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Abstract
Purpose – The purpose of this paper is to give a review on the newest developments of high-performance
finite element methods (FEMs), and exhibit the recent contributions achieved by the authors’ group, especially
showing some breakthroughs against inherent difficulties existing in the traditional FEM for a long time.
Design/methodology/approach – Three kinds of new FEMs are emphasized and introduced, including
the hybrid stress-function element method, the hybrid displacement-function element method for Mindlin–
Reissner plate and the improved unsymmetric FEM. The distinguished feature of these three methods is that
they all apply the fundamental analytical solutions of elasticity expressed in different coordinates as their trial
functions.
Findings – The new FEMs show advantages from both analytical and numerical approaches. All the
models exhibit outstanding capacity for resisting various severe mesh distortions, and even perform well
when other models cannot work. Some difficulties in the history of FEM are also broken through, such as the
limitations defined byMacNeal’s theorem and the edge-effect problems of Mindlin–Reissner plate.
Originality/value – These contributions possess high value for solving the difficulties in engineering
computations, and promote the progress of FEM.

Keywords Hybrid displacement-function (HDF), Hybrid stress-function (HSF), Mesh distortion,
Fundamental analytical solutions, High-performance finite element methods,
Improved unsymmetric finite element method

Paper type General review

1. Introduction
As the cornerstone of computational mechanics, the finite element method (FEM) is
recognized as one of the greatest achievements in the twentieth century (Feng and Shi, 2006;
Bathe, 1996; Long et al., 2009; Turner et al., 1956; Zienkiewicz and Taylor, 2000). During the
past 70 years, with the progress of computer technology, the FEM also obtained great
developments in its theories and applications, and has become the main computation and
simulation tool in science and engineering. It is undeniable that, a quite completed system of
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the FEM has been formed, and can be applied for computing and simulating almost all
problems with macro scale in continuum mechanics (Long and Cen, 2001; Lu et al., 2015; Lu
et al., 2018; Zhang and Cen, 2016). However, any user of the FEM must realize that, the
traditional FEM is only a pure numerical method that depends on patch interpolation
techniques. Therefore, from the viewpoints of the mathematics and computer technology,
some inherent defects are inevitable. In some special occasions, incorrected results may
easily appear if some little details are overlooked.

It is well known that in a finite element analysis, the computation must be performed by
using a mesh composed of various finite elements. In other words, the mesh is an essential
part of the FEM, in which each element is the domain for interpolation, integration and
computation in element level. Unfortunately, some troubles are just caused by the mesh. To
ensure computation precision, those meshes composed of elements with only regular shapes
are strongly anticipated. Once a distorted mesh is used, the accuracy may drop dramatically
(Lee and Bathe, 1993). Various numerical problems, such as shear locking, volume locking,
and so on, will appear. Figure 1a shows a rectangular beam under pure bending condition
(plane stress state). The exact solutions for displacements and stresses can be obtained if
only one rectangular eight-node isoparametric element Q8 with full integration is used
(Figure 1b). However, if five distorted Q8 elements with full integration are used (Figure 1c),
the relative errors will exceed 90 per cent. This is the sensitivity problem to mesh distortion,
an inherent difficulty existing in the FEM for a long time. For warning users to avoid
unreliable results, many commercial CAE software products, such as Simula/Abaqus, will
check the mesh and report the proportion of the distorted elements (Abaqus, 2009).

At present, few effective ways for eliminating the influence caused by distorted mesh can
be found. All people must pay attention to the mesh quality. Nevertheless, for those solids
and structures with complex configurations, it is not easy to achieve the goal. In the 3D
problem, the hexahedral elements usually possess much better precision and efficiency than
the tetrahedral ones. Up to date, the automatic 3D mesh generation technique of hexahedral
elements is still a challenging problem in finite element modeling (Cheng and Zhang, 2007).
That is to say, the mesh distortion problem is almost inevitable in the mesh composed of
hexahedral elements for the 3D solids with complex shapes. Some researchers suggested to
resist mesh distortion problemwith reduced integration in elements. However, the hourglass
(over soft) problems may take place in local region where the reduced integration elements
exist, and the precision for stress solutions cannot be guaranteed (Zhuang et al., 2005). The

Figure 1.
Pure bending beam
calculated by plane
eight-node elements
(Lee and Bathe, 1993)
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refined mesh is another treatment for overcoming mesh distortion. But if the number of
elements is huge, the computation cost for highly nonlinear or dynamic problems will
increase at an N3 rate. Furthermore, it seems that mesh distortions always occur for large
deformation state.

In crack propagation problems, some other troubles will be also caused by the finite
element mesh. For example, when simulating crack propagation, different meshes may lead
to different propagation directions. And remeshing the structures after crack propagation is
a big problem because a great deal of distorted elements will appear along the winding
propagation path. To break above obstacles, Belytschko et al. (1994) proposed an element-
free Galerkin method. From that time, various element-free, mesh-free, and meshless
methods have been appearing in numerous literatures. By combination of the techniques
from CAD, FEM and NURBS (Non-Uniform Rational B-Splines), Hughes et al. (2005)
proposed an exact geometry method for numerical modeling. This method, denoted by
isogeometric analysis, has become a research hotspot in recent years. For avoiding mesh
dependence problem and remeshing difficulty in crack propagation simulations, Moës et al.
(1999) developed an extended FEM (XFEM) by introducing enrichment shape function and
level sets method. It allows a crack penetrates elements without remeshing during whole
computation process, and this advantage has attracted many researchers.

