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SUMMARY

Among all 3D 8-node hexahedral solid elements in current finite element library, the ‘best’ one can produce
good results for bending problems using coarse regular meshes. However, once the mesh is distorted, the
accuracy will drop dramatically. And how to solve this problem is still a challenge that remains outstanding.
This paper develops an 8-node, 24-DOF (three conventional DOFs per node) hexahedral element based on
the virtual work principle, in which two different sets of displacement fields are employed simultaneously
to formulate an unsymmetric element stiffness matrix. The first set simply utilizes the formulations of the
traditional 8-node trilinear isoparametric element, while the second set mainly employs the analytical trial
functions in terms of 3D oblique coordinates (R, S, T). The resulting element, denoted by US-ATFHS,
contains no adjustable factor and can be used for both isotropic and anisotropic cases. Numerical examples
show it can strictly pass both the first-order (constant stress/strain) patch test and the second-order patch test
for pure bending, remove the volume locking, and provide the invariance for coordinate rotation. Especially,
it is insensitive to various severe mesh distortions. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Because of relatively higher accuracy and lower computation cost, 8-node hexahedral isoparametric
element is often preferred in analysis of 3D problems [1]. However, for traditional trilinear isopara-
metric element, when dealing with solids and structures with complicated loadings or geometries,
full integration model may suffer from various locking problems and will be very sensitive to mesh
distortions, while reduced integration model may appear hourglass phenomena or lead to incor-
rect results. Among all 3D 8-node hexahedral solid elements in current finite element library, some
incompatible elements [1-5] are usually considered as the models with the best precision because
they can produce good results for bending problems using very coarse regular meshes. However,
once the mesh is distorted, the accuracy will drop dramatically again. This is a living example of the
sensitivity problem to mesh distortion, which is the core inherent difficulty existing in finite element
methods. And how to solve this problem is still a challenge that remains outstanding. Actually, the
same difficulty is also hard to be overcome even for 2D problems. MacNeal has proved that any 4-
node, 8-DOF quadrilateral membrane isoparametric element of trapezoidal shape must either lock
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in pure bending tests or fail to pass constant stress/strain patch tests [6], and the similar limitation
can be generalized to 3D 8-node hexahedral finite elements [7]. It almost closes out further effort to
design new element models with high distortion resistance.

For past 60 years, numerous efforts have been made to improve performance and capacity of
finite elements, such as the incompatible displacement methods proposed by Wilson et al. [2] and
the modified version by Taylor et al. [3], the reduced or selective reduced integration patterns [8—10]
and the corresponding hourglass control techniques [11-14], the enhanced assumed strain (EAS)
methods [4, 5, 15, 16], the hybrid element methods [17, 18], the analytical interpolation method
[19], and the finite element-meshfree combination method [20]. However, it seems that no element
mentioned previously is truly beyond the limitation shown by MacNeal [6, 7].

Lee and Bathe [21] pointed out that the nonlinear transformation relationship between paramet-
ric and physical coordinates may be one of the reasons that cause the sensitivity problem to mesh
distortions. In order to avoid the troubles caused by this nonlinear relationship, Long ef al. succes-
sively established three forms of 2D quadrilateral area coordinate methods (QACM-I, QACM-II,
and QACM-III) [22-26] and a 3D hexahedral volume coordinate method (HVCM) [27], in which
the transformations between these new local coordinates and the Cartesian (physical) coordinates
are always linear, respectively. Subsequently, a series of new quadrilateral plane membrane ele-
ments [25, 26, 28-33] and 3D hexahedral elements [27] were developed. Although many elements
greatly improve the distortion resistance for bending tests, all of them fail to strictly pass the con-
stant stress/strain (Cyp) patch tests. So their convergence raised some queries and discussions [34,
35]. Cen et al. [29] and Chen et al. [36] tried to make them pass the Cy patch test, but the distortion
resistance will be destroyed again for bending tests.

For developing distortion-immune elements, some researchers began to look for new formula-
tions from other theoretical space. Rajendran et al. [37-42] adopted the virtual work principle to
establish a kind of unsymmetric finite element method, in which the test and the trial functions for
displacement fields are different, and the resulting element stiffness matrix is unsymmetric. For test
functions, the conventional shape functions of isoparametric elements are selected to exactly satisfy
the minimum inter-element and intra-element displacement continuity requirements; and for trial
functions, the polynomials in terms of Cartesian (physical) coordinates are chosen to satisfy the
completeness requirements in physical space. Since there is no Jacobian determinant in the final for-
mula for evaluating the element stiffness matrix, the resulting elements can still perform well even
when they are severely distorted. However, their method is only effective for constructing high-order
elements, such as 8-node plane quadrilateral element US-QUADS [37] and 20-node 3D hexahedral
element US-HEXA20 [38]. Furthermore, because the number of element DOFs usually does not
equal to the number of items for a complete polynomial in terms of Cartesian coordinates, interpo-
lation failure may take place when the element is distorted to certain shapes, and rotational frame
dependence may also appear [43]. So they are not convenient and effective for practical applications.
Cen et al. [44] developed a new 8-node unsymmetric plane element US-ATFQ8 by introducing
analytical trial functions and generalized conforming conditions. This element can overcome all
aforementioned defects and even produce exact solutions in linear bending problems (third-order
patch test).

Recently, some significant progresses have also been made for developing low-order elements.
Cen et al. [45] successfully formulated an unsymmetric 4-node, 8-DOF plane element. The key
technique is that the second displacement field set (trial functions) employs a composite coordinate
interpolation scheme with analytical trial function method, in which the items 1, x, y, and two sets
of analytical solutions for pure bending state in terms of the second form of quadrilateral area coor-
dinates (QACM-II) are applied together. The resulting element US-ATFQ4, which can be used for
both isotropic and anisotropic cases, exhibits amazing performance in rigorous tests. It can satisfy
both the classical first-order (constant stress/strain) patch test and the second-order patch test for
pure bending, and is insensitive to various severe mesh distortions. Due to the isotropy of the natural
local coordinate QACM-II, US-ATFQ4 can provide the invariance for the coordinate rotation. The
appearance of this element seems that the limitation defined by MacNeal’s theorem can be broken
through. Almost at the same time, Xie et al. [46] also utilized similar procedure developed a 4-node
plane element TQ4 and an 8-node hexahedral element TH8. The major different is that they used a
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kind of local oblique coordinate method defined by Yuan ef al. [47, 48] together with Cartesian and
isoparametric coordinates in their interpolation formulae. However, these two elements can be used
only for isotropic problems. Furthermore, an adjustable factor 8 varying from 0.01 to 0.0001 (8 =
0.01 was adopted by [46]) is introduced into the interpolation matrix of element TH8 for enhanc-
ing the element accuracy. In fact, because this factor has no definite physical significance, incorrect
results may appear if the factor is not appropriate (Section 4.2 and Tables IV and VI).

The purpose of this paper is to present an 8-node hexahedral element with high distortion resis-
tance as well as no obvious numerical defects. First, nine sets of analytical general solutions for
linear stresses, linear strains, and quadratic displacements in terms of 3D local oblique coordinates
(R, S, T) [47, 48], which are not found in other literatures, are derived. These analytical solutions
are also the Trefftz solutions [49]. Then, a new 8-node hexahedral element is developed based on
the virtual work principle, in which two different sets of displacement fields are employed simul-
taneously to formulate an unsymmetric element stiffness matrix. The first set simply utilizes the
formulations of the 8-node trilinear isoparametric element, while the second set mainly employs the
analytical trial functions in terms of 3D local oblique coordinates. Because the relationship between
the local oblique and Cartesian coordinates is always linear, and there is no Jacobian determinant
needed for computing the element stiffness matrix, the new element is expected to be insensitive to
mesh distortion. The resulting element, denoted by US-ATFHS, contains no adjustable factor and
can be used for both isotropic and anisotropic cases. Numerical examples show it can exactly pass
both the first-order (constant stress/strain) patch test and the second-order patch test for pure bend-
ing, remove the volume locking, and provide the invariance for coordinate rotation. Especially, it is
insensitive to various severe mesh distortions.

2. ANALYTICAL GENERAL SOLUTIONS IN TERMS OF 3D OBLIQUE COORDINATES

As described in previous section, in order to construct finite element models insensitive to mesh
distortion, a local coordinate system that is linearly related to the global Cartesian coordinate system
should be considered. For 3D problems, the most feasible one is the oblique (skew) coordinate
system defined by Yuan et al. [47, 48].

2.1. Definition of 3D oblique coordinate system [47,48]

For an 8-node hexahedral element shown in Figure 1, the Cartesian coordinates (x, y, z) can be
expressed in terms of the isoparametric coordinates (&, 1, ) as

xo + 1§ + asn + as¢ + askn + asné + ask¢ + a7ént

X 8 _ X i ’ ” - - - -

Yo =D Niq it =1 o+ bi&+ban+bsl + bakn+ bsnl + bkt + beknt ¢, (1)

< =1 N zo + 1€ + Can + 38 + Cabn + csnl + Ce€C + c7Eng

- I,¢
y
X
Figure 1. The definition of 3D oblique coordinate system.
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with
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in which (&;, n;, ¢;) and (x;, y;, Z;) (i =1~8) are the isoparametric and Cartesian coordinates of the
eight corner nodes, respectively.
Yuan et al. [47, 48] defined a kind of 3D oblique coordinates (R, S, T') as follows:

R X X 1| @ b1 ¢ X — Xo
St=UD{ry -1V =—|abea|{y-—yogr. &
T Z 2 ) emymt=o as bz c3 Z—2Zo

where Jo denotes the Jacobian matrix at the origin of the isoparametric coordinates (£, 1, {) =
(0’ 07 0)3

oxdy ]
o5 95 0F a by ¢
dx 9y 0 -
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an dn dn e
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L ¢ 98 9 depe—o

Jo = [Jo| = a1(b2é3 — b3éz) + an(b3éy — b163) + az(b1é2 — baéy)

_ _ _ (6)
= dy1a1 + azas + asas = b1by + baby + b3bs = ¢1c1 + Cacn + C3C3,
ap = byC3 —b3ca, by =aszCr —axls, c¢1 = axbz—aszb,
ap = bscy —bic3, by =aic3—asc, cy=aszby—aibs. @)

az =b1Cy —byC1, b3y =axt1 —aica, c¢3=diby —axh

It can be easily found that the relationship of the oblique coordinates (R, S, T') and the Cartesian
coordinates (x, y, z) is always linear. As shown in Figure 1, (R, S, T') and the isoparametric coor-
dinates (£, 1, ¢ ) share the same directions, respectively, and their origins also coincide with each
other.

