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Abstract

To reduce the computational burden for structural reliability analysis involving complex numerical models, many adaptive
lgorithms based on surrogate models have been developed. Among the various surrogate models, the support vector machine for
egression (SVR) which is derived from statistical learning theory has demonstrated superior performance to handle nonlinear
roblems and to avoid overfitting with excellent generalization. Therefore, to take the advantage of the desirable features of
VR, an Adaptive algorithm based on the Bayesian SVR model (ABSVR) is proposed in this study. In ABSVR, a new learning
unction is devised for the effective selection of informative sample points following the concept of the penalty function method
n optimization. To improve the uniformity of sample points in the design of experiments (DoE), a distance constraint term
s added to the learning function. Besides, an adaptive sampling region scheme is employed to filter out samples with weak
robability density to further enhance the efficiency of the proposed algorithm. Moreover, a hybrid stopping criterion based
n the error-based stopping criterion using the bootstrap confidence estimation is developed to terminate the active learning
rocess to ensure that the learning algorithm stops at an appropriate stage. The proposed ABSVR is easy to implement since
o embedded optimization algorithm nor iso-probabilistic transformation is required. The performance of ABSVR is evaluated
sing six numerical examples featuring different complexity, and the results demonstrate the superior performance of ABSVR
or structural reliability analysis in terms of accuracy and efficiency.
c 2021 Elsevier B.V. All rights reserved.

eywords: Structural reliability analysis; Adaptive surrogate models; Support vector regression; Bayesian inference; Learning function

1. Introduction

It is well recognized that the presence of uncertainties in practical engineering problems significantly affects the
erformance of structural systems, and uncertainty quantification with due consideration of these randomnesses
re indispensable to the safety assessment, optimal design and serviceability maintenance of structures [1].
ence, structural reliability theory which gives a rational treatment and provides a quantitative measurement of
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uncertainties has gained increasing attention in recent years. Structural reliability analysis aims to determine the
probability of failure of a structural system with respect to some performance criterion in the presence of various
uncertainties. Typically, the fundamental problem of structural reliability analysis can be mathematically defined as
a multi-dimensional integral:

P f = Prob[G(x) ≤ 0] =

∫
Ω f

fX (x)dx =

∫
Rn

IF (x) fX (x)dx (1)

here x = [x1, x2, . . . , xn]T is a random vector with joint probability density function (PDF) fX (x), representing
he uncertainties arise from loading conditions, material properties, environmental factors, etc. G(x) is the limit
tate function (LSF) defined in terms of x, i.e. G(x) : χ ⊆ Rn

→ R, x ↦→ g(x); Ω f is the failure domain defined
uch that Ω f = {x ∈ χ : G(x) ≤ 0}, with its complementary set Ωs = {x ∈ χ : G(x) > 0} denotes the safe domain
nd Ω0 = {x ∈ χ : G(x) = 0} being defined as the limit state surface (LSS); and IF (x) is the indicator function
iven as:

IF (x) = IΩ f (x) =

{
1 x ∈ Ω f

0 x ∈ Ωs
(2)

The definition of failure probability in Eq. (1) is simple, but its calculation by direct integration is often intractable
ecause the dimensionality of the integral is generally high and the LSS is of complicated geometry, especially
or complex physical problems. The challenge of accurately computing this integral has led to the development
f various reliability analysis methods, which can be broadly classified as approximation methods and sampling
ethods [2,3]. Specifically, the Monte Carlo simulation (MCS) is one of the most commonly used sampling methods

ecause of its high accuracy, simplicity, and robustness. The MCS approach generates sample points using the
istribution function associated with each random variable to estimate the failure probability, which is approximated
s the ratio of failure realizations to the total number of evaluations:

P f ≈ P̂MCS
f =

1
N

N∑
i=1

IF (xi ) (3)

where P̂MCS
f is the failure probability estimator of MCS, and

{
x(i), i = 1, . . . , N

}
is the Monte Carlo population

ith a sample size of N . This estimator is asymptotically unbiased according to the central limit theorem, with its
oefficient of variation being defined as:

δMCS =

√
1 − P f

N P f
(4)

Thus, to ensure a small variation of the failure probability estimation, the required number of samples
could be prohibitively high, i.e. the convergence rate is low

(
∝ N−1/2

)
, especially for rare failure events entail

demanding numerical models. Although advanced simulation methods such as importance sampling [4,5] and
subset simulation [6,7] can greatly enhance the efficiency of MCS, the computational burden is still excessive
for engineering problems. As an efficient alternative to the sampling methods, the approximation methods such as
first-order reliability method (FORM) [8,9] and second-order reliability method (SORM) [10,11] are well-known
for its simplicity and efficiency. In these methods, the performance function is usually approximated by a low-
order (linear or quadratic) Taylor series expansion at the most probable point (MPP), where the isoprobabilistic
transformation techniques are usually employed to transform the random variables from the physical space to
the standard normal space [12], as illustrated in Fig. 1. Although they can provide reasonably accurate results
with remarkable efficiency for some specific problems, the iterative MPP searching process may encounter non-
convergence issues and the accuracy of the generated results cannot be guaranteed for problems with multiple
MPPs and/or with highly nonlinear LSF. In this regard, the surrogate-based approximation methods, which can
reach a good trade-off between efficiency and accuracy, are of particular interest in this paper.

The key idea of surrogate-based methods is to construct an easy-to-evaluate mathematical model to replace
the original complex LSF, through which more simulation runs can be readily afforded [13]. Some of the
representative surrogate modeling techniques include the response surface method (RSM) [14], the polynomial
chaos expansion (PCE) [15] , the Kriging method [16], the radial basis function (RBF) [17], the support vector
machine (SVM) (formulated in terms of classification (SVM) [18] or regression (SVR)) [19], the artificial neural
2
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Fig. 1. Isoprobabilistic transformation from physical space to standard normal space.
Source: adapted from [12].

Fig. 2. The general procedure of surrogate-based active learning method for reliability analysis.

networks (ANN) [20] and more recently, the ensemble of surrogates [21], among others. A crucial issue for the
construction of these surrogate models is the selection of an appropriate design of experiments (DoE), i.e. input–
output training pairs. In general, there are two strategies for the DoE selection, namely the one-shot sampling
schemes and the sequential sampling methods. The traditional one-shot sampling methods try to generate space-
filling samples over the entire random space with a predefined sample size. In the context of structural reliability
analysis, however, only regions near the LSS are of great interest and the appropriate number of samples is hard
to determine a priori as too large or too small the sample size will both jeopardize the performance of surrogate-
based methods. Therefore, various adaptive sampling schemes capable of exploiting the information contained in
the constructed surrogate model have been developed to enrich the DoE in an iterative manner [22–24]. Reliability
analysis methods empowered with adaptive sampling schemes are known as the active learning methods, where a
preliminary surrogate model is established based on the initial DoE and then updated by sequentially enriching the
DoE according to some judiciously selected learning functions. The general procedure of surrogate-based active
learning methods for reliability analysis is illustrated in Fig. 2. By doing so, the efficiency of structural reliability
analysis can significantly be improved without compromising accuracy.