Besides the problems brought by mesh, another inherent defect also exists in the
conventional FEM. At present, most elements are displacement-based in which the nodal
displacements are taken as the degrees of freedom (DOFs). For linear elasticity, the finite
element equations are usually derived from the principle of minimum potential energy, and
relatively more accurate solutions for displacements can be obtained. However, the stress or
the internal force solutions are extracted by the constitutive equations consisted of the
derivatives of the displacements, so that their precisions and convergences are lower than
those for displacements at least one order (in Mindlin–Reissner plate bending problem, the
precisions of the shear forces are lower than those for displacements two order). This is the
low precision problem for stress solutions of the FEM. In some occasions, such as the pure
bending problem modelled by solid elements, if only low-order elements are used, ideal
results will not be obtained although the element shapes are not distorted. Furthermore, for
some problems in which the stress distributions varies sharply, how to correctly compute
stresses is also a big difficulty. As shown in Figure 2, a square plate, with two opposite
edges hard simply-supported (SS2) and the other two edges free, is subjected to a uniformly
transverse load q. Because of symmetry, only one quarter of the plate is modelled by a refine
mesh with 64� 64 displacement-based plate elements ARS-Q12 (Soh et al., 2001). However,

Figure 2.
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compared with the semi-analytical solution given by Kant and Hinton (1983), the resulting
distribution of the shear force Tx along y=0.5L is not precise. Especially, the zero boundary
condition of the shear force at the free edge cannot be reflected.

However, we have to admit that, no matter what defects existing in the FEMs, its position
is still irreplaceable for the time being. It still has great significance to develop high-
performance FEM that can overcome the shortcomings and improve the performances of the
conventional FEM. Although there is no definition for the high-performance FEM, it should
possess following features. First, under a coarse mesh, the high-performance FEM will
produce much better results than those obtained by the conventional FEM, especially for the
problems with drastic stress variation or stress concentration. Second, though the
computation cost for a single high-performance finite element may be higher than that for a
single conventional element, it will become much lower when simulating the whole structure
because a relatively coarse mesh is needed. Third, the high-performance FEM can still
perform well when the conventional elements cannot work, such as the elements in the
severely distorted meshes. Fourth, the definition of the nodal DOFs is the same as that given
for the conventional elements, so that the high-performance FEM can be complied in current
FEM program systemwithout any obstacle.

During the past 60 years, the research on the high-performance FEM has never stopped.
Many new ideas have been successfully developed, such as various hybrid stress (Pian,
1964; Pian and Sumihara, 1984; Pian and Wu, 2006; Wu et al., 1987; Yeo and Lee, 1997; Sze,
2000; Cen et al., 2010) and multi-variable FEMs (Tian and Pian, 2011), the incompatible or
non-conforming FEMs (Wilson et al., 1973; Taylor et al., 1976), the enhanced assumed strain
(EAS) (Simo and Rifai, 1990) and the directly assumed strain approaches (MacNeal, 1982),
the stabilization matrix method (Belytschko and Bachrach, 1986), the reduced integration
schemes (Hughes, 1980), the B-bar function method (Piltner and Taylor, 1997), the quasi-
conforming element method (Chen and Tang, 1981; Tang et al., 1984), the generalized
conforming element method (Long and Huang, 1988), the refined hybrid element method
(Chen, 1992), the smoothed FEM (Liu et al., 2007; Liu and Quek, 2013; Zeng and Liu, 2018),
the variationally consistent FEM (Liu et al., 2011), new spline FEM (Chen et al., 2010a, 2010b,
2011; Li et al., 2011), new natural coordinate FEM (Long et al., 1999a; Long et al., 1999b, 2010;
Long and Cen, 2000; Chen et al., 2004, 2008; Li et al., 2008; Cen et al., 2007, 2008), the FE-
meshfree element based on partition of unity (Rajendran and Zhang, 2007; Rajendran et al.,
2010; Xu and Rajendran, 2011, 2013) and so on. All of these innovations improved the FEM
more or less, but few can perfectly break the limitation brought by themeshes.

Cen et al. (2011a) proposed a concept of shape-free FEM. This idea came from their paper
published in Engineering Computations (Fu et al., 2010), in which a new kind of FEMwhose
performances are not affected by element shapes was presented. The eight-node plane
quadrilateral element developed in that paper can keep good precision when it is severely
distorted, even when the element shape degenerates into a concave quadrangle or a triangle.
Recently, some similar models were also proposed by other researchers for plane problem
(Peng et al., 2014a, 2014b; Wang et al., 2016; Xia et al., 2017; Zhou et al., 2016), but seldom
developments for 3D problem can be found.