The transformation of first-order derivatives is

[ OR 0SS 0T 7
9x dx dx Ox aiR 8%
9 dR dS T ) 1| g1 a2 a3 s
(= 3 3 oy 5 (=7 b1 by b3 35 (- ®)
y y oy oy 3 U e 9
K dR 9s oT | \ar T
9z L 0z 9z 0z
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And the transformation of second-order derivatives is
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2.2. The analytical general solutions in terms of 3D oblique coordinate system

In order to improve element performance, the analytical solutions of stresses, strains, or displace-
ments satisfying governing equations in elasticity are often taken as the trial functions in some finite
element methods such as the Trefftz finite element method [49] and the hybrid stress-function ele-
ment method proposed by Cen et al. [S0-55]. It is also noteworthy that the usage of the analytical
solutions in terms of the local coordinates [32, 45] may eliminate directional dependence prob-
lem. In this section, nine sets of analytical general solutions for linear stresses, linear strains, and
quadratic displacements in terms of 3D local oblique coordinates will be derived.

For 3D problems without body forces, the homogeneous equilibrium equations in the oblique
coordinate system are given by

dor  O0tsg  O0TTR

K =0
R T as T ar

dos  Jtrs  OTRS

2 =0. 10
as T or T o (19
dor  Otrr  0TST —0

o7 " oR T aS
The first 27 sets of analytical solutions for aforementioned stresses in terms of 3D oblique coordinate
system are listed in Table I, in which the first three sets, 4th to 12th sets, and 13th to 27th sets are
related to the rigid body, the linear, and the quadratic displacement modes, respectively. Since the
constant stress solutions will not be used later, their explicit forms are not given in the table.
According to equation (4), the stress components in Cartesian coordinates (x, y,z) can be
expressed by the stress components in oblique coordinates (R, S, T'):

- = - T - = -
Ox Txy Tzx ai by & OR TRS TRT || @1 b1 1
Txy Oy Ty | = | a2 by & TRS Os TST || G2 by 2 |, an
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Table I. The first 27 sets of analytical general solutions for stresses in terms of 3D oblique coordinate system.

i 1 2 3 4 5 6 7 8 9 10 11 12
Corresponding Rigid body Linear displacement modes

displacements displacement modes

u; 1 0 0 R 0 O § 0 O T 0 0

v; 0 1 0 O R O O § O 0 T O

w; 0 0 1 o 0 R O O S 0 0o T

ORi 0 0 0

oS 0 0 0

oTi 0 0 0 Constant stress solutions

TRSi 0 0 0

TSTi 0 0 0

TRTi 0 0 0

i 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Corresponding Quadratic displacement modes

displacements

ORi 0 0 0 s 0 O T 0 O 0 -R 0 O O -R
0si R O 0 o o0 0 o T O N o o0 -§ 0 0
oTi 0 R 0 0o R O O O O 0 o -r 0 -T O
TRSi 0 0 0 o o0 o o o T R S 0 0 0 0
TSTi 0 0 R o 0 0 o0 0 o 0 o § T 0 0
TRTi 0 0 0 o o0 S 0 0 o 0 0O 0 O R T

Then, the strains in Cartesian coordinate system can be obtained by following stress-strain relations
(generalized Hooke law):

Ex I —u —u 0 0 0 Ox
gy - 1 —u 0 0 0 oy
e |- 1 0 0 0 oz | _ . . ]
e= Vay =Elo 0 0 20+ 0 0 Tay = Ca, for isotropic case;
Yyz 0 0 O 0 2(14+p) 0 Tyz
Vix 0O 0 O 0 0 21+ ) \tzn
(13a)
[Ci1 Ci2 Ci3 Cis Cis Ci6]
Zx Cr1 Crp (a3 Cyy Crs Cye gx
y y
e | C31 C3p (33 C34 C3s5 C36 o: | _c ; ) .
e = oo (= | Cor Co Cas Cas Cas Cas o (= g, or anisotropic case,
Yyz Cs1 Csy Cs3 Cs4 Css Csg Tyz
rex | Ce1 Ce2 Ce3 Cea Ces Ces | fax
(13b)

where C is the elasticity matrix of compliances; E and p are Young’s modulus and Poisson’s ratio,
respectively. Thus, these strains can also be expressed by the stress components in local oblique
coordinates by substituting Equation (12) into (13).

Finally, by using Equation (8) and integrating following geometrical equations

ou dv Jw
Ex = —, £y = —, £, = —,
T 0x 7 By T 9z (14)
_8u+8v _8v+8w _8u+8w
Yy =y Tae R T e Ty T T
the displacements u, v, and w in Cartesian coordinate system can be solved.
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Following aformentioned procedure, the analytical general solutions of stresses, strains, and dis-
placements in the global coordinate system, but in terms of the local oblique coordinates R, S, and
7T, can be obtained

Only nine sets (i =13~21) of the analytical general solutions for local linear stresses in Table I
related to pure bending and twisting states will be considered in the new finite element formulations,
which are given in Appendix A.

3. CONSTRUCTION OF A NEW UNSYMMETRIC 8-NODE HEXAHEDRAL ELEMENT
US-ATFHS

For a 3D 8-node, 24-DOF (three DOFs per node) finite element model shown in Figure 2, the virtual
work principle [37, 38] can be written as

/ / SeTadV — / / su'bdV — [ S@'TdI —Salf. =0, (15)
Ve Ve re

in which V¢ denotes the element volume; "¢ represents the element boundary face; ¢ is the real
stress vector of the element; b, T, and f, are the real body, surface, and concentrated forces of the
element, respectively; du. is the vector of virtual displacements at the points of the concentrated
forces; du is the virtual displacement fields; and §¢ is the corresponding virtual strain fields.

First, the virtual displacement fields Su = [du Sv Sw ]T should satisfy exactly the minimum
inter-element and intra-element displacement continuity requirements. So, they can be assumed as

s = Néq°, (16)
where

Sqe = [8u1 81)1 8w1 Sug 81)3 (Swg ]T, (17)

) 1\7190...]\789
N = 0N19---0N8

0
0 1. (18)
0 0 Ny--- 0 0 Ng

in which du;, 6v;, and dw; (i =1~8) are the nodal virtual displacements along x, y, and z direc-

tions, respectively; N; (i =1~8) are just the shape functions of the traditional 8-node trilinear

isoparametric element that satisfy all continuity requirements and have been given by Equation (2).
Thus, the corresponding virtual strain fields & are

88 = [ 88y 88y 82, 87xy 87yz 87ex || = BSQE, (19)
where B is the strain matrix of the traditional 8-node trilinear isoparametric element:
_ _ 1,
B=LN-= mB , (20)

5(-1,-1,1) 8(-1,1,1)

Y-t ——>
I

6(1,-1:,1) 7(L1)
(I e p—34—17
1</
oottty
2 1(-1,-1,-1) 4(-1,1,-1)

2(1,-1,-1) 3(1,1,-1)

Figure 2. An 8-node hexahedral element.
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with

J e

; 2

|
Pl o

and |J| is the Jacobian determinant,

dx dy 0z
9 0E ¢
dx Jdy 0z
an oy
dx dy 0z
ac 3¢

8 8 8
x=ZNix,-, y=ZN,-y,-, ZZZNiZi- (23)
i=1

i=1 i=1

|J| = (22)

Second, assume that the real stresses 6 in Equation (15) are derived from the following assumed
displacement fields expressed in terms of the local oblique coordinates R, S, and 7T':

u
a=4q0 p =
w
100RO0OO0OSO0O0TO0 0 Us Uy RST O 0 o1
Pe=|10100ROO0OSO0OO0OTO Vizg -+ Vor O RST O N
0010 0 ROOSOOT W3z - Wy O 0 RST 24
(24)

where o; (i =1~24) are 24 undetermined coefficients; U;, V;, and W; (i =13~21) are the analyti-
cal general solutions for quadratic displacements given by Equations (A.20) to (A.22); the first 12
columns of interpolation matrix P are also displacement analytical general solutions satisfying all
governing equations, as shown in Table I. The last three columns containing the cubic term RST are
not the analytical solutions, but they can keep linear independence between each two columns and
make the resulting stress components invariant for global coordinate rotation.

Substitution of the Cartesian coordinates of eight corner nodes into Equation (24) yields

da = ¢, (25)
where

ls(xlvyl,ZO

a — P(xZal\)/}L Z2) . (26)
IA)(X&YS»ZS)
q° = [u1 vi wy -+ ug vg wg ", (27)

in which u;, v;, and w; (i=1~8) are the nodal displacements along x, y, and z directions,
respectively. Then, «; (i =1~24) can be solved by

a=d"'q". (28)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



UNSYMMETRIC 8-NODE HEXAHEDRAL ELEMENT WITH HIGH DISTORTION TOLERANCE

And the assumed displacement fields @ given by Equation (24) can be rewritten as

=Poa =Pd'¢°. (29)

=>
I
S > D>

Then, the corresponding strains can be obtained by substituting Equation (29) into (14):
R A A A A A A T =l -
=[x & & Pxy Pyz Pex | =Pd7'q° =Bq’, (30)

where B = Pd ! is the strain matrix, and

F0005 0 0 %0 0% 0 0 exas ++ &21 g 0 0]
00005 0 0% 0050 g3 ey 0w 0

0000 0% 0020 0% ez g1 00 w

e 0005805292089 0 ygis - yuanupua 0| D
000032)%03—(2)1}—(2) %l}—g?yzn“'yyzzl()ucub
0005 0 F 20 2 2 0 P yrz1z o Yxz21 Ue 0 ug |

with

= —(611ST+612RT+613RS) Up ——(b1ST+b2RT+b3RS) Ue = —(018T+C2RT+C3RS)
(32)
in which (ex;, &yi, €2i5 Yxyi» Vyzi» Vzxi) (i =13~21) are the nine sets of analytical solutions for linear

strains given by Equations (A.3), (A.5), (A.7), (A.9), (A.11), (A.13), (A.15), (A.17) and (A.19),
respectively.

According to the constitutive relation Equation (13), the corresponding stresses can be solved:

Ox

Gy
6’ = ,?—z = Dé = Dﬁqe = DPd lqe, (33)

Txy

b

Tzx

where D is the elasticity matrix,

D=cC"! (34)

Substitution of Equations (16), (19), and (30) into (15) yields

/ / §eTedV — / / sa'bdV — Su'TdI" — Salf,
Ve Ve re
= / / se"DedV — / / Su'bdV — Sa'TdI — Salf,
Ve ve re

_ _ , 35)
oo ([, b v

(Sqe)T Ke e Fe)
=0

in which

K¢ = [ / / B™DBdV, (36)
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5 0320 0.186  0.643
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-7 — 7 0.788  0.693  0.644
8 0.165 0.745  0.702

7

z

Figure 3. Constant stress/strain patch test. Outer dimensions: unit cube; E = 1.0 x A10%; u = 0.25.