Considering the superior performance of surrogate-based active learning methods, the development of effective
learning algorithms is an active research topic in the structural reliability community. Bichon et al. [25] proposed an
Efficient Global Reliability Analysis (EGRA) method, in which a learning function known as Expected Feasibility
Function (EFF) was applied to select the new samples for the enrichment of DoE. This learning function indicates
how well a point is expected to locate on the LSS, i.e. G(x) = 0. The accuracy and efficiency of this method are
demonstrated through numerical examples, yet its global approximation property may introduce redundant points

with weak probability densities. To address this issue, an active learning method known as AK-MCS that combines

3
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Kriging with crude MCS was developed by Echard et al. [26]. In AK-MCS, a large number of Monte Carlo
populations are evaluated on the learning function U, and the one that minimizes U is selected as the best next
point to be added to the DoE. This learning process enables the selection of samples with large probability density
and assigns more weights to the points close to the LSS. Unlike the previous two adaptive algorithms where local
prediction variance is used for the selection of new samples, the Markov chain simulation is employed in [27,28]
to effective generate samples in the most likely failure regions, which enables the iterative refinement of the SVR
model. Thanks to these (among others) pioneering works, new adaptive algorithms are emerging to further improve
the computational accuracy and efficiency of structural reliability analysis. The related studies mainly focus on
the development of effective DoE enrichment strategies to select new representative samples [29–31] and efficient
stopping criteria to terminate the learning process at an appropriate stage [32–34]. In order to deal with rare failure
events, the combination of surrogate models with advanced simulation methods has also gained increasingly more
interest in recent years [35–37]. Due to the desirable features of adaptive algorithms, the adaption to other research
fields such as design optimization [38,39] has also been explored. Readers are referred to [40] for a comprehensive
review of the adaptive surrogate-based methods.

However, it is noted that most of the existing active learning methods are developed based on the Kriging
odel, where the error at unknown points can be empirically measured by the Kriging variance. Thus, the use

f these learning algorithms to other surrogate models is not directly applicable unless additional effort such as
ootstrap resampling strategy [41] or k fold cross-validation [42] is employed to get the prediction variance, which

is a cumbersome process. To address this issue, several studies have been devoted to obtaining the variance in a
more effective way, among which the Bayesian inference framework introduced in [43–45] has shown promising
potential to establish a probabilistic interpretation of the surrogate models and to allow automatic adjustment of
the kernel and regularization parameters to their near-optimal values [46]. From a weight-space perspective, the
evidence framework [44] was applied to develop an alternative Bayesian interpretation of SVM for classification
problems in [47] and regression problems in [48]. Following a similar idea, a probabilistic framework for SVR was
proposed in [49], which enables the value of the hyperparameter to be determined by the Bayesian approach and the
variance of the prediction to be derived from the Bayesian rule. More recently, Bayesian SVR models using different
loss functions have been presented in [50–52] to further embrace the desirable features of the Bayesian inference
framework. Similar to the Kriging model, the Bayesian SVR are capable of providing probabilistic prediction at a
new point. Therefore, the ideas underlying Kriging-based active learning algorithms can readily be adapted to the
Bayesian induced surrogate models [52].

Unlike models such as ANN and PCE which apply the principle of empirical risk minimization to mimic a true
model, the SVR model is developed in the field of statistical learning theory and has revealed superior performance
to handle nonlinear problems and avoid overfitting with good generalization ability. In this regard, the adaptive
algorithm based on Bayesian SVR is expected to be well-suited for structural reliability analysis. In this paper, a
novel Adaptive Bayesian SVR method (ABSVR) that combines with sampling region scheme and hybrid stopping
criterion is proposed for efficient reliability analysis with high accuracy. Following the concept of the penalty
function method in optimization, a new sampling-based learning function (SLF) is devised for the effective selection
of informative sample points, e.g. points close to the LSS in critical regions with significant contribution to the
failure probability. To improve the uniformity of sample points in the DoE, a distance constraint term is added to
the learning function. Besides, the adaptive sampling region scheme [53] originally developed for Kriging-based
approaches is adapted here to filter out sample points in regions with weak probability density, in that the samples in
these regions have a negligible effect on the failure probability evaluation. In this way, the computational efficiency
of ABSVR can be enhanced by using a set of important samples. Moreover, a hybrid stopping criterion based on
the bootstrap confidence estimation (BCE) proposed in [34] is developed to terminate the active learning process,
ensuring that the learning algorithm stops at an appropriate stage. The proposed ABSVR is easy to implement since
no embedded optimization algorithm nor iso-probabilistic transformation is required.

The rest of this paper is organized as follows. The basic principle of Bayesian SVR models is introduced in
Section 2. Section 3 recalls two advanced schemes for adaptive algorithms, namely the adaptive sampling region
scheme and the error-based stopping criterion. Section 4 presents the detailed derivation of the new learning function,
and the hybrid stopping criterion is proposed in Section 5. The implementation procedure of the proposed ABSVR
is summarized in Section 6. The accuracy, efficiency, and robustness of ABSVR are illustrated in Section 7 using

several numerical examples. Finally, concluding remarks are drawn in Section 8.
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2. Basic theory of Bayesian support vector regression

In this section, the basic theory of Bayesian support vector regression (BSVR) initially proposed in [50–52] is
riefly introduced, with particular emphasis on the BSVR models established with two loss functions, namely the
quare loss function (SLF) and the ε-insensitive square loss function (EISLF), which are respectively given as:

ℓSLF(δ) =
1
2
δ2 (5)

ℓEISLF(δ) =

{
0, if |δ| ≤ ε

1
2 (|δ| − ε)2, otherwise

(6)

where ε (with ε > 0) is an unknown parameter to be determined. It is noted that a soft insensitive loss function
SILF) is presented in [50] for the same purpose.

.1. BayesIan inference framework

In the Bayesian framework, the regression model h (xi ) is assumed as a stationary Gaussian process with
unknown mean b, and the covariance between two outputs is defined as:

Cov
[
h (xi ) , h

(
x j
)]

= k
(
xi , x j

)
=

n∏
k=1

exp
(
−θk

(
xk

i − xk
j

)2
)

(7)

where θ = [θ1, θ2, . . . , θn]T are the corresponding hyperparameters. The Gaussian kernel is adopted here because
his kernel provides good performance under general smoothness assumptions, especially if no additional knowledge
f the data is available [54]. Nevertheless, any other type of kernel functions such as those introduced in [55] may
lso be used.

