C

Nb21Ayi C Nc
2
1A´i C Na1

Nb1Axyi C Nb1 Nc1Ay´i C Na1 Nc1A´xi
�
R2

� b3
�
Na22Axi C

Nb22Ayi C Nc
2
2 A´i C Na2

Nb2Axyi C Nb2 Nc2Ay´i C Na2 Nc2A´xi
�
S2

C
�
Nb3J0Ayi C .J0 � Nb3b3/. Na3Axyi C Nb3Ayi C Nc3Ay´i /

�b3
�
Na23Axi C Nc

2
3A´i C Na3 Nc3A´xi

��
T 2 � b3

�
2 Na1 Na2Axi C 2 Nb1 Nb2Ayi

C2 Nc1 Nc2 A´i C h9Axyi C h7Ay´i C h8A´xi
�
RS

C
�
J0
�
Na1Axyi C 2 Nb1Ayi C Nc1Ay´i

�
� 2b3

�
Na1 Na3Axi C Nb1 Nb3Ayi C Nc1 Nc3A´i

�
�b3.h6Axyi C h4Ay´i C h5A´xi /

�
RT C

�
J0. Na2Axyi C 2 Nb2Ayi C Nc2Ay´i /

�2b3. Na2 Na3Axi C Nb2 Nb3Ayi C Nc2 Nc3A´i / � b3.h3Axyi C h1Ay´i C h2A´xi /
�
ST

¯
(A.22b)
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Wi D
1

2J0

®
�c3

�
Na21Axi C

Nb21Ayi C Nc
2
1A´i C Na1

Nb1Axyi C Nb1 Nc1Ay´i C Na1 Nc1A´xi
�
R2

� c3
�
Na22Axi C

Nb22Ayi C Nc
2
2 A´i C Na2

Nb2Axyi C Nb2 Nc2Ay´i C Na2 Nc2A´xi
�
S2

C
�
Nc3J0A´i C .J0 � Nc3c3/. Na3A´xi C Nb3Ay´i C Nc3A´i / � c3

�
Na23Axi

CNb23Ayi C Na3
Nb3Axyi

��
T 2 � c3.2 Na1 Na2Axi C 2 Nb1 Nb2Ayi C 2 Nc1 Nc2A´i

C h9Axyi C h7Ay´i C h8A´xi /RS C
�
J0
�
Na1A´xi C Nb1Ay´i C 2 Nc1A´i

�
�2c3. Na1 Na3Axi C Nb1 Nb3Ayi C Nc1 Nc3A´i / � c3.h6Axyi C h4Ay´i C h5A´xi /

�
RT

C
�
J0. Na2A´xi C Nb2Ay´i C 2 Nc2A´i / � 2c3. Na2 Na3Axi C Nb2 Nb3Ayi C Nc2 Nc3A´i /

�c3.h3Axyi C h1Ay´i C h2A´xi /
�
ST

¯
(A.22c)
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