Table II. List of element models for comparison.

No. Symbol Explanation of elements References
1 C3D8 Eight-node trilinear hexahedral element with full integration in ABAQUS [1]
2 C3D8R Eight-node trilinear hexahedral element with reduced integration and [1]
hourglass control in ABAQUS
3 C3D8I Eight-node incompatible hexahedral element in ABAQUS [1]
4 C3D8H Eight-node hybrid hexahedral element in ABAQUS [1]
5 Wilson_H8  Eight-node incompatible hexahedral element by Wilson’s method [2]
6 HEXAC(8) Eight-node hexahedral element by MacNeal e al. [56]
7 ASQBI Eight-node hexahedral element by Belytschko and Bindeman [15]
8 NEWHEX  Eight-node brick element based on EAS method [16]
9 HVCCS8/ Eight-node incompatible hexahedral elements using hexahedral volume [27]
-ES/EM coordinate method and cannot strictly pass the constant
strain patch test.
10 THS Unsymmetric 8-node hexahedral element with adjustable factor [46]
B(=0.01)
F¢ = / / / N'bdV + f N'Tdr + NIf,. (37)

Due to the arbitrariness of §q¢ in Equation (35), the following finite element equation can be
obtained:

K°q® — F¢ =0, (38)

where F¢ is the nodal equivalent load vector of the element; K¢ is the element stiffness matrix, and
it is an unsymmetric matrix. Substitution of Equations (20) and (33) into (36), the final element
stiffness matrix can be obtained:

. 1 1 el T
Ke=/// BTDBdef / / DB |J| dédnd¢
ye —1J-1J-1
1,1 p1 R 1 p1 p1 . ’
= [ f / B*"DBdtdnd; = [ f [ B*"DPd ' dgdnd¢
—-1J-1J-1 —-1J-1J-1

Because there is no Jacobian determinant existing in aforementioned expression, the resulting model
will avoid troubles caused by ill-conditioned shape and be insensitive to mesh distortions. All afore-
mentioned formulations can be expressed in terms of isoparametric coordinates &, 7, and ¢ by using
Equations (4) and (23), and a 2 x 2 x2 Gauss integration scheme is found to be enough for evaluating
K¢ given by Equation (39), although the 3 x 3 x 3 scheme is theoretically needed.

(39)
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The equivalent nodal load vector F¢ can be determined by the same procedure for the traditional
8-node trilinear isoparametric element. And the stresses at any point can be directly calculated
by substituting the isoparametric, or Cartesian coordinates of this point within an element into
Equation (33).

The new element is denoted by US-ATFHS.
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Figure 4. Cheung and Chen beam tests. £ = 1500; u = 0.25.
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4. NUMERICAL EXAMPLES

In this section, some classical benchmark problems are employed to assess the performance of the
new element US-ATFHS, and results obtained by other 8-node hexahedral elements listed in Table 1T
are also given for comparisons.

4.1. Constant stress/strain patch test (Figure 3)

A unit cube as shown in Figure 3 is divided by seven irregular hexahedral elements. Nodes 1 to 8 are
the inner nodes, and their locations are also given in Figure 3. The displacement fields corresponding
to the constant strain are

u=102Q2x +y+2)/2, v=103x+2y+2)/2, w=10"3(x +y+2z)/2. (40)
And the corresponding stress solutions are
Ox =0y =07 = 2000, Ty = Ty; = Tzx = 400. (41)

Table III. The x coordinates of nodes 1, 2, 3, and 4 in Meshes 2 to 10
(Figure 4).

Mesh
x-coordinates (2) 3) @ G) ®) 7 ® O (10

x1 5 5 5 5 2 2 6 8 8
X2 5 5 4 6 8 5 5 5 8
X3 5 6 5 6 8 5 5 6 8
X4 5 6 6 5 2 8 8 2 2

Table IV. The normalized deflections at point A for Cheung and Chen tests (Figure 4).

Model THS8

Mesh C3D8 C3DS8R C3D8I Wilson_H8 HVCC8 g =0.01 g =0.0001 US-ATFHS8

Load M : normalized deflections at point A, exact solution is 100

1 0.0956  1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.3382  1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 0.2684  0.8756  0.8931 0.9397 1.0027 1.0000 1.0000 1.0000
4 0.2529  0.7652  0.7911 0.8962 1.0020 1.0000 1.0000 1.0000
5 0.2441  0.7738  0.7717 0.8836 1.0000 1.0000 1.0000 1.0000
6 0.0919 04516  0.4085 0.7875 1.0000 1.0000 1.0000 1.0000
7 0.1435  7.0712  0.2638 — — 1.0000 1.0000 1.0000
8 0.1570 11.4629  0.5900 — — 1.0000 1.0000 1.0000
9 0.1322  6.8514  0.1923 — — 1.0000 1.0000 1.0000
10 0.0956  4.4017 0.2111 — — 1.0000 1.0000 1.0000
11 0.8013  0.9956  0.9578 0.9826 1.0000 1.0000 1.0000 1.0000
12 0.6905 46.0988 0.7228 — — 1.0000 1.0000 1.0000
Load P: normalized displacements at point A, exact solution is 102.6

1 0.0942  0.7554  0.7554 0.7554 0.7554 0.7554 0.7554 0.7554
2 0.3329  0.9367 0.9353 0.9340 0.9340 0.9380 0.9381 0.9340
3 0.2648  0.8440  0.8445 0.8773 0.9254 0.9370 0.9358 0.9262
4 0.2692  0.7650  0.7696 0.8479 0.9295 0.9378 0.9367 0.9270
5 0.2485  0.7694  0.7658 0.8491 0.9383 0.9380 0.9381 0.9343
6 0.1330  0.5368  0.4800 0.8723 1.2292 1.0038 1.0039 1.0135
7 0.1829 22.2781 0.3260 — — 0.8595 0.8586 0.8615
8 0.1787 239254 0.6263 — — 0.9529 0.9491 0.9929
9 0.1713  21.3401  0.2803 — — 0.8052 0.8002 0.9026
10 0.1275 18.0603 0.2549 — — 0.7409 0.7368 0.7062
11 0.8690  0.9922  0.9536 0.9770 0.9999 0.9889 0.9889 0.9875
12 07733 497021 0.7717 — — 09618 0.9926
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The displacements of the boundary nodes are treated as the displacement boundary conditions. Exact
results of the displacements and stresses at the inner nodes can be obtained by the new element US-
ATFHBS. Furthermore, the exact stresses at any point (by substituting the Cartesian coordinates into
Equation (33)) can also be obtained. It can be concluded that the element US-ATFHS8 can strictly
pass the constant stress/strain patch test.

Elements Wilson_HS8 [2] and HVCCS series [27] in Table II cannot pass this patch test.

4.2. Cheung and Chen beam tests [17] (Figure 4)

This example was proposed by Cheung and Chen [17] for testing the performance of 8-node hexahe-
dral elements. The geometric, material, and displacement boundary conditions are given in Figure 4.

Table V. The results of stress at point B for Cheung and Chen tests (Figure 4).

Model THS

Mesh C3D8 C3D8R C3D8I Wilson_H8 HVCC8 B =0.01 B =0.0001 US-ATFH8 Exact
Load M

1 —131.1 2.51x10712 —3000 —3000 —3000 —3000  —3000 —3000 —3000
2 —463.8 9.99x 10713 —3000 —3000 —3000 —3000  —3000 —3000 —3000
3 —377.7 —233x 10713 —2632 —2775  —3007 —3000  —3000 —3000 —3000
4 —380.3 —24.16 —2249  —3161  —3003 —3000  —3000 —3000 —3000
5 —238.8 —18.30 —2404  —2251  —3000 —3000  —3000 —3000 —3000
6 —30.63 277.5 —1950 —241.3  —3000 —3000  —3000 —3000 —3000
7 —187.5 7.79x 10713 —719.9 — — —3000  —3000 —3000 —3000
8 —270.8 —130.8 —1500 — — —3000  —3000 —3000 —3000
9 —154.6 40.72 —636.2 — — —3000  —3000 —3000 —3000
10 —82.50 204.1 —925.5 — — —3000  —3000 —3000 —3000
11 —1316 —321.9 —2999  —2340  —3000 —3000  —3000 —3000 —3000
12 —1266 —261.6 —2810 — — —3000  —3000 —3000 —3000
Load P

1 —98.36 2.76x 10712 2250 —2250  —2250 —2250  —2250 —2250 —2250
2 —4274 5.66x 10713 2841 —3375 3375 —3375  —3375 —3375 —3375
3 —320.6 0.00 —2419 —3037.2 —3211.4 —3257.5 —32522 —3229.6 —3262.5
4 —360.9 —18.14 —2212 —3667  —3348 —3408.8 —3403.4 —33735 —3375
5 —219.6 —6.908 —2243  —2518  —3238 —3225  —3225 —3226.6 —3150
6 —57.09 208.1 —1823 —209.8 —3641 —3150 —3150 —31989  —2700
7 —332.1 755.3 —925.9 — —  —2883.6 —2877.9 —3038.6 —3375
8 —229.5 —124.2 —1647 — —  —3239.5 32267 —33699 3375
9 —2922 22.04 —820.7 — —  —2695.9 —2677.9 —3083.2 —3262.5
10 —1091 197.0 —6672 — —  —2248.8 —2234.6 —21709 —2700
11 —1781 —371.0 —3947  —3234  —4179 —41254 —41254 —41255 —4050
12 —1746 —321.4 —3738 — —  —4123.4 —41237 —41253  —4050

y
> 0.1
1
‘/3: > 0.1
5 I
$—> - 0.1
0.1

jj u=v=w=0

Figure 5. Rotation dependence test: cantilever beam problem and mesh. E = 100.0; u = 0.3.
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Twelve meshes divisions are designed to analyze this cantilever beam subjected to a pure bending
moment M and a transverse shear force P at the free end, in which the x coordinates of nodes 1, 2,
3, and 4 in Meshes (2) to (10) are listed in Table III. The normalized deflections at point A and the
results of stresses at point B are given in Tables IV and V, respectively, and the results of deflections
at points aj, a,, az, and aqin selected mesh divisions under loading P are also given in Table VI.
From Tables IV and V, it can be seen that exact displacements and stresses under pure bending
state can be obtained by element TH8 (8 =0.01 and 0.0001) [46] and the new element US-ATFHS,
no matter how meshes are distorted, and no matter whether the four corner nodes of the interface are

Table VII. Results

Table VI. The results of deflections at points aj, ap, a3, and as
under load P (Figure 4).