Given a set of training sample pairs, i.e. D = {(xi , yi ) | i = 1, . . . , N , xi ∈ Rn, yi ∈ R}, let χ denote all the
hyperparameters in the regression model and H = [h (x1) , h (x2) , . . . , h (xN )]T . According to the Bayes’ theorem,

P (H | D, χ ) =
P (D | H , χ )P (H | χ )

P (D | χ )
(8)

here P (D | H , χ ) is the likelihood function of the given data set D, P (H | χ ) denotes the prior probability of H ,
nd P (D | χ ) is a normalizing constant. The posterior probability P (H | D, χ ) of H can be derived as [51,52]:

P (H | D, χ ) =
1
Z

exp

(
−η

N∑
i=1

ℓ (yi − h (xi )) −
1
2

(H − b)T R −1 (H − b)

)
(9)

where Z =
∫

exp(−(η
∑N

i=1 ℓ (yi − h (xi ))+
1
2 H T R −1H ))dH , η is a constant value greater than zero, R ∈ RN×N

s the covariance matrix with the i j th element express as R i j = Cov
[
h (xi ) , h

(
x j
)]

, i, j = 1, 2, . . . , N , and
b = [b, . . . , b] ∈ RN×1.

Thus, the maximum a posteriori estimate of P (H | D, χ ) is equivalent to the following optimization problem:

min
H

η

N∑
i=1

ℓ (yi − h (xi )) +
1
2

(H − b)T R −1 (H − b) (10)

2.2. BayesIan support vector regression

Introducing the SLF defined in Eq. (5) into the optimization problem described in Eq. (10), the optimal value
Ĥ of H using SLF can be obtained as [51]:ˆ −1
H SLF = R (R + I/η) Y + b (11)

5
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where I ∈ RN×N is an identity matrix, and Y = {y1, . . . , yN }
T. In the Bayesian framework, the hyperparameters

of the model can be obtained by solving the following minimization problem:

min
χ

− ln(P (D | χ )) = η

N∑
i=1

ℓSLF
(
yi − ĥ (xi )

)
+

1
2
βT R β +

1
2

ln |I + ηR | +
N
2

ln(
2π

η
) (12)

where β = [β1, . . . , βN ]T
= (R + I/η)−1Y , and P (D | χ ) is the Bayesian model evidence.

Similarly, the optimal value Ĥ of H using EISLF in Eq. (6) can be facilitated in the context of Lagrange duality,
hich leads to the following regression function [51]:

Ĥ EISLF = R
(
α − α∗

)
+ b (13)

where α∗
=
(
α∗

1 , . . . , α
∗

N

)T
, α = (α1, . . . , αN )T are the Lagrangian multipliers, and support vectors are defined

s the sample points with αi − α∗

i ̸= 0. The hyperparameters are obtained by solving the following minimization
roblem:

min
χ

− ln(P (D | χ )) = η

N∑
i=1

ℓEISLF
(
yi − ĥ (xi )

)
+

1
2

(
α − α∗

)T R
(
α − α∗

)
+

1
2

ln |L|+ N ln(2ε +

√
2π

η
) (14)

where L = I + ηΛR , and Λ is a diagonal matrix with its entry equal to 1 for support vectors and zero otherwise.

.3. Probabilistic prediction of BSVR

Once the optimal BSVR model is established following the abovementioned procedures, the posterior distribution
f h (x) is a Gaussian distribution under the Gaussian process assumption [50,51]. For the SLF-based BSVR model,

the prediction mean µ̂ĝ(x) and prediction variance σ̂ 2
ĝ (x) are obtained as:

µ̂ĝ(x) = k(x, X)(R + I/η)−1Y + b (15)

σ̂ 2
ĝ (x) = k(x, x) − k(x, X)(R + I/η)−1k(X, x) (16)

where X = {x1, . . . , xN }
T, and k(x, X) = k(X, x)T

= [k (x1, x) , . . . , k (xN , x)]T is the covariance vector between
h (x) at a new point x and those in H evaluated at X , which can be calculated from Eq. (7). For the EISLF-based
BSVR model, the µ̂ĝ(x) and σ̂ 2

ĝ (x) are obtained as:

µ̂ĝ(x) = k(x, X)R −1
=

m∑
j=1

(
α j − α∗

j

)
k
(
x, x j

)
+ b (17)

σ̂ 2
ĝ (x) = k(x, x) − km (x, Xm) (R m + Im/η)−1 km (Xm, x) (18)

where km (x, Xm) and R m are the subsets of k(x, X) and R , respectively, with their elements evaluated at the
support vectors Xm .

The BSVR models are established following the above procedures, and more information regarding the derivation
of BSVR can be found in [50–52]. It is noted that the Bayesian SVR model using the square loss function leads to a
formulation similar to the least-square SVR with the predictor being expressed in terms of all training points, and the
problem to solve is equivalent to the noisy Kriging in theory. In fact, the equivalence between the least-square SVR
and the ordinary Kriging has been demonstrated in [56]. The probabilistic prediction parameters µ̂(x) and σ̂ 2(x) can
now be employed to devise active learning algorithms for efficient reliability analysis based on the BSVR model,
which is the main focus of this paper and will be explained in the following sections.

3. The advanced schemes for adaptive algorithm

The critical role of learning function in adaptive algorithms is well-recognized, while the influence of effective
sampling regions for the selection of sample points and the error-based stopping criteria for the termination of the
learning process did not draw too much attention until recently. Indeed, an improper sampling scheme may introduce

samples with weak probability densities that make barely any contribution to the failure probability, whereas

6



J. Wang, C. Li, G. Xu et al. Computer Methods in Applied Mechanics and Engineering 387 (2021) 114172

i

i
i
p
e
s
i

3

t

w
t

w

p

b
a
w
e
i
p
r
n

Fig. 3. Schematic illustration of the SRS with p(i)
t = 0.1 and α = 0.2: (a) a 2D case; (b) a 3D case (only half of the ball is shown). (For

nterpretation of the references to color in this figure, please refer to the web version of this article.)

nadequate selection of stopping criterion may lead to inaccurate estimation of the failure probability or results
n high computational cost because of unnecessary calls to the performance function. Both can adversely affect the
erformance of an adaptive algorithm. To address these issues, several sampling region schemes (SRS) [53,57] and
rror-based stopping criteria (ESC) [32–34] have been proposed for effective reliability analysis. In this study, the
ampling region scheme presented in [53] and the ESC using bootstrap confidence estimation (BCE) [34] will be
ntegrated into the proposed method, namely the ABSVR.