This paper will give a review on some newest developments of the high-performance
FEMs achieved by the authors’ group (Cen et al., 2017), including the hybrid stress-function
FEM, the hybrid displacement-function FEM and the improved unsymmetric FEM based on
the fundamental analytical solutions, and exhibit their applications in plane, crack
propagation, plate bending, 3D and shell problems. Some breakthrough points for inherent
difficulties existing in current FEM are specially emphasized.
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2. The hybrid stress-function elements for plane problem
In the stress-function solution method for plane elasticity, the fundamental variable is the
stress function f . Substitution of the relationship between the stress vector r and the stress
function f , r ¼ ~R fð Þ, into the functional of the element complementary energy yields:

Pe
C ¼ Pe*

C þ Ve*
C ¼ 1

2

ðð
Ae

~R fð ÞTC~R fð ÞtdA�
ð
Ce

L~R fð Þ�Tutds;
h

(1)

in which the stress function f becomes the fundamental variable; C is the elasticity matrix
of compliances; t, the thickness of the element; Ae, the element area; C e, the boundary of the
element; L, the direction cosine matrix of the element boundary; u, the displacement vector
of the element boundary, which can be interpolated by the element nodal displacement
vector qe (same as that of the conventional isoparametric elements).

Accordingly, when formulating the finite element models, instead of directly assuming
stresses, the interpolation formula for stress function f is assumed firstly as follows:

f ¼
XN
i¼1

f ib i ¼ ub; (2)

whereN is the number of the fundamental analytical solutions f i used for stress function f
in equation (2); b i (i=1 � N) are N unknown constants; f i (i=1 � N) are N fundamental
analytical solutions (in Cartesian coordinates) of the Airy stress function f , and satisfy the
following compatibility equations:

r2r2f i ¼ 0; ðisotropic caseÞ (3)

Ĉ11
@4w i

@y4
þ Ĉ22

@4w i

@x4
þ 2Ĉ12 þ Ĉ66

� � @4w i

@x2@y2
� 2Ĉ16

@4w i

@x@y3
� 2Ĉ26

@4w i

@x3@y
¼ 0; ðanisotropic caseÞ

(4)

where Ĉ ij ¼ Ĉ ji are the reduced elastic compliances, and have been defined by Zienkiewicz
and Taylor (2000).

The stress function f has three fundamental analytical solutions for constant stress
state and four for each other higher order stress states. For establishing equation (2), one
should select these fundamental analytical solutions in turn from the lowest-order to higher-
order, and ensure that the resulting stress fields possess completeness in Cartesian
coordinates. Obviously, the stress fields derived from equation (2) will be more reasonable
because they satisfy all control equations. Following the procedure similar to that of the
traditional hybrid stress element method (Pian, 1964), the element stiffness matrix K* and
the equivalent nodal load vector can be obtained (Zhou, 2014). This is the main procedure for
construction of the hybrid stress-function (HSF) elements. Because the assume fields are all
expressed in terms of Cartesian coordinates, there is no Jacobian determinant existing in the
denominator of the final formulae for evaluating K*, so that the main factor leading to
sensitivity problem to mesh distortion (Lee and Bathe, 1993) vanishes naturally.

2.1 Plane hybrid stress-function solid element models
Cen et al. (2011b) developed two 8-node and two 12-node quadrilateral hybrid stress-function
(HSF) elements for plane elasticity, in which the two 8-node elements, denoted by
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HSF-Q8-15b and HSF-Q8-29b , use 15 and 19 fundamental analytical solutions of the stress
function; and the two 12-node elements, denoted by HSF-Q12-23b and HSF-Q12-27b , use 23
and 27 solutions. The stress fields of these four elements possess third-, fourth-, fifth- and
sixth-order completeness in Cartesian coordinates, respectively. The element shapes are
quite free (see Figure 3). Numerical examples show that, the 8-node and 12-node models can
produce the exact solutions for pure bending and linear bending problems, respectively,
even the element shape degenerates into triangle and concave quadrangle. For higher order
problems, they also exhibit much better accuracy, convergence and efficiency than those of
the conventional displacement-based elements with same DOFs. Furthermore, the new HSF

Figure 3.
Shape-free plane
high-order
quadrilateral
elements (Cen et al.,
2011b)
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models can avoid volumetric locking naturally. Figure 4 shows a high-order bending
problem, a Cook’s skew beam under nearly incompressible and plane strain state. The
precision of the HSF elements using about only 40 DOFs is almost the same as that obtained
by the conventional eight- or nine-node isoparametric elements using about 1,000 DOFs.
These HSF elements have also been generalized to the models for anisotropic case (Cen et al.,
2011a).

By introducing Allman nodal drilling degrees of freedom (Allman, 1984), Cen et al.
(2011c) developed a 4-node quadrilateral HSF plane element HSF-Q4u -7b with drilling
degrees of freedom by using seven analytical solutions of the stress function. This element
exhibits much better and more robust performance than other similar or higher-order
displacement-based and hybrid stress elements. It is immune to severe mesh distortion, for
example, they can perform well even the element shape degenerates into triangle and
concave quadrangle. Zhou and Cen (2015) proposed a shape-free plane quadratic polygonal
HSF element HSF-AP-15b . It also exhibits excellent performance for both displacements
and stresses.