Mesh Node TH8 8 =0.01 TH8 8 =0.0001 US-ATFHS8
@) ap 88.20 88.09 88.39
ap 88.18 88.09 88.40
a3 65.01 —2292.81 88.87
ag 112.29 2469.91 88.97
®) aj 97.57 97.19 100.44
ap 971.717 97.38 101.87
a3 95.92 —11.72 100.42
ag 99.64 206.51 102.01
) aj 81.87 81.33 91.71
ap 82.62 82.10 92.61
a3 99.02 1694.96 92.49
ag 66.23 —1530.77 92.59
(10) ay 75.20 74.73 69.19
ap 76.01 75.60 72.45
a3 82.38 831.37 69.54
ag 69.15 —680.72 72.38
(12) aj 105.17 476.83 102.35
ap 98.68 —272.84 101.84
a3 102.04 102.14 102.31
ag 101.72 101.76 101.77

Reference solution: 102.6.

of the displacement at point A calculated for the rotational frame invariance test

(Figure 5).
o o UA VA wa ‘/ui + vi + wi Normalized
0° 0° —0.235778E-01  —0.454176E-01 0.336472E-03 0.051174 0.96260
0° 40° —0.182779E-01 —0.454176E-01 —0.148978E-01 0.051174 0.96260
10° —0.258869E-01 —0.415536E-01 —0.148978E-01 0.051174 0.96260
20° —0.327094E-01 —0.364271E-01 —0.148978E-01 0.051174 0.96260
30° —0.385379E-01 —0.301938E-01 —0.148978E-01 0.051174 0.96260
40° —0.431956E-01 —0.230430E-01 —0.148978E-01 0.051174 0.96260
45° —0.450395E-01 —0.191906E-01 —0.148978E-01 0.051174 0.96260
50° —0.465407E-01 —0.151921E-01 —0.148978E-01 0.051174 0.96260
60° —0.484717E-01 —0.687962E-02 —0.148978E-01 0.051174 0.96260
70° —0.489300E-01 0.164193E-02  —0.148978E-01 0.051174 0.96260
80° —0.479015E-01 0.101136E-01  —0.148978E-01 0.051174 0.96260
90° —0.454176E-01 0.182779E-01  —0.148978E-01 0.051174 0.96260
90° 90° —0.454176E-01 0.336472E-03  —0.235778E-01 0.051174 0.96260
Overkill solution — — — 0.53162 1.00000
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coplanar or not. Furthermore, it is worth mentioning that the new element US-ATFHS8 can produce
exact pure bending solutions in all directions when various distorted meshes are used. For the linear
bending case, the new element US-ATFHS can also present relatively good and stable solutions in
all mesh cases. But the results obtained by element TH8 deeply depend on the adjustable factor
and are not stable. Especially, when 8 =0.0001, even wrong solutions will appear in some cases
(see displacement result for load P using Mesh (12) in Table IV). This problem is more clear in
Table VI, many incorrect results for deflections at four different end points of the beam obtained by
element TH8 appear when § =0.0001 and the results obtained by TH8 (8 =0.01) are not stable in
some occasions.

4.3. Rotational frame dependence test on a cantilever beam with fully fixed end (Figure 5)

Because the trial functions for displacements @ given in Equation (24) may be not completed in
the global Cartesian coordinates, rotational frame dependence test should be performed for the new
element US-ATFHS.

qg=1

y ‘ T
16

b2 1

jy: ¥ 44
§> E=1.0 "
=103
|5 . 18 o
‘/§> §:| u=v=w=0 I I
z

j) u=v =0
Figure 6. Cook’s skew beam problem and a typical 2 x 2 x 2 mesh.

Table VIII. Results of Cook’s skew beam problem (Figure 6).

Mesh
Element 2x2x1 2x2x2 4x4x4 8x8x4 8x8x8 16x16x16
Deflection at point C: vc (reference solution: 23.86%)
C3D8 13.95 14.05 19.81 22.48 22.50 23.36
C3D8R 20.56 20.50 22.51 23.32 23.32 23.58
C3D8I 20.39 20.32 22.50 23.32 23.32 23.58
TH8 g =0.01 22.73 22.59 23.27 23.67 23.67 23.81
US-ATFHS 22.67 22.56 23.27 23.67 23.67 23.81
Maximum principle stress at point A: 0amax (reference solution: 0.2352%)
C3D8 0.1389 0.1423 0.1889 0.2164 0.2159 0.2267
C3D8R 0.1299 0.1300 0.1861 0.2138 0.2134 0.2248
C3D8I 0.1741 0.1746 0.2172 0.2320 0.2317 0.2340
THS g =0.01 0.1952 0.1949 0.2218 0.2326 0.2324 0.2345
US-ATFHS8 0.1973 0.1952 0.2214 0.2325 0.2322 0.2345
Minimum principle stress at point B: opmin(reference solution: - 0.2023?)
C3D8 —-0.0970 —-0.0974 —0.1337 —0.1747 —-0.1727 —0.1912
C3D8R —0.0664 —0.0664 —0.1282 —0.1666  —0.1663 —0.1848
C3D8I —0.1689  —0.1664 —0.1804 —0.1976  —0.1963 —0.2013
THS g =0.01 —0.1548 —0.1534  —0.1869 —0.1979  —-0.1977 —0.2013
US-ATFHS8-A  —-0.1554 —0.1574 —-0.1874 —0.1976 —0.1975 —0.2013
4Results by traditional 20-node hexahedral isoparametric element using 46 x 46 x 46 mesh in
Abaqus [1].
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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The geometric and displacement boundary conditions of a cantilever beam divided by two dis-
torted elements are given in Figure 5. The Young’s modulus £ =100.0, and the Poisson ratio
p =0.3. Let the Cartesian coordinate system xyz rotate counterclockwise from «; = 0° to 90° in
steps of 10° around z-axis and then rotate counterclockwise op = 40° around y-axis, the displace-
ments at point A are solved at each step. The magnitude of displacement +/u? + v2 + w? at point
A is monitored to study the rotational frame-dependent behavior. The results obtained by the new
element US-ATFHS are given in Table VII. The magnitude of displacements based on an ‘overkill’
solution is used as a reference solution, which is obtained by using 50,000 20-node hexahedral
isoparametric elements of Abaqus [1]. It can be seen that the present model US-ATFHS provides
the invariance for the coordinate rotation.

4.4. Bending problems for skew beam, curving beam and twisted beam

4.4.1. Cook’s skew beam problem (Figure 6). This example shown in Figure 6 was proposed by
Cook [56] to test the convergence of elements. A skew cantilever is subjected to a shear uniformly
distributed load at the free edge. The geometric, material, and displacement boundary conditions are
given in Figure 6. The results of vertical deflection at point C, the maximum principal stress at point
A, and the minimum principal stress at point B are all listed in Table VIII. Those results obtained
by the models that can pass the constant strain/stress patch test are also given for comparison. It can
be seen that the present element US-ATFHS exhibits good convergence.

Typical Mesh: 4 elements

Figure 7. Bending of a thin curved beam.

Table IX. Normalized deflections at point A for a thin curved beam subjected to an in-plane shear P

(Figure 7).

Number Wilson THS

of elements C3D8 C3D8R C3D8I ASQBI NEWHEX _H8 HVCC8 g =0.01 US-ATFHS
2 0.006  0.049 0.049 0.669 0.669 0.107 1.043 0.947 0.909
4 0.033  0.581 0.580  0.895 0.895 0.717 1.015 0.991 0.974
6 0.077  0.883 0.881 0.978 0.978 0.935 1.012 1.002 0.992
8 0.136  0.966 0.964  0.997 0.997 0.984 1.011 1.007 0.999
10 0.208  0.992 0.990 1.003 1.003 0.999 1.011 1.009 1.003
12 0.289  1.002 1.000 — — 1.004 1.011 1.010 1.005
14 0.378 1.006 1.005 — — 1.007 1.011 1.011 1.007
16 0.471 1.009 1.007 — — 1.009 1.011 1.012 1.008
20 0.664 1.011 1.010 — — 1.010 1.012 1.012 1.009

Analytical 1.0002

4Standard solution is 0.08734.
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4.4.2. Thin curved beam (Figure 7). A thin curved beam with fully fixed end is shown in Figure 7.
The inner radius R;, thickness %, and width ¢ of the beam are 4.12, 0.2, and 0.1, respectively. The
Young’s modulus £ = 1.0 x 107, and the Poisson ratio u =0.3. Two load cases are considered:
in-plane shear P; and out-of-plane shear P,. The results of the deflection at point A are listed in
Tables IX and X, respectively. Again, the new element US-ATFHS8 performs well for this test.

4.4.3. Twisted beam problem (Figure 8). This example was proposed by MacNeal and Harder [57]
to test the effect of warping. As shown in Figure 8, a cantilever beam is twisted 90° from root to
tip. This twisted beam is fixed at the root and subjected to unit in-plane and out-of-plane forces at
the tip. The length, width, and thickness are 12, 1.1, and 0.32, respectively. The Young’s modulus
E = 2.9 x 107, and the Poisson ratio u =0.22. Different meshes used for this example are also
given in Figure 8, in which meshes (a), (b), (c), and (d) are distorted meshes newly designed by

Table X. Normalized deflections at point A for a thin curved beam subjected to an out-of-plane
shear P, (Figure 7).

Number THS8

of elements C3D8 C3D8R C3D8I Wilson_ H§ HVCC8 g =0.01 US-ATFHS
2 0.132  0.192 0.160 0.190 0.799 0.896 0.968
4 0.202  0.604 0.570 0.666 0.890 0.952 0.934
6 0230  0.847 0.821 0.865 0.920 0.964 0.945
8 0.250  0.920 0.901 0.918 0.934 0.969 0.952
10 0269  0.944 0.929 0.936 0.942 0.972 0.956
12 0.289  0.953 0.942 0.945 0.947 0.973 0.960
14 0.311 0.958 0.948 0.949 0.950 0.974 0.962
16 0.334  0.960 0.952 0.952 0.952 0.975 0.964
20 0.386  0.962 0.956 0.956 0.955 0.976 0.966

Analytical 1.000*

4Standard solution is 0.5022.
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Figure 8. Twisted beam problem and meshes. E = 2.9 x 107, 1 = 0.22.
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Table XI. Normalized deflections at point A for a twisted
beam subjected to an in-plane force (Figure 8).