.1. Adaptive sampling region scheme

In the adaptive SRS, the region with the probability density larger than a threshold is progressively updated in
he learning process, rather than fixing the sampling region in a predefined domain, which is given as [53]:

Ω̂(i) =

{
∀x : fX (x) > p(i)

t

}
(i = 1, 2, . . .) (19)

here p(i)
t is the threshold value of the probability density in the i th iteration, and can be determined according to

he following equation:

P
{

fX (x) < p(i)
t

}
= α P̂ i−1

f (20)

here P
{

fX (x) < p(i)
t

}
denotes the probability that the joint PDF of the random variables is smaller than p(i)

t ;

P̂ i−1
f is the failure probability estimated from the established BSVR model in the (i −1)-th iteration of the learning

rocess; α is the coefficient used to control the size of the sampling region and is taken as 0.1 in this study.
In each iteration, the threshold value p(i)

t can be obtained as the (α P̂ i−1
f )-th percentile of the variable F = fX(x)

y means of MCS. Once the sampling region as expressed in Eq. (19) is defined, the candidate samples for learning
re generated in this region, thus those with small probability density will not be selected. In this way, the samples
ith negligible effects on the failure probability estimation will be filtered out, which can greatly enhance the

fficiency of the learning algorithm. To facilitate a visual understanding of the idea underlying the SRS, two
llustrative examples are given in Fig. 3, where p(i)

t is assumed to be 0.1 and α = 0.2. It is noted that the MCS
opulation consists of the samples being filtered out by SRS (blue points) and the remaining ones in the inner
egion (cyan points). In the learning process, only the cyan points will be used as the candidate points to select the

ext best sample.

7
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3.2. Error-based stopping criterion using BCE

Besides the SRS as described in the previous section, choosing the appropriate stopping criterion can also improve
he efficiency of the adaptive algorithm. One of the most widely used stopping criteria is derived by setting a
hreshold value for the learning function, as those presented in [25,26,30]. However, they are usually inadequate
or the learning algorithm due to a lack of direct correspondence to the error of failure probability estimation,
hich is the parameter of particular interest. This limitation may lead to inaccurate failure probability estimation
r results in a high computational burden because of unnecessary functional calls. To effectively address this issue,
he error-based stopping criterion (ESC) expressed in terms of the upper bound of the estimation error is proposed
n [32,33]. In this approach, the relative error εr of the predicted failure probability P̂ f with respect to the reference

result by MCS PMCS
f is defined:

εr =

⏐⏐⏐⏐⏐ PMCS
f − P̂ f

PMCS
f

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
N f

NMCS
−

N̂ f
NMCS

N f
NMCS

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐ N̂ f

N f
− 1

⏐⏐⏐⏐ (21)

here NMCS is the sample size of MCS, N f is the number of failure samples evaluated from the true performance
unction, and N̂ f denotes the number of failure samples determined by the surrogate model (e.g. BSVR). Let the
rue failure region and safe region in the random space Ω respectively be denoted as Ω f and Ωs , whereas those
redicted by the surrogate are represented as Ω̂ f and Ω̂s . Then, the failure sample size N f in Eq. (21) can be
alculated as:

N f = N̂ f + N̂s f − N̂ f s (22)

here N̂s f is the number of MCS samples in Ω f while falling into Ω̂s predicted by the surrogate model, and
N̂ f s is the number of MCS samples in Ωs while falling into Ω̂ f in the prediction. Since the established surrogate

odel itself is a Gaussian random process, thus the N̂s f and N̂ f s being predicted also follow some probabilistic
distribution. In this regard, a confidence interval can be assigned to the failure sample size N f :

N f ∈
[
N̂ f − N̂ u

f s, N̂ f + N̂ u
s f

]
(23)

where N̂ u
f s and N̂ u

s f are the upper bounds of the confidence interval of N̂ f s and N̂s f . Accordingly, the maximum
relative error of the failure probability estimation can be expressed as:

ϵr ≤ max

(⏐⏐⏐⏐⏐ N̂ f

N̂ f − N̂ u
f s

− 1

⏐⏐⏐⏐⏐ ,
⏐⏐⏐⏐⏐ N̂ f

N̂ f + N̂ u
s f

− 1

⏐⏐⏐⏐⏐
)

= ϵ̂max (24)

Assuming that the sample size in Ω̂ f and Ω̂s are sufficiently large, N̂ u
f s and N̂ u

s f are respectively determined as the
pper confidence interval of a Poisson distribution and a normal distribution in [32,33]. However, this assumption
ay not be valid since the number of uncertain points decreases with the convergence of the learning process.
hus, an improved version of ESC using the bootstrap confidence estimation (BCE) has recently been developed

n [34]. In the BCE-based ESC, only the highly uncertain samples near the LSS are considered instead of the
hole population, in that the estimation error of failure probability is mainly contributed by these samples. Once the
ighly uncertain samples are defined, the upper bound values N̂ u

s f and N̂ u
f s can be calculated through the bootstrap

esampling method, and the BCE-based ESC is formulated as:

ϵr ≤ max

(⏐⏐⏐⏐⏐ N̂ f

N̂ f − N̂ u
f s

− 1

⏐⏐⏐⏐⏐ ,
⏐⏐⏐⏐⏐ N̂ f

N̂ f + N̂ u
s f

− 1

⏐⏐⏐⏐⏐
)

= ϵ̂max ≤ ϵtol (25)

here ϵtol is a predefined threshold for the relative estimation error.
It is referred to [32–34] and references therein for more information about the ESC and BCE-based ESC, both

f which are originally developed for Kriging-based approaches. In this study, only the BCE-based ESC will be
sed to develop the hybrid convergence criterion and further adapt to the ABSVR proposed in this paper.
8
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4. The proposed new learning function

In structural reliability analysis, the evaluation of failure probability is essentially a classification problem whose
stimation error is mainly contributed by samples reside around the LSS, i.e. G(x) = 0, especially in regions with
igh prediction variance σ̂ 2

ĝ (x) and large probability density fX (x). In this regard, learning functions capable of
dentifying sample points with these desirable features are of particular interest to ensure the overall performance
f the adaptive algorithm. Therefore, the learning process of an adaptive algorithm can equivalently be formulated
s the following optimization problem to search for the most informative sample x∗:

find x∗

max σ̂ĝ(x)ρ(x)dmin(x)
s.t.

⏐⏐µ̂ĝ(x)
⏐⏐ = 0

(26)

where µ̂ĝ(x) and σ̂ 2
ĝ (x) are respectively the prediction mean and variance of the surrogate model, e.g. Eqs. (15)–(18)

or the two BSVR models; dmin(x) is the minimum distance of point x to those in the current DoE; ρ(x) represents
the value of joint PDF fX (x) evaluated at x. According to the distribution information of random variables, ρ(x)
can be calculated in different ways, that is,

ρ(x) =

⎧⎨⎩ fX (x) with known joint PDF∏n
i fi (xi ) with uncorrelated random variables

c (F1 (x1) , F2 (x2) , . . . , Fn (xn))
∏n

i fi (xi ) with correlated random variables
(27)

where fi (x) and F1 (x1) are the marginal PDF and the corresponding cumulative distribution function (CDF) of xi ,
with xi being the i th element of random vector x; c(·) is the copula density function.