2.2 The quasi-static crack propagation simulation based on the hybrid stress-function
element method with simple remeshing
The HSF element method also benefits solving stress singular problems. Zhou et al. (2014)
constructed a singular HSF element HSF-Crack for analysis of plane crack tip by using

Figure 4.
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Williams’s analytical solutions for the stress function (Williams, 1957). This element is a
shape-free multi-node model with arbitrary polygon. In practical applications, the
limitations for its shape, size, number of nodes, number of the trial functions (analytical
solutions) are quite small (Figure 5), so that it is very convenient for crack modeling. By
combination with the 8-node plane HSF element HSF-Q8-15b (Cen et al., 2011b), the high-
precision stress intensity factors can be obtained by using only a few elements, which means
the computation costs are quite lower than those of other algorithms. Furthermore, a simple
and definite multiple relationship exists between the stress intensity factor and the
parameters of the first two solutions of the stress function, so that there is no need for
J-integration or other post-processing procedure.

Then, Zhou et al. (2014) proposed a quasi-static crack propagation simulation scheme by
applying a simple remeshing strategy with above crack element HSF-Crack and the plane
solid element HSF-Q8-15b . This scheme possesses following outstanding features. First,
although the configuration of the structure near the crack will become more complicated
along with the crack propagation, the shape, the number of nodes, and the size of the crack
element at the crack tip can be flexibly adapted for such variation. Second, although the
complicated crack propagation path will lead to severe mesh distortion, the computation
precision can still be guaranteed because of the merits of the element HSF-Q8-15b . Third, for
remeshing in each propagation step, only a relatively coarse mesh is needed, which can be
easily achieved by most software products. These features mean that the present scheme is
convenient for modeling, and its computation cost is also quite low. Numerical tests
demonstrate that the precision and the efficiency of the proposed scheme are better than
those of the XFEM (Moës et al., 1999) and smoothed FEM (Nourbakhshnia and Liu, 2011) (see
Figure 6). Following the construction procedure of the element HSF-Crack, Cen et al. (2016)
also proposed a similar scheme by combination of a new low-order crack element HSF-Crack-
u with drilling degrees of freedom and the element HSF-Q4u -7b (Cen et al., 2011c).

3. The hybrid displacement-function (HDF) elements for Mindlin–Reissner plate
How to develop robust finite element models for analysis of Mindlin–Reissner plate is an
interesting topic and has attracted many researchers for a long time (Cen and Shang, 2015).
An ideal element should be free of shear locking, immune to mesh distortion, and able to

Figure 5.
Multi-node plane
polygonal crack-tip
element HSF-Crack
and the example
meshes for
computations (Zhou
et al., 2014)
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produce good results for both displacements and internal forces. Although various models
have been successfully proposed, few are truly independent of the element shapes. The
aforementioned HSF element method provides a new thought for solving this problem.
However, the concept of the stress function does not exist in plate problem.

Hu (1984) proved that, in Mindlin–Reissner plate theory, the solutions of deflection w and
rotations c x and c y can be expressed by two functions F and f:

c x ¼
@F
@x

þ @f
@y

; c y ¼
@F
@y

� @f
@x

; w ¼ F � D
C
r2f ; (5)

in which D is the bending stiffness of the plate; C, the shearing stiffness of the plate; F is
active within the whole plate; and f only appears near the plate edges and reflects edge
effects. F and f can be defined as displacement functions, and must satisfy following
equations:

Dr2r2F ¼ q; (6)

1
2

1� mð ÞDr2f � Cf ¼ 0; (7)

Figure 6.
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in which q is the distributed transverse load; m is the Poisson’s ratio. The solution of the
displacement function F in equation (6) is the sum of the the general solution F0 and the
particular solution F*, in which:

Dr2r2F0 ¼ 0: (8)

Then, according to the geometry and constitutive equations, all components of the stress
resultants can be expressed in terms of the displacement function F and f:

R ¼ Mx My Mxy Tx Ty
� �T ¼ ~D F; fð Þ; (9)

where Mx and My are bending moments; Mxy is the twisting moment; Tx and Ty are the
shear forces. These resultant forces satisfy all control equations. Substitution of them into
the functional of the element complementary energy yields:

Pe
C ¼ Pe*

C þ Ve*
C ¼ 1

2

ðð
Ae

~D F; fð ÞTC ~D F; fð ÞdA�
ð
Ce

L ~D F; fð Þ�Tdds;
h

(10)

where C is the elastic flexibility matrix for plate; L is the direction cosine matrix of the
element boundary; d is the displacements along element edges, which can be interpolated by
the element nodal displacement vector qe. (The first-order [Hu, 1984] or the arbitrary order
[Jelenic and Papa, 2011] Timoshenko’s beam functions are strongly suggested as this
interpolation formulae).