Mesh C3D8 C3D8I THS8 g =0.01 US-ATFHS8

4x2 00313 0.9750 1.0646 1.0567
8§x2  0.1145 09911 1.0155 1.0106
8x4  0.1144 0.9977 1.0090 1.0057
16 x2 0.3728 0.9967 1.0035 1.0014
16 x4 0.3767 0.9992 1.0023 1.0009
16 x8 0.3799  1.0000 1.0023 1.0010
a 0.0584 0.6137 1.0407 1.0235
b 0.0528  0.6238 1.0388 1.0289
c 0.0446  0.1024 1.1403 1.0203
d 0.0374  0.0842 1.3741 0.7756

Exact 1.0000?

4The standard value is 0.005424.

Table XII. Normalized deflections at point A for a twisted
beam subjected to an out-of-plane force (Figure 8).

Mesh C3D8 C3DS8I TH8 B =0.01 US-ATFHS8

4x2 0.0834  0.9246 1.0222 1.0252
&x2 0.2297  0.9780 1.0029 1.0033
8x4 0.2242  0.9820 0.9974 0.9985
16 x2 04998 0.9926 0.9991 0.9991
16 x4 04909 0.9942 0.9980 0.9983
16 x8 04912 0.9947 0.9980 0.9982
a 0.1538 0.8886 0.9472 0.9885
b 0.1377  0.8925 0.9359 0.9995
c 0.1377  0.3056 1.0361 1.0094
d 0.1156  0.2679 1.1296 1.0613

Exact 1.0000?

4The standard value is 0.001754

cutting the beam with different planes. And most of these cutting planes are parallel to new plane xy
after x-axis rotates 45° or —45° around y-axis. The normalized solutions at tip point A are listed in
Tables XI and XII. It can be seen that the new element US-ATFHS8 can produce better results, even
when the severely distorted meshes are used.

4.5. Nearly incompressible problems (Figure 9)

A thick-walled cylinder is subjected to a uniformly distributed internal pressure p =1. This example
proposed by MacNeal [57] is used to test volume locking problem when the Poisson’s ratio is very
close to 0.5. As shown in Figure 9, due to symmetry, only a quarter of the cylinder with unit thickness
is considered. The nodal displacements along thickness direction are all constrained. The exact
solution of the radial displacement u, is same as that for the plane strain state and given by [57]:

(1+w)pRY
S B R my ] -
where R is the inner radius, and R; is the outer radius. In this example, let Ry = 3, R, = 9. When
the Poisson’s ratio is & = 0.49, 0.499, 0.4999, the corresponding radial displacement u, atr = R,
are 5.0399 x 1073,5.0602 x 1073,5.0623 x 1073, respectively.

The normalized results of the radial displacement u, at r = R; are given in Table XIII. It can
be seen that the standard 8-node trilinear isoparametric element suffers from volumetric locking
problem, while other improved models can give good results. Although the solutions obtained by
element US-ATFHS are not the best answers, it is clearly shown that the new element is free of the
volumetric locking.
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Figure 9. A quarter of thick-walled cylinder and mesh division.

Table XIII. Normalized radial displacements at inner radius for a thick-walled cylinder (Figure 9).

Poisson’s ratio  H8*  C3DS8H C3D8I HEXA(8) ASQBI THS8 B =0.01 US-ATFHS8

0.49 0.849  0.993 0.986 0.986 0.988 0.978 0.978
0.499 0.361 0.993 0.986 0.986 0.987 0.978 0.978
0.4999 0.053  0.993 0.986 0.986 0.987 0.978 0.978

4H8 means the standard 8-node trilinear isoparametric element.

5. CONCLUSIONS

After successful development of plane 4-node, 8-DOF quadrilateral element US-ATFQ4 [45], which
can break through the limitation defined by MacNeal [6, 7], a new 3D 8-node hexahedral element
US-ATFHS is constructed by employing the unsymmetric element method, the analytical trial func-
tion method and the oblique coordinate method. This new 3D low-order element, which can be
treated as an extension from the plane element US-ATFQ4, possesses following advantages superior
to most existing 8-node hexahedral element models:

(i) Its formulations contain no adjustable factor, and can be used for both isotropic and
anisotropic cases;

(i1) It can strictly pass both the first-order (constant stress/strain) patch test and the second-order
patch test for pure bending (free of trapezoidal locking), which cannot be achieved by most
other existing finite element models;

(ii1) It is free of volume locking and provides the invariance for coordinate rotation;

(iv) It is insensitive to various mesh distortions and can produce stable and better solutions for
higher-order problems (the orders of the displacement fields are higher than first order and
second order).

The appearance of aforementioned new low-order elements with high accuracy and distortion resis-
tance may open a way for establishing new finite element system, which can relax the requirements
for hexahedron mesh generation. This point may have great significance for further development of
the finite element method. Although the element stiffness matrix is unsymmetric, it is not a seri-
ous issue in most of the problems in structural analyses: many solvers can handle this situation
easily [1, 58].

Of course, before this new model can be really applied in practical engineering, many further
technique problems must be solved. Whether the present method can be extended to the applications
of shell and nonlinear problems is still a valuable and challenging research topic that should be paid
attention to. Some related developments will be reported in near future.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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APPENDIX A: NINE SETS OF ANALYTICAL GENERAL SOLUTIONS FOR GLOBAL
LINEAR STRESSES, STRAINS, AND QUADRATIC DISPLACEMENTS IN TERMS OF

R,S,ANDT
Let
hy = baés + b3éa, ha = axc3 + asca, h3 = axbs + ash,
hy = 510_3 + 5351, hs = a,c3 + ascy, he = 5153 + 6_1351 . (A.1)

hy = b1&s + baéy, hg = aic, + ascy, ho = a1by + azb;

Then, from Equations (11) to (14), the resulting solutions for global linear stresses, strains, and
quadratic displacements can be written as follows.

A.l. Nine sets of analytical general solutions for global linear stresses and strains in terms of
R, S,and T

(1) The 13th set of solutions for global stresses and strains.
Stresses:

—2 o) 2 _ 7 ;o ey
0x13 = a5R, 0,13 = b5R, 0713 = C3R. Txy13 = 42b2 R, 1y713 = b2Ca R, 17513 = G202 R;
(A2)

Strains:
for isotropic case,

exi3 = 5 (a3 — ub3 — uG3) R = AR, ey13 = (b3 — naj — ué3) R = Ay13R

e213 = £ (63 — paj — ub3)R = Az13R. yxyrz = wﬁzng = Axy13R ,

Yyz13 = 2(1;/05252R = Ayz13R, Yzx13 = wﬁzc_zR = Azx13R
(A3a)

for anisotropic case,

ex13 = (a3C1 + b3C1a + E3C13 + GabyCra + b262Cys + a202C16) R = Ax13R
ey13 = (a3Ca1 + b3Cap + C2Caz + A2b2Cas + b262Cas + @202Ca6) R = Ay13R
ez13 = (a5Cs1 + b2C3s + ¢2C3 + G2brCaa + b2 Cas + d202C36) R = Az13R
Yxy1z = (@5Ca1 + b3Cyy + €2 Cy3 + G2byCag + b262Cys + @202C46) R = Axy13R
Vyz13 = (@3Cs1 + b3Csy + ¢2Cs3 + d2brCsa + b262Cs5 + @262Cs6) R = Ayz13R

Yex13 = (a3Ce1 + b3Ces + E2Ce3 + d2brCes + b2é2Ces + 4262Ce6) R = Azx13R
(A.3b)

(2) The 14th set of solutions for global stresses and strains
Stresses:

2 o) 2 _ 7 ;o = - p.
Ox14 = a5R, 0,14 = bR, 0714 = C3R, Txy14 = a3b3R, 1y714 = b3C3 R, 17514 = A3C3R;
(A4)

Strains:
for isotropic case,

ex14 = 3 (a3 — b3 — pe?) R = Ax1aR,  &y14 = & (b3 — pas — ué?) R = Ay14R

ez14 = 3 (63 — pa? — 1b3) R = Az14R,  yxy1a = wésgﬂe = Axy14R

Yyz1a = 2(1;1‘)1;35313 = Ayz14R, Yzx1a = wéﬂ?aR = Azx14R
(A.52)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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for anisotropic case,

exta = (@3C11 + b2C1z + ¢2C13 + @3b3Cra + b3¢3C1s + a383Ci6) R = Ax14R
ey1a = (@3C21 + b3Cas + ¢3Ca3 + A3b3Caq + b383Cas + @3¢3C26) R = Ay1aR
ez14 = (@3C31 + b2Csp + ¢3Ca3 + @3b3Caa + b3¢3C35 + @363C36) R = Az14R
Yayia = (a3Ca1 + 5§C42 + ¢3Cy3 + a3b3Ca4 + b33Cys + a3¢3C46) R = Axy1aR
Yyz14 = (a3Cs1 + b2Csy + ¢2Cs3 + d3b3Csa + b3¢3Css + @303Cs6) R = Ayz14R

Vexia = (@3Ce1 + b3Cosz + 3Ce3 + @3b3Cos + b383Css + a383Cs6) R = Azx1aR
(A.5b)

(3) The 15th set of solutions for global stresses and strains
Stresses:

Ox15 =203 R, 0y15=2b2b3R, 0715 =202¢3R, Txy15 = h3R, 1yz15 = h1 R, Tzx15 = haR;
(A.6)

Strains:
for isotropic case,

Ex15 = %(a2a3—ub2b3—/wzc3)R Ax15R, ey15=% (5253—,“‘_1253_#5253)1? =Ay15R
£z15= %( 253—ua2a3—ub2b3)R =Az15R, yxy15= 2“;"’ (@xbs+ashy) R=Axy1sR |
Vyz15= i) (5253 +53C_’2)R =Ayz15R,  Yixis= 2(1;”“ (@203+a3c2) R=Ax15R

(A.7a)

for anisotropic case,

exts = (2a2a3C11 + 2b2b3C1z + 26263C13 + h3Cia + 71 Cis + haCig) R = AyisR
ey15 = (282a3C21 + 2b2b3Cop + 28283Ca3 + h3Caq + h1 Cos + h2Ca6) R = Ay15R
ez15 = (282a3C31 + 2b2b3C3p + 26263C33 + h3Csa + 71 Cas + 712Cs6) R = Az15R
Yayis = (2a2a3C4 +2byh3Cap +26263Ca3+h3Caq + h1Cys + h2Cs6) R = Axy1sR
Vyz15 = (263253(551+2]5253C52+26_253C53 +h3Cs4 4+ h1Cs5+hyCs6) R = Ayz15R

Vzxts = (2a2a3Ce1+2b2b3Cer+26283Ce3+h3Css + h1Cos + h2Ces) R = Azx15R
(A.7b)

(4) The 16th set of solutions for global stresses and strains
Stresses:

_2 ) —2 -7 T - Q.
Ox16 = a1S,0y16 = b1 S,0716 = C1S, Txy16 = 1615, Tyz16 = b1C1S, Tzx16 = @1C1S;
(A.8)
Strains:
for isotropic case,

exie = (@} — ub} —puc}) S = Aui6S,  eyis = 5 (b7 — pat — uét) S = AyieS
1
E

_ - - 1+ -
216 = & (¢F — pnat —ub?) S = Az16S.  Yxy16 = 200,y S = Axy16S ,
20041 1 = 231
Yyzl6 = (;M)blcls = Ayz16S, Yzx16 = %01015 = Azx16S
(A.92)
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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for anisotropic case,

exie = (@3C11 + b2Cia + ¢2C13 + @11 Cia + b181C1s + @181Ci6) S = Ax16S
ey1e = (a3Ca1 + l;fczz +¢3Ca3 + a1h1Cag + b11Cas + a161C6) S = Ay16S
ez16 = (a3C31 + b?C3y + ¢2C33 + @1b1Cay + b161Cas + a1¢1C36) S = Az16S
Yayie = (@3Ca1 + ch42 + ¢2Ca3 + a1bCayq + b121Cys + a1¢1Ca6) S = Axy16S
Vyzi6 = (@3Cs1 + b2Csy + ¢2Cs3 + @1b1Csa + b1¢1Css + @181Cs6)S = Ayz16S

Vexte = (a1Ce1 + b?Cey + ¢2Ce3 + @1b1Ces4 + b161Ces + a1¢1Ce6) S = Azx16S
(A.9b)

(5) The 17th set of solutions for global stresses and strains
Stresses:

Ox17 = @28S,0y17 = b3S, 0717 = €28, Tay17 = @3b3S, 1yz17 = b3E3S, 1717 = 3635
(A.10)
Strains:
for isotropic case,

ex17 = 5@} — pb3 — uéH)S = AarS,  ey17 = 5 (b3 — pat —pc3) S = Ay17S

1
E
£217 = & (€3 — pa3 — ub2) S = Az17S,  yxyi7 = 233538 = Ayy17S :

Yyz17 = 2(1;“)153535 = Ayz17S, Yzx17 = wﬁséS = Azx178
(A.11a)
for anisotropic case,

ex17 = (a3C1 + b3Cia + €3C13 + @3b3Crq + b3¢3Cys + a303Ci6) S = Ax17S
ey17 = (a3Ca1 + b3Cay + €3Ca3 + a3b3Caq + b363Cas + a33C6) S = Ay17S
ez17 = (a3Cs1 + b2Css + ¢2Cs3 + a3b3Caa + b303C35 + a303Cs6) S = Az17S
Yay17 = (@5Ca1 + 5§C42 +3Ca3 + a3b3Ca4 + b33Cys + a3¢3Ca6) S = Axy17S .
Yyz17 = (a5Cs1 + 5§C52 + ¢3Cs3 + a3b3Cs4 + b33Css + a3¢3Cse) S = Ayz17S

Yex17 = (a3Ce1 + b2Ces + ¢2Ce3 + a3b3Ces + b3¢3Ces + a3¢3Ce6) S = Azx17S
(A.11b)

(6) The 18th set of solutions for global stresses and strains
Stresses:

Oxi8 = 2a1a3S,0y18 = 201535, 0,18 = 2C1C3S, Txy18 = heS, Tyz18 = haS, 1zx18 = h5S;
(A.12)
Strains:
for isotropic case,

£x18 = %(5153—M5153—M5153)S=Ax185, <9y18:%(5153_ﬂélé3_M5153)S:AyISS

€718 = %(5153—,&5153—#5153)5 =Az18S, Yxy18= Z(IELM) (@1b3 + azh1)S = Axy18S

’

201+ (7 = o= 2(1+4) (5 = = =
Yyz18 = (EM) (b1c3 + b3¢1)S = Ayz18S. Vzxis = (EM) (ai1c3 +asc1)S = AzxisS
(A.13a)
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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for anisotropic case,

exts = (2a1a3Cry + 2b1b3C12 + 26163C13 + heCra + haCis + hsCi6)S = Ax15S
ey1s = (2a1@3C21 + 2b153Caa + 26183C23 + h6Cas + haCas + h5Ca6)S = Ay15S
ez18 = (2a1a3C31 + 2b1b3C3p + 26163C33 + heCaa + haCss + hsCse)S = Az15S
Vayis = (2a1a3Cq1 + 2b1h3Can + 26103Ca3 + heCas + haCas + hsCag)S = Axy1sS
Vyz1s = (2a1@3Csy + 2b1h3Csy 4 2¢183Cs3 + heCsa 4 haCss + hsCse)S = Ayz18S

Vaxis = (241a3Ce1 + 2b1b3Cey + 26163Cs3 + heCos + haCes + h5Ce6)S = Azx18S
(A.13b)

(7) The 19th set of solutions for global stresses and strains
Stresses:

-2 ) -2 - 7 - .
ox19 = ayT,0y19 = biT, 02190 = 1T, Txy10 = a1b1T, Tyz10 = b1¢1T, 17510 = @161 T
(A.14)

Strains:
for isotropic case,

ex10 = 3 (@} — b} —pé}) T = AqoT,  ey19 = (b —pai — pé?) T = AyioT
e10 = 5 (2 —pad — pb) T = Az19T,  yxyro = 24,5, T = Ayy1oT ,
Vyz1 2(1;—11«)]9 1T = Ayz197T, Vex19 = walcﬂw = A, 10T

(A.15a)

for anisotropic case,

ex10 = (a1Cy1 + h2Cyy + 3C13 + @1h1Cra + b161Cys5 + a161Ci6) T = Ax1oT
ey1o = (a3Ca1 + b2Cpy + €3Cas + @11 Cag + b1G1Cas + a101Ca6) T = Ay1oT
gz10 = (a7Cs1 + b2C3y + ¢3C33 + @1h1Cag + b161C35 + a161C36) T = Az10T
Yayto = (a7Ca1 + 5fC42 + ¢2Ca3 + G1bCas + b181Cys + a101Ca6) T = Axy10T
Yyz1o = (a3Cs1 + b?Csy + ¢2Cs3 + @11 Csa + b181Css + a101Cs6) T = Ayz10T

Yzxto = (a3Ce1 + b?Cea + ¢2Ce3 + a1b1Cea + b181Ces + @1¢1Co6) T = Azx1oT
(A.15b)

(8) The 20th set of solutions for global stresses and strains
Stresses:

0x20 = 3T, 0 yp0 = b3T, 0200 = E2 T, Txyo = Aabo T, Tyz20 = baéa T, Tzxo0 = G262 T;
(A.16)
Strains:
for isotropic case,
Ex20 = % (6_12 ,LLbz /,LE%) T = Ax20T, Ey20 = % (b_g — Mé% — [,LE%) T = Ayz()T
€220 = % (€2 — pa% — pb2) T = AzooT.  Yayzo = wflz[;ﬂﬂ = Axy20T ,

Yyz20 = ;mbzng = Ayz20T, Yzx20 = wézgﬂw = Azx20T

(A.17a)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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for anisotropic case,

ex20 = (a5C11 + b3Cia + E2Cy3 + dabrCra + b262Crs + 4262C16) T = Ax20T
ey20 = (a3Ca + b2Cas + ¢2Cas + by Cas + b2 Cas + a202C6) T = AypoT
ez20 = (a3C31 + b3C3s + E2C33 + dabyCag + b262Cas + a202C36) T = Az20T
Yay20 = (@3Ca1 + b2Cys + ¢2Ca3 + GnbrCas + briyCas + @202Ca6) T = Axy2oT
Vyz20 = (@3Cs1 + b3Csy + 3Cs3 + AzbyCsa + a2 Css + 4202Cs6) T = Ayz20T

Yex20 = (a5Ce1 + b3Cey + ¢2Ce3 + a2y Cey + b282Ces + 4202Ce6) T = AZ)(C.;ZXOIT7b)

(9) The 21st set of solutions for global stresses and strains
Stresses:

0x21 =212 T, Oy21 = 2b1b2T, 0721 = 261627, Txya1 = hoT, Tyzo1 = hyT, Toxa1 = hg T
(A.18)

Strains:
for isotropic case,

8x21:% (5!1672—#5152—#5152) T=AxT, SyZIZ%(b_lb_Z_HdI&Z_MEIEZ) T=Ay,T
£201 =5 (C182—pdrar— b1 b)) T = A1 T, yxyo1 = Z(ITW(dllgz +ab)T = Axyni T,
Vyzor =20 (b1éy + byé1) T=Ayz1 T, yzxo1 =281 (@182 + @26) T = Azxn T

(A.192)

for anisotropic case,

ex21 = (2a12C11 + 2b1b2Cio + 26162C13 + hoCra + h7Cis + hgCi6) T = Axor T
ey21 = (2a1@2Ca1 + 2b102Ca + 26182Ca3 + hoCas + h7Cas + hsCog) T = Ay T
£221 = (2a1@2C31 + 2b1b2C3p + 26162C33 + hoCas + h7Css + hsCs6) T = Ao T
Yay21 = (2a1a2Ca1 + 2b1byCan + 2¢122Ca3 + hoCay + h7Cys + hgCa6) T = Axyo1 T~
Vyz21 = (2a1a2Cs1 + 2b1h2Csp + 26182Cs3 + hoCsa + h7Css + hgCse) T =Ayz01 T

Vzx21 = (2a1a2Ce1 + 2b1b2Cez + 2¢162Ce3 + hoCos + h7Css5 + hgCos) T = Azxo1 T
(A.19b)

A.2. Nine sets of analytical general solutions for quadratic displacements in terms of R, S and T

(1) The 13th~15th sets of solutions for displacements (i =13~15)
1 _ _ _ ~ _
Ui = A {[a1JoAxi + (Jo — @1a1)(@1Axi + b1Axyi + 1 Azxi)
0

—ai (Z;fAyi +CiAg + l;lc_lAyzi)] R? —ay (a3 Axi

+b3 Ay + C3Azi + dabaAxyi + baGrAyzi + @282 Azxi) S?