The objective function in Eq. (26) is formulated to find the representative samples that contribute to the
improvement of the surrogate model for structural reliability analysis, and the equality constraint

⏐⏐µ̂ĝ(x)
⏐⏐ = 0

ensures that the optimal solutions are in the vicinity of the LSS. In other words, the informative samples for model
updating can be obtained by solving the constrained optimization problem expressed in Eq. (26). This, however,
would introduce additional optimization algorithms into the learning process and complicate the adaptive algorithm,
making the approach less user-friendly. To bypass this limitation, the constraint optimization problem is equivalently
formulated as a sampling-based learning function for sample selection. Specifically, following the idea of the penalty
function method, the proposed learning function utilizes a simple yet effective way to guide the search toward
critical points near the LSS with a large probability density. Besides, a distance constraint term is introduced into the
learning function to better control the density of samples in the DoE. Moreover, the inclusion of prediction variance
in the learning function enables the efficient exploration of the regions with large uncertainty. The formulation of
the proposed learning function is elucidated in the following subsections.

4.1. Identification of samples near the LSS in critical regions

In order to identify the new sample point xnew located in the vicinity of the LSS, a simple yet effective way
is to transform the equality constraint

⏐⏐µ̂ĝ(x)
⏐⏐ = 0 into an approximate unconstrained optimization problem by

introducing a penalty term γ to the function. One possible formulation is given as follows:

xnew = arg min
x∈SC

{
1 + exp

(
γ
⏐⏐µ̂ĝ(x)

⏐⏐
µ̂max

)}
(28)

where SC is the candidate sampling pool; the introduction of the positive penalty term γ enables the penalty effect
to work; the σmax = max(

⏐⏐µ̂ĝ(x)
⏐⏐) returns the maximum value of the absolute predictions at SC , which is introduced

to reduce the magnitude effect to improve the flexibility of the algorithm. In this formula, the objective function
tends to be minimized when

⏐⏐µ̂ĝ(x)
⏐⏐ = 0, i.e. for points located on the LSS, while it becomes larger for points

deviating farther from the LSS. Therefore, the points in the vicinity of LSS can be effectively identified from the
candidate samples SC .

To ensure that the sample points are selected in the critical regions, i.e. regions with relatively large prediction

uncertainty and probability density, the function in Eq. (28) is reformulated by adding the effects of BSVR prediction

9
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variance σ̂ 2
ĝ (x) and joint PDF fX(x) into the formulation, that is,

xnew = arg min
x∈SC

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + exp

(
γ

⏐⏐⏐µĝ (x)
⏐⏐⏐

µmax

)
10−8 +

σĝ (x)
σmax

·
ρ(x)
ρmax

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (29)

where σmax = max(̂σĝ(x)) is the maximum value of the standard deviation of BSVR model evaluated at SC ; ρ(x) is
iven in Eq. (27), and ρmax = max(ρ(x)). The very small value is introduced to avoid the denominator being zero;
ther smaller values can also be used as the learning function is insensitive to the value used. Learning through this
unction enables the new sample points close to the LSS with large probability density and prediction variance to
e identified, which is expected to largely enhance the performance of BSVR-based reliability analysis.

.2. A distance-based constraint

The learning process is highly likely to introduce points being close the existing ones when the learning function
s formulated to focus only on points near the LSS in critical regions. These points contain little extra information
or the refinement of the surrogate model, but may dramatically increase the computational burden. To address this
ssue, a distance constraint is integrated into the learning function developed in the previous subsection to avoid the
lustering of sample points and thus improve the uniformity of the DoE.

The Euclidean distance is employed here to measure the distance between two points. Given a point xi
C in the

andidate set SC (with a sample size of NC ) and a point x j
D in the DoE SD (with a sample size of ND), the minimum

distance of each sample point in SC to those in SD is calculated as:

dmin(xi
C ) = min

{√(
xi

C − x j
D

)T (
xi

C − x j
D

)}
, i = 1, 2, . . . , NC ; j = 1, 2, . . . , ND (30)

ith dmin =

{
dmin(x1

C ), dmin(x2
C ), . . . , dmin(xNC

C )
}

denoting the vector of the minimum distances. Then the critical
ample points with large values of dmin are preferred to be chosen as the new samples in the DoE. With the inclusion
f distance constraint, the density of samples in the DoE can effectively be controlled and accordingly, the clustering
f samples is avoided.

.3. The new learning function

Integrating the distance-based constraint term (Eq. (30)) into the learning function as expressed in Eq. (29), a
ampling-based Learning Function (SLF) capable of identifying informative points that disperse as far as possible
rom the existing ones can be devised as:

SLF : xnew = arg min
x∈SC

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + exp

(
γ

⏐⏐⏐µĝ (x)
⏐⏐⏐

µmax

)
10−8 +

σ̂ĝ (x)
σmax

·
ρ(x)
ρmax

· dmin(x)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (31)

Unlike the well-known learning function U that cannot be used for points located exactly on the LSS, i.e. |µ̂(x)| =

, the proposed learning function SLF still works for this particular case. To further improve the convergence speed
f the learning process, the candidate samples SC are generated using the Sobol sequences given its uniformity and
pace-filling property. It is noted that other low-discrepancy sequences can also be used for the same purpose.

. A hybrid stopping criterion

The use of BCE-based stopping criterion (BCE-based ESC) as described in Section 3.2 can greatly enhance the
omputational efficiency with the upper bound of estimation error controlled at a specified level. However, there
re cases that the accuracy of the failure probability estimation tends to be stabilized before the BCE-based ESC is

atisfied, which implies that adding additional samples after this stage will not contribute much to the improvement

10
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Fig. 4. Convergence of the failure probability using different stopping criteria.

of the surrogate model, but rather increase the computational burden of the algorithm. To alleviate the potentially
high computational cost, a hybrid stopping criterion that can detect the stabilization stage of failure probability
estimation during the learning process is developed in this section.