When formulating a finite element model, instead of directly assuming resultant force fields,
the interpolation formula for displacement functions F and f are assumed firstly as follows:

fF ¼F0 þ F* ¼
Xn
i¼1

F0
i b i þ F*

f ¼
Xm
j¼1

fjaj ; (11)

where b i and aj are unknown parameters of the displacement functions; F0
i (i =1 � n) are

first n analytical solutions (in Cartesian coordinates) of F0 satisfying equation (8); fj (j=1�m)
are m analytical solutions (in Cartesian coordinates) of f satisfying equation (7); F* is the
particular solution (in Cartesian coordinates) of F satisfying equation (6). Other construction
procedure is similar to that HSF element method. Finally, according to the principle of the
minimum complementary energy, the element stiffness matrix K* and the equivalent nodal
load vector can be obtained. This is the main procedure for construction of the HDF elements.
Similar to the HSF element method, there is no Jacobian determinant existing in the
denominator of the final formulae for evaluatingK*, whichmeans that the main factor leading
to sensitivity problem to mesh distortion (Lee and Bathe, 1993) is eliminated.

3.1 The hybrid displacement-function plate elements insensitive to severe mesh distortion
By only applying the displacement function F, Cen et al. (2014) presented a four-node,
12-DOF quadrilateral HDF element HDF-P4-11b , in which the first 11 fundamental
analytical solutions of F0 are used so that the corresponding stress resultants fields reach
second-order completeness in Cartesian coordinates. This element is quite simple, and
exhibits almost the best performance among all existing four-node, 12-DOF quadrilateral
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plate bending elements. Especially, it is quite insensitive to severe mesh distortions and can
even performwell when element shape is a concave quadrangle or a degenerated triangle.

As shown in Figure 7, a quarter of a thin clamped square plate subjected to uniformly
distributed load is considered. This quarter plate is divided by a very coarse mesh (2� 2),
and the central node of the mesh will be moved along the main diagonal of the plate to the
two corner nodes. D is the distortion parameter. It can be seen that, along with the variation
of D, the displacement results obtained by element HDF-P4-11b are quite stable and
insensitive to mesh distortion. When an element in the mesh degenerates into a triangle or
concave quadrangle (other finite elements cannot work), the model can still keep good
precision.

Following above thought, Bao et al. (2017) also successfully developed an eight-node,
24-DOF quadrilateral HDF plate element HDF-P8-23b in which the first 23 fundamental
analytical solutions of F0 are applied. It exhibits almost the best performance among all
existing eight-node, 24-DOF quadrilateral plate bending elements. Huang et al. (2017) also
proposed a three-node triangular HDF element HDF-P3-7b for both static and free vibration
analyses of Mindlin–Reissner plates. Furthermore, Shang et al. (2016) combined the plate
element HDF-P4-11b and the plane element HSF-Q4u -7b (with drilling degrees of freedom)
to construct a flat shell element HDF-SH4. This new shell element inherits all the advantages
from the HDF and HSF element methods. Figure 8 gives the contour plots, calculated by
HDF-SH4, of y-direction displacement of the pinched cylinder with diaphragms ends. It can
be seen that, the plots are almost the same no matter regular or distorted mesh is used.

3.2 Solving the edge effect difficulty by the hybrid displacement-function element method
As described in Introduction, a kind of special difficulty, i.e. the edge effect phenomenon, is
existing in the Mindlin–Reissner plate theory (Arnold and Falk, 1989, 1990). The so-called
edge effect, or the boundary layer effect, is the fact that the rotations and stress resultants of
a Mindlin–Reissner plate vary sharply in a narrow region at the vicinity of certain types of
boundary conditions. Wang et al. (2001) pointed out that, accurate predictions of resultants
are crucial for the design of a very large floating structure. However, the traditional
displacement-based FEM cannot reflect such sharp variation without an extremely refined
mesh. Furthermore, the boundary conditions of zero stress resultants cannot be satisfied,
either.

Figure 7.
Sensitivity test for
symmetric mesh

distortion, clamped
plate (Cen et al., 2014)
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Shang et al. (2015), Shang (2016) firstly gave out two analytical solutions of the displacement
function f satisfying equation (7):

F15
1
D
emxþny�a0 ;F25

1
D

nx�myð Þemxþny�a0 : (12)

Then, they used these solutions to extend the HDF elements. After modifying the assumed
stress resultants by introducing the exact boundary conditions, two special four-node,
12-DOF quadrilateral HDF plate elements, HDF-P4-Free and HDF-P4-SS1, were successfully
formulated for capturing the edges effects along free and soft simply-supported (SS1)
boundaries, respectively. When dealing with the edge effect problems, these special
elements will be allocated along the corresponding boundary, and the normal HDF element
HDF-P4-11b are used in other regions to connect with the special elements.