—ay (@3 Axi + b3 Ayi + E3 Az + @3b3Axyi + b33 Ayy

+a303Azxi) T? + [Jo (282 Axi + baAxyi + C2Azxi)

—2ay (@182 Axi + b1baAyi + C162Azi) — ay (hoAxyi + h7Ayzi + hsAzxi)| RS
+ [JoQasAxi + b3Axyi + C3Azxi) — 2a1(@1@3Axi + b1b3Ay; + €1834z)

—ay (heAxyi + haAyzi + hsAzxi)] RT — a1 (2a2a3Axi + 2b2bsAy; + 285034z

+h3Axyi + hlAyzi + hZAzxi) ST}
(A.20a)
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- — _ _
Vi = A [b1JoAyi + (Jo — bi1b1) (a1 Axyi + b1Ayi + C1Ayz)
0

—by (a1 Axi + C1Azi + @101 Azxi) | R* — by (@5 Axi
+b3 Ayi + G2 Az + AobrAxyi + balrAyzi + @2érAzxi) S?
— by (@3Axi + b3 Ay + T3 Az + ashsAxyi + b3C3Ayzi

+a383Azxi) T? + [Jo (@2 Axyi + 202 Ay + E2Ayz;) , (A.20b)
—2by (@1G2Axi + b1brAy;i + G162 Az:) — b1 (hoAxyi + h7Ayzi

+hgAzxi)] RS + [Jo (@3Axyi + 2b3Ayi + C3Ayz:)

—2by (@183Axi + bibsAy; + €183Az) — by (heAxyi + hadyzi

+hsAzxi)] RT — by (2423 Axi + 2b2b3Ayi + 26283 Az

+h3Axyi + h1Ayzi + hoAzxi) ST}

1 _ _ _ ~ _
Wi = A {[é1J0Azi + (Jo — E1e1) (@1 Azxi + b1Ayzi 4+ ¢1Az)
0

—C1 (@ Axi + b7 Ayi + @1h1 Axyi)| R — ¢1 (@3 Axi
+b3 Ayi + CaAzi + @obr Axyi + balaAyzi + @282 Azxi) S?
— 1 (@3Axi + b2 Ay + 3 Az + asbsAxyi + b3C3Ayzi

+a33Azxi) T? + [Jo (@2 Azxi + baAyzi +282A) (A.20¢)
—2¢1 (a1a2Ax; + b1by Ay + C1C2Azi) — c1 (hoAxyi + h7 Ay

+hsAzxi)] RS + [Jo (@3Azxi + b3Ayzi + 283Az)

—2¢y (a1a3Axi + b1b3 Ay + C103Azi) — 1 (heAxyi + haAyz

+hsAzi)] RT — ¢1 (2823 Axi + 2byb3Ayi + 26283 Az

+h3Axyi + h1Ayzi +haAzx) ST)

(2) The 16th~18th sets of solutions for displacements (i =16~18)

1 _ ~ _ _ - - _ o
U= —{-a (afoi + b3 Ay + ¢ Az + arbiAxyi + b1¢1A4,zi + a1C1Azxi) R?

~ 27

+ [a2JoAxi + (Jo — G2a2)(@2 Axi + by Axyi + C2Azxi)

—as (B%Ayi + A + b_ZC_ZAyzi)] S? —ay (a3Axi + b3 Ayi + 03 Agi + G3b3Axyi

+ b3C3Ayzi + @33 Az )T? + [Jo(2a1Axi + b1Axyi + ¢1Azxi)

—2a5(@182Axi + b1baAyi + E182 Agi) — az(hoAxyi + h7Ayzi

+hgAzxi)] RS — az (2a1a3Axi + 2b1bs Ay; + 26183 Az

+heAxyi +haAyzi +hsAzxi ) RT + [Jo (2a3Axi + b3Axyi + C3Azxi)

—2a5 (23 Axi + bab3Ayi + 263 Azi ) — az (h3Axyi + h1Ayzi + haAzxi)] ST}
(A.21a)
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1

" 20

+ [baJoAyi + (Jo — babo) (@2 Axyi + baAyi + E2Ayz)

—by (a5 Axi + 3 Azi + @2C2Azxi)]S* — by (a5 Axi + b3 Ay +¢2 Ay

+a3h3Axyi + b3C3 Ay + a3C3Azxi) T? + [Jo(@1 Axyi + 2b1Ay; + E1Ayz:)

—2by(@1d2Axi + bibyAyi + 162 Azi) — ba(ho Axyi + h7Ayzi

+ hgAzxi)|RS — by (2a1d3 Axi + 2b1h3 Ayi + 26183 Agi + heAxyi

+ h4Ayzi +hsAzei) RT + [Jo(@3Axyi + 2b3Ay;

+G3Ayzi)—2ba (@23 Axi +bab3 Ay, +6263A42i)—ba(h3Axyi+hiAyzi+hyAzxi)]ST}

(A.21b)

Vi {=bs (a3 Axi + bIAyi + ¢F Az + @1b1Axyi + b181Ayzi + @161 4,51 ) R

1 _ —~ _ _ - - _ o
W; = g{_CZ(a%Axi + b3 Ay + ¢ Azi + @11 Axyi + b1¢1Ayzi + @161 424 ) R*
0

+ [EZJOAzH‘(JO_EZCZ)(aZAzxi‘l‘62Ayzi+6_’2Azi)_Cz(é%AxH‘[;%Ayi +6_1252Axyi)]52

— (@3 Ay + b2Ay; + 2 Ay + AsbsAxy; + baC3Ayg + a3c3Ag)T?

+ [Jo(@1Agxi + b1 Ayzi + 261 Az;) — 2¢2(a1a2 Axi + 5152Ayi + C1C2Azi)

— ¢2(hoAxyi + h7Ayzi + hgAzxi)]RS — ¢2(2a1a3 Axi + 2b1b3 Ay + 28163 Az

+ heAxyi +haAyzi + hsAgxi )RT + [Jo(@3Azxi + b3Ayzi + 263A2:)

—2¢2(@2a3Axi + babsAyi + €283 A1) — ca(h3Axyi + hiAyzi + haoAzxi )IST}
(A.21¢)

(3) The 19th~21st sets of solutions for displacements (i =19~21)
Ui = i {—as (@} Axi + b? Ay 4+ E2 Az + @1by Axyi + b181 Az + @101 Azxi ) R?

—as (diAx,- + b2 Ayi + 85 Ay + 07252Axyi + 526_’2Ayzi + G2CaAzxi)S?

+ [a3JoAxi + (Jo — @3a3)(@3Axi + b3 Axyi + C3Azxi)

—a3 (b3 Ayi + C3Azi + b3¢3Ayzi)| T? — a3(2a1a2 Axi + 2b1b2 A,

+ 20162 Azi + hoAxyi +h7Ayz + hsAzxi )RS

+ [JoQarAxi + b1Axyi + C1Azxi) — 2a3(@1@3Axi + b1b3Ay; + €183 Az)

—az(heAxyi + haAyzi +hsAzxi) | RT + [Jo(2a2Axi + bayAxyi + C2Azxi)

—2a3 (@asAxi + babsAyi + 6263 Azi) — as(h3Axyi + hiAyzi + haAzxi)| ST}

(A.22a)

1

=30 {=b3 (@7 Axi + b7 Ayi + 5 Azi + @r1b1 Axyi + b1E1 Ayzi + @161 Azxi ) R?
0

— b3 (@5Axi + b2 Ayi + C3 Agi + GobrAxyi + baGaAyzi + @22 Az )S?

+ [B3J0Ayi + (Jo — b3b3) (@3 Axyi + b3Ay; +E34,z)

—b3 (@3 Axi + 3 Azi + @383 A2xi)| T? — b3 (241G2Axi + 2b1b2 Ay

+2¢162 Azi + hoAxyi + h7Ayzi + hsAzxi) RS

+ [Jo (@1 Axyi + 2b1Ayi + E1Ayzi) — 2b3 (@1d3Axi + bibsAy; + ¢183Az;)

—b3(heAxyi + haAyzi +hsAzxi)| RT + [Jo(a2Axyi + 2b2Ay;i + 2 4y24)

—2b3(a2a3Axi + bab3Ayi + E283Az1) — b3(h3Axyi + hiAyzi + haAzxi )| ST}
(A.22b)
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1

T2

—c3 (a3 Axi + b3 Ayi 4 €3 Agi + AabyAxyi + baéaAyzi + arCrAzxi) S*

+ [e3JoAzi + (Jo — C3¢3)(@3Azxi + b3Ayzi + C3Azi) — ¢3 (a3 Axi

+D03Ayi + asb3Axyi)| T? — c3(2a1az Axi + 2b1by Ay; + 26182 Az

+ hoAxyi + h7Ayzi + hsAzxi )RS + [Jo (@1 Azxi + b1Ayzi + 281 Az;)

—2¢3(@1a3Axi + bib3Ay;i + ¢1834zi) — c3(heAxyi + haAyzi + hsAzxi)| RT

+ [Jo(@2Azxi + b2Ayzi + 262Azi) — 2¢3(G2a3Axi + babsAy;i + E283Az:)

—c3(h3Axyi + h1Ayzi + haAzxi )| ST}

{—c3 (é%Axi + b2 Ay; +EF Agi + arb1 Axyi + b161Ayzi + @161 Agyi ) R?

i

(A.22¢)

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial supports of the National Natural Science Foundation of
China (Project No. 11272181), the Specialized Research Fund for the Doctoral Program of Higher Education
of China (Project No. 20120002110080), and Tsinghua University Initiative Scientific Research Program
(Project No. 2014z09099).

REFERENCES

1. Abaqus 6.10 HTML Documentation. Dassault Systemes Simulia Corp.: Providence, RI, USA, 2010.

2. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J. Incompatible displacement models. In Numerical and Computer
Methods in Structural Mechanics, Fenven SJ, Perrone N, Robinson AR (eds). Academic Press: New York, 1973;
43-57.

3. Taylor RL, Beresford PJ, Wilson EL. A non-conforming element for stress analysis. International Journal for
Numerical Methods in Engineering 1976; 10(6):1211-1219.

4. Simo JC, Hughes TJR. On the variational foundations of assumed strain methods. Journal of Applied Mechanics
1986; 53(1):51-54.

5. Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible modes. International
Journal for Numerical Methods in Engineering 1990; 29(8):1595-1638.

6. MacNeal RH. A theorem regarding the locking of tapered 4-noded membrane elements. International Journal for
Numerical Methods in Engineering 1987; 24(9):1793-1799.

7. MacNeal RH. On the limits of element perfectability. International Journal for Numerical Methods in Engineering
1992; 35(8):1589-1601.

8. Kavanagh KT, Key SW. A note on selective and reduced integration techniques in finite element method.
International Journal for Numerical Methods in Engineering 1972; 4:148-150.

9. Malkus DS, Hughes TJR. Mixed finite element methods-reduced and selective integration techniques: a unification
of concepts. Computer Methods in Applied Mechanics and Engineering 1978; 15(1):63-81.

10. Hughes TJR. Generalization of selective integration procedures to anisotropic and nonlinear media. International
Journal for Numerical Methods in Engineering 1980; 15(9):1413-1418.

11. Kosloff D, Frazier GA. Treatment of hourglass patterns in low order finite element codes. International Journal for
Numerical and Analytical Methods in Geomechanics 1978; 2(1):57-72.