To effectively detect the stabilization stage of failure probability estimation, a feasible way is to define a criterion
utilizing the reliability indices acquired in consecutive iterations. In this study, three consecutive estimations (when
the iteration number i ≥ 5) are employed for this purpose, that is:⏐⏐⏐⏐ β̂i − β̂i−1

β̂i−1

⏐⏐⏐⏐ < ϵtol1,

⏐⏐⏐⏐ β̂i−1 − β̂i−2

β̂i−2

⏐⏐⏐⏐ < ϵtol1 and
⏐⏐⏐⏐ β̂i−2 − β̂i−3

β̂i−3

⏐⏐⏐⏐ < ϵtol1, i ≥ 5 (32)

here β̂i , β̂i−1, β̂i−2 and β̂i−3 are the reliability indices (i.e. β̂ = −Φ−1
(
P̂ f
)
, with Φ−1 (·) denoting the inverse of

standard normal CDF) estimated in the current, the (i − 1)th, the (i − 2)th and the (i − 3)th iterations, respectively;
and ϵtol1 is the convergence threshold defined in the range of [10−5, 10−3]. However, directly apply Eq. (32) as a
stopping criterion may lead to inaccurate failure probability estimation due to premature of the learning process.
Therefore, the BCE-based stopping criterion is integrated with Eq. (32) to derive a new one, which is expressed as:⎧⎪⎨⎪⎩

⏐⏐⏐ β̂i −β̂i−1
β̂i−1

⏐⏐⏐ < ϵtol1,

⏐⏐⏐ β̂i−1−β̂i−2
β̂i−2

⏐⏐⏐ < ϵtol1 and
⏐⏐⏐ β̂i−2−β̂i−3

β̂i−3

⏐⏐⏐ < ϵtol1, i ≥ 5

max
(⏐⏐⏐⏐ N̂ f

N̂ f −N̂ u
f s

− 1
⏐⏐⏐⏐ , ⏐⏐⏐⏐ N̂ f

N̂ f +N̂ u
s f

− 1
⏐⏐⏐⏐) = ϵ̂max ≤ ϵtol2

(33)

here the predefined threshold ϵtol2 ∈ [0.005, 0.1] can generally lead to a trade-off between accuracy and efficiency.
Similarly, an additional stabilization detection term is added to the original BCE-based ESC (i.e. Eq. (25)), i.e.,⎧⎪⎨⎪⎩ max

(⏐⏐⏐⏐ N̂ f
N̂ f −N̂ u

f s
− 1

⏐⏐⏐⏐ , ⏐⏐⏐⏐ N̂ f
N̂ f +N̂ u

s f
− 1

⏐⏐⏐⏐) = ϵ̂max ≤ ϵtol3⏐⏐⏐ β̂i −β̂i−1
β̂i−1

⏐⏐⏐ < ϵtol4, i ≥ 5
(34)

where ϵtol3 and ϵtol4 are the given threshold values for the BCE-based ESC and the stabilization detection term,
espectively. In this criterion, the BCE-based ESC will not be activated until the stability condition is fulfilled.

It is noteworthy that although Eq. (33) is similar to Eq. (34) in the form, they are defined for different purpose.
pecifically, Eq. (33) is mainly defined to avoid unnecessary calls once the failure probability estimation is detected

o have stabilized with a certain precision, whereas Eq. (34) is defined to control the estimation error and thus
nsure the overall accuracy of the algorithm. To achieve this, the ϵtol1 in Eq. (33) can be set to a smaller value than

the ϵtol4 in Eq. (34), e.g. ϵtol1 = 10−4 and ϵtol4 = 10−3; while the BCE-based ESC threshold ϵtol2 in Eq. (33) can
be set to a larger value than its counterpart defined in Eq. (34), e.g. ϵtol2 = 0.1 and ϵtol3 = 0.01.

Therefore, the proposed hybrid stopping criterion consists of two separate criteria as expressed in Eqs. (33) and
(34), and the active learning process is terminated when any one of them is fulfilled. An example is shown in Fig. 4
11
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Fig. 5. Flowchart of the ABSVR.

to illustrate the potential gain of this hybrid stopping criterion as compared with the original BCE-based ESC. In
this example, ϵtol1 = 10−4, ϵtol2 = 0.2, ϵtol3 = 0.02 and ϵtol4 = 10−2 for the hybrid criterion; ϵtol = 0.02 for

CE-based ESC. It is seen that the failure probability has stabilized before the BCE-based ESC is fulfilled, and the
roposed approach can detect this phenomenon and stop the algorithm with a reduced number of functional calls.

. Implementation procedure of ABSVR

Combining the advanced schemes, the proposed learning function and the hybrid stopping criterion with the
SVR model, two Adaptive algorithms based on the BSVR (ABSVR) are proposed in this study, namely the
ne based on SLF (ABSVR1) and the one based on EISLF (ABSVR2). These two ABSVR methods start from
small initial DoE and iteratively refine the BSVR model by progressively enriching the DoE according to the

roposed learning function. The learning process is repeated until the hybrid stopping criterion is met, then the
ailure probability can easily be estimated from the established BSVR model. Obviously, the only difference between
BSVR1 and ABSVR2 is the loss function used to construct the BSVR model. The flowchart of the ABSVR
ethods is depicted in Fig. 5 with 8 steps as summarized below:
12
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• Step 1: Initialization of the algorithm. The parameters in ABSVR are initialized, including the sample size
NC in the candidate set SC , the sample size N0 in the initial DoE, the positive penalty factor γ in the learning
function (Eq. (31)), and the convergence thresholds ϵtoli , i = 1, 2, 3, 4 in Eqs. (33) and (34).

• Step 2: Generation of the candidate sample set SC and initial DoE SD . To generate the Sobol sequence for
SC , the UQLab [58] is employed in this study. Samples in the initial DoE are generated using Latin hypercube
sampling (LHS) with a sample size of N0 = 15.

• Step 3: Construction of the BSVR model. The generated DoE SD is applied to build the BSVR model,
based on which the prediction mean µĝ(x) and variance σ 2

ĝ (x) of the samples in SC can be evaluated from
Eqs. (15) and (16) for ABSVR1, and from Eqs. (17) and (18) for ABSVR2. To calibrate the BSVR model, the
hyperparameters may be found using any general-purpose optimization algorithm by solving the optimization
problems defined in Eq. (12) or Eq. (14). In the present study, the initial values of these parameters are defined
as η = 105, ϵ = 10−5, and θk = 1, k = 1, 2, . . . , n. According to the study performed in [16], it is desirable
to define high optimization bound for the regularization parameter η and low optimization bound for the
insensitive tube width ϵ. Thus, relatively wide ranges are selected for these parameters, namely

[
10, 1010

]
for

η,
[
10−8, 0.01

]
for ϵ, and

[
10−5, 105

]
for θk . The interior-point algorithm in Matlab is employed to solve the

associated optimization problems.
• Step 4: Generation of the reduced sample set SR through the sampling region scheme expressed in Eq. (20).

The failure probability is evaluated according to Eq. (3) with the true model being replaced by the BSVR
model, and the points in SR are obtained by filtering out the sample points with rather small probability
density in SC .

• Step 5: Selection of informative samples to enrich the DoE. In each iteration, the sample point x∗ in SR that
minimize the learning function Eq. (31) is selected as the optimal one, whose model response is evaluated by
calling the true performance function. Therefore, each time the DoE is enriched with the new sample point
(SD = SD ∪ x∗) and N0 = N0 + 1. This learning process is repeated (i.e. iteration number i = i + 1) from
Step 3 to Step 5 until one of the conditions in the hybrid stopping criterion is fulfilled.