Figure 9 plots a square plate subjected to a uniformly distributed load q. Two opposite
edges of the plate are hard simply-supported (SS2) and the other two edges free. Owing to
symmetry, only a quarter of the plate ABCD is considered. The special element HDF-P4-
Free is allocated along the free edge AD, while normal element HDF-P4-11b is used in
other region. From Figure 9, it can be seen that, the edge effects of the twisting moment
Mxy and the shear force Ty along AB can be well captured when only a 4� 4 coarse mesh
is used. Especially, the zero boundary condition of the twisting moment Mxy obtained by
the current model is exact. However, such good results cannot be obtained by most other
higher-order elements, including the 8-node shell element S8R of the Simula/Abaqus,
even a refined 100� 100 mesh is used. To obtain more smoothed results,

Figure 8.
The contour plots of
y-direction
displacement of the
pinched cylinder on
different meshes
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Shang et al. (2017) proposed an improved HDF (IHDF) element scheme based on a
modified complementary energy functional containing Lagrangian multipliers, and
developed two new special four-node, 12-DOF IHDF elements, IHDF-P4-Free and IHDF-
P4-SS1, for modeling plate behaviors near free and soft simply-supported (SS1)
boundaries, respectively. Such new modeling scheme not only greatly improves the
precision of the numerical results, but also avoids usage of the additional local coordinate
system in original method (Shang et al., 2015).

Following similar procedure, Bao et al. (2017) also extended the eight-node, 24-DOF HDF
element HDF-P8-23b to two eight-node special HDF elements, HDF-P8-Free and HDF-P8-
SS1, for analysis of the edge effects of the free and soft simply-supported boundaries,
respectively. Numerical results show they are the best models among the existing eight-node
finite elements.

4. An improved unsymmetric finite element method based on the fundamental
analytical solutions
The unsymmetric FEM is a kind of Galerkin FEM, in which the test and the trial functions
of the displacement fields are different (Rajendran and Liew, 2003; Rajendran et al., 2007;
Rajendran, 2010; Liew et al., 2006; Ooi et al., 2004, 2007, 2008). Based on the virtual work
principle, the final element stiffness matrix can be written as:

Figure 9.
The edge effects of a
square plate with two

opposite edges
simply supported and

the other two free,
span-thickness ratio
a/h=50 (Shang et al.,

2015)
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ð1
�1

ð1
�1

ð1
�1

B
*

jJjDB̂jJjdj dhdz ¼
ð1
�1

ð1
�1
B
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DB̂dj dhdz

(13)

where B ¼B
*
=jJj is the strain matrix derived from the conventional isoparametric

elements; B̂ is the strain matrix derived from the assumed displacement fields in terms of
the Cartesian coordinates; jJj is the Jacobi determinant. From equation (13), it can be seen
that, although the element stiffness matrix Ke is unsymmetric, the Jacobi determinant jJj in
denominator disappears in the final formula for evaluating Ke. Therefore, the main reason
that leads to the sensitivity problem to mesh distortion (Lee and Bathe, 1993) does not exist
anymore. Several high order models have been developed, including plane 6-node triangular
element (Liew et al., 2006), plane 8-node and 9-node quadrilateral elements (Rajendran and
Liew, 2003; Rajendran, 2010), 20-node hexahedral element for 3D problem (Ooi et al., 2004),
and so on. They are almost immune to severe mesh distortions.

However, because of the limitation for the number of the nodal DOFs, the interpolation
formulae for assumed displacement fields in terms of Cartesian coordinates may not be
complete. This problem leads to three fetal defects when formulating serendipity (no
internal node) plane quadrilateral and 3D hexahedral elements. First, the performance of the
low order element cannot be improved. Second, some special shape of the element will lead
to interpolation failure so that the element cannot work (for example, the eight-node
quadrilateral element degenerate into a triangle) (Ooi et al., 2008). Third, the results for
higher-order problems are not consistent when the coordinate axes rotate, i.e. the element
exhibits rotational frame dependence (Ooi et al., 2008).

4.1 Improved low-order unsymmetric plane, 3D solid and 3D solid-shell elements that can
overcome all defects and break through MacNeal’s theorem
In 2012, by applying the fundamental analytical solutions and generalized conforming
technique (Long et al., 2009), Cen et al. (2012) assumed a new displacement fields that
reaches fourth-order completeness in terms of Cartesian coordinates, and constructed a new
unsymmetric eight-node, 16-DOF plane quadrilateral element US-ATFQ8. This element can
still work well when interpolation failure modes for original unsymmetric element occur
(Rajendran and Liew, 2003), and provide the invariance for the coordinate rotation.
Furthermore, the exact solutions for constant strain/stress, pure bending and linear bending
problems can be obtained by the element US-ATFQ8 using arbitrary severely distorted
meshes, and produce more accurate results for other more complicated problems. It should
be noted that no other eight-node plane element that can provide exact solutions for linear
bending problem is found. Shang et al. (2018b) also proposed a successful eight-node
unsymmetric element US-Q8 based on self-equilibrium metric stress field for plane
orthotropic problem. However, these ideas cannot be directly applied for developing lower-
order models.