12. Flanagan DP, Belytschko T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control.
International Journal for Numerical Methods in Engineering 1981; 17(5):679-706.

13. Belytschko T, Ong JSJ, Liu WK, Kennedy JM. Hourglass control in linear and nonlinear problems. Computer
Methods in Applied Mechanics and Engineering 1984; 43(3):251-276.

14. Koh BC, Kikuchi N. New improved hourglass control for bilinear and trilinear elements in anisotropic linear
elasticity. Computer Methods in Applied Mechanics and Engineering 1987; 65(1):1-46.

15. Belytschko T, Bindeman LP. Assumed strain stabilization of the eight node hexahedral element. Computer Methods
in Applied Mechanics and Engineering 1993; 105(2):225-260.

16. Fredriksson M, Ottosen NS. Accurate 8-node hexahedral element. International Journal for Numerical Methods in
Engineering 2007; 72(6):631-657.

17. Cheung YK, Chen WJ. Isoparametric hybrid hexahedral elements for three dimensional stress analysis. International
Journal for Numerical Methods in Engineering 1988; 26(3):677-693.

18. Cao YP, Hu N, Lu J, Fukunaga H, Yao ZH. A 3D brick element based on Hu—Washizu variational principle for mesh
distortion. International Journal for Numerical Methods in Engineering 2002; 53(11):2529-2548.

19. Bassayya K, Bhattacharya K, Shrinivasa U. Eight-node brick, PN340, represents constant stress fields exactly.
Computers & Structures 2000; 74(4):441-460.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

DOI: 10.1002/nme



20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

P-L. ZHOU ET AL.

Ooi ET, Rajendran S, Yeo JH, Zhang BR. A mesh distortion tolerant 8-node solid element based on the partition of
unity method with inter-element compatibility and completeness properties. Finite Elements in Analysis and Design
2007; 43(10):771-781.

Lee NS, Bathe KJ. Effects of element distortions on the performance of isoparametric elements. International Journal
for Numerical Methods in Engineering 1993; 36(19):3553-3576.

Long YQ, Cen S, Long ZF. Advanced Finite Element Method in Structural Engineering. Springer-Verlag GmbH:
Berlin, Heidelberg; Tsinghua University Press: Beijing, 2009.

Long YQ, Li JX, Long ZF, Cen S. Area co-ordinates used in quadrilateral elements. Communications in Numerical
Methods in Engineering 1999; 15(8):533-545.

Long ZF, Li JX, Cen S, Long YQ. Some basic formulae for area coordinates used in quadrilateral elements.
Communications in Numerical Methods in Engineering 1999; 15(12):841-852.

Chen XM, Cen S, Fu XR, Long YQ. A new quadrilateral area coordinate method (QACM-II) for developing
quadrilateral finite element models. International Journal for Numerical Methods in Engineering 2008; 73(13):
1911-1941.

Long ZF, Cen S, Wang L, Fu XR, Long YQ. The third form of the quadrilateral area coordinate method (QACM-III):
theory, application, and scheme of composite coordinate interpolation. Finite Elements in Analysis and Design 2010;
46(10):805-818.

Li HG, Cen S, Cen ZZ. Hexahedral volume coordinate method (HVCM) and improvements on 3D Wilson hexahedral
element. Computer Methods in Applied Mechanics and Engineering 2008; 197(51-52):4531-4548.

Chen XM, Cen S, Long YQ, Yao ZH. Membrane elements insensitive to distortion using the quadrilateral area
coordinate method. Computers & Structures 2004; 82(1):35-54.

Cen S, Chen XM, Fu XR. Quadrilateral membrane element family formulated by the quadrilateral area coordinate
method. Computer Methods in Applied Mechanics and Engineering 2007; 196(41-44):4337-4353.

Cen S, Du Y, Chen XM, Fu XR. The analytical element stiffness matrix of a recent 4-node membrane element
formulated by the quadrilateral area coordinate method. Communications in Numerical Methods in Engineering
2007; 23(12):1095-1110.

Du Y, Cen S. Geometrically nonlinear analysis with a 4-node membrane element formulated by the quadrilateral
area coordinate method. Finite Elements in Analysis and Design 2008; 44(8):427-438.

Cen S, Chen XM, Li CF, Fu XR. Quadrilateral membrane elements with analytical element stiffness matrices formu-
lated by the new quadrilateral area coordinate method (QACM-II). International Journal for Numerical Methods in
Engineering 2009; 77(8):1172-1200.

Li G. A 4-node plane parametric element based on quadrilateral area coordinate and its application to coupled
solid-deformation/fluidflow simulation for porous geomaterials. International Journal for Numerical and Analytical
Methods in Geomechanics 2015; 39(3):251-276.

Flajs R, Cen S, Saje M. On convergence of nonconforming convex quadrilateral finite elements AGQ6. Computer
Methods in Applied Mechanics and Engineering 2010; 199(25-28):1816-1827.

Prathap G, Senthilkumar V. Making sense of the quadrilateral area coordinate membrane elements. Computer
Methods in Applied Mechanics and Engineering 2008; 197(49-50):4379-4382.

Chen XM, Cen S, Li YG, Sun JY. Several treatments on non-conforming element failed in the strict patch test.
Mathematical Problems in Engineering 2013; 2013:901495.

Rajendran S, Liew KM. A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic
displacement field. International Journal for Numerical Methods in Engineering 2003; 58(11):1713-1748.

Ooi ET, Rajendran S, Yeo JH. A 20-node hexahedral element with enhanced distortion tolerance. International
Journal for Numerical Methods in Engineering 2004; 60(14):2501-2530.

Liew KM, Rajendran S, Wang J. A quadratic plane triangular element immune to quadratic mesh distortions
under quadratic displacement fields. Computer Methods in Applied Mechanics and Engineering 2006; 195(9-12):
1207-1223.

Ooi ET Rajendran S, Yeo JH. Extension of unsymmetric finite elements US-QUADS and US-HEXA?20 for geometric
nonlinear analyses. Engineering Computations 2007; 24(4):407-431.

Rajendran S. A technique to develop mesh-distortion immune finite elements. Computer Methods in Applied
Mechanics and Engineering 2010; 199(17-20):1044-1063.

Rajendran S, Ooi ET, Yeo JH. Mesh-distortion immunity assessment of QUADS elements by strong-form patch tests.
Communications in Numerical Methods in Engineering 2007; 23(2):157-168.

Ooi ET, Rajendran S, Yeo JH. Remedies to rotational frame dependence and interpolation failure of US-QUADS
element. Communications in Numerical Methods in Engineering 2008; 24(11):1203-1217.

Cen S, Zhou GH, Fu XR. A shape-free 8-node plane element unsymmetric analytical trial function method.
International Journal for Numerical Methods in Engineering 2012; 91(2):158-185.

Cen S, Zhou PL, Li CF, Wu CJ. An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through
MacNeal’s theorem. International Journal for Numerical Methods in Engineering 2015; 103(7):469-500.

Xie Q, Sze KY, Zhou YX. Modified and trefftz unsymmetric finite element models. International Journal of
Mechanics and Materials in Design 2016; 12(1):53-70.

Yuan KY, Huang YS, Pian THH. New strategy for assumed stresses for 4-node hybrid stress membrane element.
International Journal for Numerical Methods in Engineering 1993; 36(10):1747-1763.

Yuan KY, Huang YS, Yang HT, Pian THH. The inverse mapping and distortion measures for 8-node hexahedral
isoparametric elements. Computational Mechanics 1994; 14(2):189-199.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

DOI: 10.1002/nme



49.
. Cen S, Fu XR, Zhou MIJ. 8- and 12-node plane hybrid stress-function elements immune to severely distorted
51.
52.
53.

54.

55.
56.
57.

58.

UNSYMMETRIC 8-NODE HEXAHEDRAL ELEMENT WITH HIGH DISTORTION TOLERANCE

Qin QH. Trefftz finite element method and its applications. Applied Mechanics Reviews 2005; 58(5):316-337.

mesh containing elements with concave shapes. Computer Methods in Applied Mechanics and Engineering 2011;
200(29-32):2321-2336.

Cen S, Fu XR, Zhou GH, Zhou MJ, Li CF. Shape-free finite element method: the plane hybrid stress-function (HS-F)
element method for anisotropic materials. SCIENCE CHINA Physics, Mechanics & Astronomy 2011; 54(4):653—-665.
Cen S, Zhou MJ, Fu XR. A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less
sensitive to severe mesh distortions. Computers & Structures 2011; 89(5-6):517-528.

Cen S, Zhou MJ, Shang Y. Shape-free finite element method: another way between mesh and mesh-free methods.
Mathematical Problems in Engineering 2013; 2013:491626.

Zhou MJ, Cen S, Bao Y, Li CF. A quasi-static crack propagation simulation based on shape-free hybrid stress-
function finite elements with simple remeshing. Computer Methods in Applied Mechanics and Engineering 2014;
275:159-188.

Zhou PL, Cen S. A novel shape-free plane quadratic polygonal hybrid stress-function element. Mathematical
Problems in Engineering 2015; 2015:491325.

Cook RD, Malkus DS, Plesha ME. Concepts and Applications of Finite Element Analysis (3rd edn). John Wiley &
Sons, Inc.: New York, 1989.

MacNeal RH, Harder RL. A proposed standard set of problems to test finite element accuracy. Finite Elements in
Analysis and Design 1985; 1(1):3-20.

INTESIM 2014 Theory Manual. Intesim Group: Venetia, PA, USA, 2014.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

DOI: 10.1002/nme



	An unsymmetric 8-node hexahedral element with high distortion tolerance
	Summary
	Introduction
	ANALYTICAL GENERAL SOLUTIONS IN TERMS OF 3D OBLIQUE COORDINATES
	Definition of 3D oblique coordinate system [47,48]
	The analytical general solutions in terms of 3D oblique coordinate system

	CONSTRUCTION OF A NEW UNSYMMETRIC 8-NODE HEXAHEDRAL ELEMENT US-ATFH8
	NUMERICAL EXAMPLES
	Constant stress/strain patch test (Figure 3)
	Cheung and Chen beam tests CR17 (Figure 4)
	Rotational frame dependence test on a cantilever beam with fully fixed end (Figure 5)
	Bending problems for skew beam, curving beam and twisted beam
	Cook's skew beam problem (Figure 6)
	Thin curved beam (Figure 7)
	Twisted beam problem (Figure 8)

	Nearly incompressible problems (Figure 9)

	CONCLUSIONS
	APPENDIX A: NINE SETS OF ANALYTICAL GENERAL SOLUTIONS FOR GLOBAL LINEAR STRESSES, STRAINS, AND QUADRATIC DISPLACEMENTS IN TERMS OF R, S, AND T
	REFERENCES