• Step 6: Computation of the coefficient of variation. To ensure that the sample size in SC is large enough to
provide reliable failure probability estimation P̂ f , the coefficient of variation below 5% is acceptable, that is,

Cov =

√
1 − P̂ f

NC P̂ f
< 0.05 (35)

• Step 7: Enrichment of the population in SC . If the condition in Eq. (35) is not met, SC is enriched with new
sample population SN , and the learning algorithm goes back to Step 3 and carries on until all the stopping
criteria are fulfilled; otherwise, proceed to Step 8.

• Step 8: End of ABSVR. If the stopping condition expressed in Eq. (35) is met, the whole learning algorithm
is terminated and the failure probability is evaluated on the final BSVR model.

. Numerical examples

In this section, the accuracy, efficiency, and robustness of the proposed method are investigated using six
umerical examples. To show the robustness of the ABSVR, all results are obtained by averaging over 10 repeated
uns of the algorithm, including the failure probability P̂ f , the reliability index β̂, the total number of functional
alls N f and the relative error of failure probability ϵP̂ f

. These results are compared with those of MCS and other
xisting methods whenever possible. In this paper, the relative error of failure probability ϵP̂ f

is calculated as:

ϵP̂ f
=

⏐⏐⏐P̂ f − P̂ MC S
f

⏐⏐⏐
P̂ MC S

f

× 100% (36)

here P̂ MC S
f denotes the reference result provided by MCS, P̂ f is the failure probability estimated from methods

ther than MCS, e.g. FORM, SORM, IS and AK-MCS+U. It is noted that the results of FORM, SORM and IS are

alculated using the UQLab [59].

13
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Fig. 6. Boxplots of the results for ABSVR using different values of γ : (a) The failure probability estimation; (b) The functional calls. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)

7.1. Example 1: A highly nonlinear problem

This example considers a 2D high nonlinearity problem with a single failure region, which has been previously
been studied in [25,30,34]. The performance function of this problem is formulated as:

g(x) = 1.2 −
1
20

(
x2

1 + 4
)
(x2 − 1) + sin

(
5
2

x1

)
(37)

here x1 and x2 are two independent standard normal variables. In order to determine appropriate values of the
arameters involved in the proposed algorithm, namely the positive penalty factor γ and the convergence thresholds
toli , i = 1, 2, 3, 4, a comprehensive parametric study is carried out first before making comparisons with other
ethods.

.1.1. Effects of the positive penalty factor γ

In this subsection, a parametric study is carried out to investigate the influence of the penalty factor γ on the
erformance of the proposed algorithm. The analysis results with the penalty factor γ varying from 1 to 1000 are
iven in Fig. 6, where the averaged number of calls to the performance function over 10 repeated runs are also
ncluded. It is observed from Fig. 6 that all the averaged results provided by ABSVR using different values of

are in close agreement with the MCS result (red dotted line). However, a large variation of failure probability
s observed when γ < 100, and the robustness of the algorithm is enhanced when γ ≥ 100. Moreover, a large
umber of functional calls is required for the algorithm with a small value of γ , yet the efficiency of the algorithm
s relatively insensitive to the value of γ when γ ≥ 100. This is because the points with large values of

⏐⏐µ̂ĝ(x)
⏐⏐

for points deviating from the LSS) cannot be effectively penalized when γ is taken as a small value, say γ = 1,
hus the samples on the limit state surface can hardly be identified. An example is illustrated in Fig. 7, where the
onverged ABSVR2 models with γ = 1 and γ = 100 are depicted. It is observed that the new samples selected by
he learning function with γ = 1 deviate largely from the LSS, while those selected by the one with γ = 100 are
ll in the vicinity of the LSS. Therefore, the penalty factor γ has certain effects on the performance of ABSVR,
nd γ ≥ 100 is generally preferred to reach a good trade-off between accuracy and efficiency. In this study, the
earning function γ = 100 is used to demonstrate the performance of ABSVR for structural reliability analysis.

.1.2. Effects of the threshold parameters
Basically, a total of four threshold parameters (i.e. ϵtoli , i = 1, 2, 3, 4) are involved in the proposed hybrid

topping criterion. Earlier experience suggests that the proposed algorithm can reach a good trade-off by setting
14
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Fig. 7. The converged ABSVR2 model: (a) γ = 1; (b) γ = 100. (For interpretation of the references to color in this figure, please refer
o the web version of this article.)

tol4 = 10−2, and the added value of smaller ϵtol4 is negligible, yet more functional calls will be consumed.
Therefore, a parametric study of the other three threshold parameters (e.g. ϵtol1, ϵtol2 and ϵtol3) is conducted, with
he value of ϵtol4 being fixed at 10−2. The averaged failure probabilities over 10 repeated runs of ABSVR2 with
ifferent combinations of threshold values are shown in Fig. 8. It is observed that the accuracy and efficiency of
he algorithm are mainly affected by ϵtol3, whereas the influence of ϵtol1 and ϵtol2 is less obvious. The reason is that

the stabilization detection criterion in Eq. (33) is introduced to identify the stabilization stage and is activated only
when the learning process is found to have stabilized (which is detected by ϵtol1) with certain accuracy (which is
controlled by ϵtol2). Therefore, the learning process of the algorithm is terminated by Eq. (34) most of the time,
e.g. 8 out of 10 different runs. Specifically, less functional calls are required for a larger value of ϵtol3 (less accurate
of the analysis result though), and the algorithm is more robust when ϵtol3 ≤ 0.02; the erroneous result might be

btained when the combination of ϵtol1 = 10−3 and ϵtol2 = 0.3 is selected for the stopping criterion because of the
remature of the algorithm. Therefore, to ensure the overall performance of the ABSVR, ϵtol1 = 10−4, ϵtol2 = 0.1,

ϵtol3 = 0.01 and ϵtol4 = 10−2 is adopted as the default setting, if not specified otherwise.

7.1.3. Comparison with other methods
The results of these two ABSVRs are compared with those provided by MCS, FORM, SORM, AK-MCS+U\AK-

MCS+EFF [26], REIF\REIF2 [30] and AK-SDMCS [37], as summarized in Table 1. The reference result of this
example is obtained using MCS with 1 × 106 samples, i.e. P̂ f = 4.71 × 10−3 with a coefficient of variation

P f = 1.45%, which is directly taken from [30]. It is seen from Table 1 that FORM is unable to deliver accurate
ailure probability prediction for this case, in that the nonlinear failure features cannot be captured by the first-
rder Taylor expansion, hence leading to an estimation error ϵP̂ f

> 100%. Although the accuracy of FORM
an significantly be improved by SORM, the relative error is still unacceptably high, i.e. 22.06%, let alone more
unctional calls are required. On the contrary, all the investigated adaptive algorithms, including the Kriging-based
pproaches and the proposed BSVR-based ones, are capable of providing accurate failure probability prediction
ith high efficiency, i.e. the relative error ϵP̂ f

is less than 1% with no more than 50 functional calls. Among these
daptive algorithms, the two proposed ABSVRs exhibit better overall performance, indicating the effectiveness of
BSVRs for a problem with high nonlinearity.
To further illustrate the superior performance of ABSVRs, the converged BSVR models and the convergence

istory of failure probabilities corresponding to a single run of ABSVR1 and ABSVR2 are plotted in Figs. 9 and
0, respectively. It is observed from Figs. 9(a) and 10(a) that all the newly selected sample points (blue triangles
ith sequence number) are located in the vicinity of LSS and spread uniformly, resulting in an excellent match
f the established BSVR models with the true one in critical regions. Accordingly, fast convergence of the failure
15
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Fig. 8. Reliability analysis results of ABSVR2 with different threshold values in the hybrid stopping criterion: (a) The failure probabilities;
(b) The number of functional calls.