In 1987, MacNeal (1987) declared his well-known theorem, that is, any four-node, 8-DOF
plane membrane element will either lock in in-plane bending or fail to pass a C0 patch test
when the element’s shape is an isosceles trapezoid. This conclusion means such low-order
elements must be sensitive to mesh distortion, and it almost closes out further effort to
extend the linear strain capability of such elements beyond what has already been achieved
for rectangular and parallelogram shapes. In 2015, Fotiu (2015) emphasized again that this
MacNeal’s theorem is hard to be overturned.
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In 2015, Cen et al. (2015) and Zhou (2016) proposed a novel unsymmetric FEM by
applying fundamental analytical solutions expressed in terms of composite coordinates. For
an unsymmetric four-node, 8-DOF plane quadrilateral element, the displacement fields
expressed in terms of Cartesian coordinates are rewritten as:

û ¼ û

v̂

( )
¼ Pa ¼ 1 0 x 0 y 0 U7 U8

0 1 0 x 0 y V7 V8

" # a1

a2

..

.

a8

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; (14)

where ai (i = 1, 2, . . ., 8) are eight unknown parameters; U7, V7, U8, V8 are the analytical
solutions for pure bending state and expressed in terms of the second form of the
quadrilateral area coordinates (QACM-II) (Chen et al., 2008; Cen et al., 2009; Cen and Zhou,
2016), and they are valid for both isotropic and anisotropic materials. First, because the
relationship between the QACM-II and Cartesian coordinate system is always linear, all the
features brought by Cartesian coordinates are still kept. Second, as the QACM-II is a kind of
local natural coordinates, the rotational frame dependence will not exist even though the
trial functions are not completed.

The resulting element, denoted by US-ATFQ4, will never produce interpolation failure,
and can exactly pass constant strain/stress patch test no matter its shape is a arbitrarily
convex or concave quadrangle, or a degenerated triangle. For the pure bending test given by
Figure 10, the computation results are given in Table I. It can be seen that element
US-ATFQ4 is the only four-node, 8-DOF model that can provide the exact answers for both
pure bending test and the constant strain/stress patch test. Furthermore, there is no
rotational frame dependence existing in this element. Thus, the MacNeal’s theorem is
perfectly broken through. Furthermore, unsymmetric three-node triangular and four-node
quadrilateral membrane elements with drilling DOFs that can exhibit excellent
performances were also proposed by Shang et al. (2018a), Shang and Ouyang (2018),
respectively.

MacNeal’s theorem can also be generated to 3D eight-node hexahedral elements and shell
elements (MacNeal, 1992). Actually, how to find a solution strategy for 3D problem is more
difficult. Zhou (2016) and Zhou et al. (2017) derived out the fundamental analytical solutions
in terms of 3D skew coordinate system (Yuan et al., 1994) (a kind of local coordinates, also

Figure 10.
Pure bending test
with two distorted

elements
(Cen et al., 2015)
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has linear relationship with Cartesian coordinate system) for 3D elasticity (both isotropic
and anisotropic materials). Then, they selected the terms corresponding to the pure bending
state to assume the displacement fields. Similar to the plane element US-ATFQ4, the
resulting 3D unsymmetric eight-node, 24-DOF hexahedral element US-ATFH8 also exhibit
super ability for resisting mesh distortion, and can break through the limitations defined by
MacNeal’s theorem. Recently, by introducing proper shell assumption and assumed natural
strain modification for transverse strains, Huang et al. (2018) modified the isoparametric
displacement fields of element US-ATFH8, and successfully generalized the 3D
unsymmetric element US-ATFH8 to a new 3D solid-shell element US-ATFHS8. The new
element is able to give highly accurate predictions for shells with different geometric
features and loading conditions and is quite insensitive to mesh distortions. In particular,
the excellent performance of US-ATFH8 under membrane load is well inherited, which is an
outstanding advantage over other shell elements.

4.2 Geometric nonlinear formulations of the improved unsymmetric FEM
Because the improved unsymmetric FEM adopts the fundamental analytical solutions for
linear elasticity, some researchers (Cowan and Coombs, 2014) claimed they cannot be
applied in nonlinear problems. In fact, the analytical trial functions are only the functions of
physical coordinates with material constants. These coordinates and material constants can
be updated referring to the current configuration at each iterative step so that it is possible
to use them as part of the incremental equations of the updated Lagrangian (UL)
formulation.

Table I.
Results of the tip
deflection vA of a
pure bending
cantilever beam with
a distorted parameter
e (Figure 10)

e
Element models 0 0.5 1 2 3 4 4.9

Elements that cannot pass the C0 patch test
Q6 (Wilson et al., 1973) 100 93.21 86.89 92.67 102.42 110.52 116.6
AGQ6-I (Chen et al., 2004) 100 100 100 100 100 100 100
AGQ6-II (Chen et al., 2004) 100 100 100 100 100 100 100
QACII6 (Chen et al., 2008) 100 100 100 100 100 100 100
QAC-ATF4 (Cen et al., 2009) 100 100 100 100 100 100 100
QACIII6 (Long et al., 2010) 100 100 100 100 100 100 100

Elements that can pass the C0 patch test
Q4 28.0 21.0 14.1 9.7 8.3 7.2 6.2
QM6 (Taylor et al., 1976) 100 80.9 62.7 54.4 53.6 51.2 46.8
P-S (Pian and Sumihara, 1984) 100 81.0 62.9 55.0 54.7 53.1 49.8
SPS (Sze, 2000) – – 110.0 120.5 132.7 147.1 162.6
SYHP (Sze, 2000) – – 110.0 120.5 132.8 147.5 163.3
CPS4I (Abaqus, 2009) 100 73.53 56.16 50.31 50.38 49.39 46.58
QE2 (Piltner and Taylor, 1995) 100 81.2 63.4 56.5 57.5 57.9 56.9
B�-QE4(Piltner and Taylor, 1997) 100 81.2 63.4 56.5 57.5 57.9 56.9
QACM4 (Cen et al., 2007) 100 83.8 66.5 60.1 61.4 60.3 56.0
CQAC6 (Long et al., 2010) 100 83.8 66.5 60.1 61.4 60.3 56.0
F-M QUAD4-P (Rajendran and Zhang, 2007) 9.85 9.94 10.22 11.08 12.00 12.64 12.88
F-M QUAD4-R (Xu and Rajendran, 2011) 99.28 99.28 99.28 99.28 99.28 99.29 99.29
HSF-Q4u -7b (Cen et al., 2011c) 100 99.93 99.47 95.95 87.14 71.87 52.47
US-ATFQ4 100 100 100 100 100 100 100
Exact 100 100 100 100 100 100 100
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Recently, Li et al. (2018) successfully extended the unsymmetric four-node, 8-DOF
element US-ATFQ4 to geometric nonlinear applications. First, the analytical trial functions
are updated at each iterative step in the framework of the UL formulation that takes the
current configuration, i.e. the configurations at the beginning of an incremental step, as
the reference configuration during that step. Then, the Cauchy stresses are updated by the
Hughes–Winget method (Hughes and Winget, 1980) to estimate the current stress field.
Other procedure is similar to the conventional UL formulations. Numerical examples show
that element US-ATFQ4 also possesses amazing performance for geometric nonlinear
analysis, no matter whether regular or distorted meshes are used.

Figure 11 shows different deformed shapes of a slender cantilever subjected to a
resultant moment at its free end. These shapes are computed by element US-ATFQ4 and
other 4-node and 8-node plane quadrilateral elements in CAE platform Simula/Abaqus
(Abaqus, 2009), and Figure 11a plots the results by using 1� 10 regular mesh, while
Figure 11b plots the results by using 1� 20 distorted mesh (isosceles trapezoid). Theoretical
analysis shows that the cantilever beam should bend to be a circle. It can be seen that only
the unsymmetric four-node, 8-DOF element US-ATFQ4 gives the correct answer, even much
better that that obtained by eight-node, 16-DOF element.

Figure 11.
The final

configurations of
slender cantilever
beam subjected to

end resultant moment
(Li et al., 2018)

Finite element
methods

2827



Similar situation for geometric nonlinear problems can also be obtained by the 3D
unsymmetric eight-node, 24-DOF hexahedral element US-ATFH8 (Zhou et al., 2017). Related
results will be reported in near future.

5. Concluding remarks
By introducing the fundamental analytical solutions of elasticity, the HSF, the HDF and the
improved unsymmetric FEMs are established. They are all the newest developments in the
field of high-performance FEM and exhibit advantages from both analytical and numerical
approaches. All the successful models exhibit outstanding capacity for resisting various
severe mesh distortions, and even perform well when other models cannot work. Some
difficulties in the history of the FEM are also broken through, such as the limitations defined
byMacNeal’s theorem and the edge effect problems of Mindlin–Reissner plate. These efforts
promote the progress of the FEM.

The HSF element method is quite simple. It has exhibited its advantages when
constructing shape-free high-order plane elements and singular crack tip elements.
However, for low-order four-node, 8-DOF element model, the HSF element method has no
any merit when compared with the conventional isoparametric element. Furthermore, this
method needs an exact displacement mode (not only exact conforming) along element
boundary, so that the results will become worse once any edge of plane element is curved,
and no proper 3Dmodel can be found.

The improved unsymmetric FEMmay be a more promising FEM. Excellent models with
high distortion tolerance for plane and 3D elasticity have been successfully developed. But
the efficiency of the unsymmetric element stiffness matrix may arouse some doubt from
those researchers who have been applying symmetric matrix system for a long time.
Actually, by rational design, the unsymmetric matrix will not bring more additional
computation costs. In simulations for practical engineering, material nonlinearity and
coupled problems often lead to unsymmetric stiffness matrices. All premium CAE products
must consider how to solve related problems efficiently (Abaqus, 2009). Furthermore, the
precision obtained by several improved unsymmetric elements may reach the precision
obtained by several hundreds of isoparametric (symmetric) elements. Therefore, the model
composed of the improved unsymmetric elements may have better efficiency. Of course, it
cannot say that the improved unsymmetric FEM is completely successful at present,
because many problems have not been solved yet. How to extend this method to material
nonlinear, contact, dynamic, coupled problems are all interesting topics.

To-date, there is no any other numerical method that can completely replace the FEM.
Therefore, it still has great significance and application value to develop high-performance
FEMs.
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