Table 1
Reliability analysis results for Example 1 using different methods.

Methods P̂ f β̂ N f ϵP̂ f
(%)

MCS 4.710 × 10−3 2.5964 1 × 106 –
FORM 2.563 × 10−2 1.9492 779 >100
SORM 3.671 × 10−3 2.6809 791 22.06
REIF 4.720 × 10−3 2.5957 42.3 0.23
REIF2 4.710 × 10−3 2.5964 35.6 0.03
AK-MCS+U 4.689 × 10−3 2.5980 49.4 0.45
AK-MCS+EFF 4.742 × 10−3 2.5941 49.8 0.67
AK-SDMCS 4.667 × 10−3 2.5997 41.3 0.92
ABSVR1 4.723 × 10−3 2.5953 32.6 0.28
ABSVR2 4.719 × 10−3 2.5962 31.5 0.19

Fig. 9. Results for a single run of ABSVR1: (a) The converged BSVR model; (b) The convergence history of failure probability. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)
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Fig. 10. Results for a single run of ABSVR2: (a) The converged BSVR model; (b) The convergence history of failure probability. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)

probability estimation is observed after fluctuating significantly in the few iterations, as shown in Figs. 9(b) and
10(b). These results demonstrate the effectiveness of the proposed learning function (i.e. SLF) for identifying
informative samples. Moreover, it is noteworthy that the LSS being poorly approximated at locations with low
probability densities does not necessarily result in a poor estimation of the failure probability, in that the regions
with extremely weak probability densities have little contribution to the prediction result.

7.2. Example 2: A series system with four branches

The second example is a series system with four branches, whose performance function is given as
follows [26,34]:

g(x) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 + 0.1 (x1 − x2)

2
−

x1+x2√
2

3 + 0.1 (x1 − x2)
2
+

x1+x2√
2

(x1 − x2) +
7

√
2

(x2 − x1) +
7

√
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (38)

here x1 and x2 are two standard normal random variables. The failure probability of this series system is calculated
y the proposed ABSVRs and compared with various other methods, among which the MCS (with a sample size of
×107) reported in [34] is used as the reference result, i.e. P̂ f = 2.221×10−3 with a coefficient of variation smaller

han δP f = 1%. The results of AK-MCS+U and AK-MCS+EFF [26], Neural Network-based Importance Sampling
NNIS) [60], Neural Network-based Directional Simulation (NNDS) [60], Active Deep Neural Network method
ADNN) [24] and ESC+RLCB [34] from the corresponding references are also listed for comparison purpose, as
hown in Table 2.

One can see from Table 2 that the results calculated from traditional one-shot sampling schemes, namely the
NIS and the NNDS exhibit large estimation errors, i.e. respectively with a relative error of 30.57% and 54.98%,

ven at the expense of larger computational effort. In contrast to these non-adaptive algorithms, the estimation carried
ut by adaptive algorithms can generally achieve a good trade-off between accuracy and efficiency. Specifically, the
roposed ABSVR1 and ABSVR2 provide comparable results (slightly better) on failure probability using fewer
odel evaluations as compared with AK-MCS+U and AK-MCS+EFF, and reach higher precision than ADNN with

ess functional calls.
The converged BSVR models and the convergence history of failure probability corresponding to a single run

f ABSVR1 and ABSVR2 are depicted in Fig. 11 and Fig. 12, respectively. As can be seen from Figs. 11(a) and

2(a) that the initial sampling points (cyan square points) in DoE are spread over the random space, whereas the
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Table 2
Reliability analysis results for Example 2 using different methods.

Methods P̂ f β̂ N f ϵP̂ f
(%)

MCS 2.221 × 10−3 2.845 1 × 107 –
AK-MCS+U 2.233 × 10−3 2.843 96 0.54
AK-MCS+EFF 2.232 × 10−3 2.843 101 0.50
NNIS 2.900 × 10−3 2.760 125 30.57
NNDS 1.000 × 10−3 3.050 67 54.98
ADNN 2.192 × 10−3 2.849 70 1.31
ESC+RLCB 2.265 × 10−3 2.839 43.8 1.98
ABSVR1 2.214 × 10−3 2.846 39.6 0.34
ABSVR2 2.222 × 10−3 2.845 42.8 0.04

Fig. 11. Results from a single run of ABSVR1: (a) The converged BSVR model; (b) The convergence history of failure probability. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)

Fig. 12. Results from a single run of ABSVR2: (a) The converged BSVR model; (b) The convergence history of failure probability. (For
interpretation of the references to color in this figure, please refer to the web version of this article.)
18
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Fig. 13. Nonlinear oscillator subjected to a rectangular load pulse.

Table 3
Statistical information of the random variables.

Random variable Distribution Mean Standard deviation

m Normal 1 0.05
c1 Normal 1 0.1
c2 Normal 0.1 0.01
r Normal 0.5 0.05
t1 Normal 1 0.2
F1 (Case 1) Normal 1 0.2
F1 (Case 2) Normal 0.45 0.075

newly enriched points (blue triangles with sequence number) are uniformly distributed along the LSS in the regions
of interest. This implies that the proposed SLF is capable of guiding the search toward a converged BSVR model
that perfectly matches with the true one in the critical regions, leading to the fast convergence of both ABSVR1
and ABSVR2 for failure probability estimation, as shown in Figs. 11(b) and 12(b). Similar to Example 1, the poor
fitting property of the ABSVR model in regions with rather low probability density (i.e. the four corners) will not
mitigate the prediction accuracy since their contribution to failure probability is negligible.

7.3. Example 3: Dynamic response of a nonlinear oscillator

This example considers a nonlinear oscillator subjected to a rectangular load pulse, as shown in Fig. 13. It is an
ndamped single degree of freedom system, which has been investigated in numerous studies [17,26,61,62]. The
erformance function of this nonlinear system is expressed as:

g (c1, c2, m, r, t1, F1) = 3r −

⏐⏐⏐⏐ 2F1

mω2
0

sin
(

ω0t1
2

)⏐⏐⏐⏐ (39)

where ω0 =
√

(c1 + c2) /m, and the distribution parameters of these random variables are listed in Table 3.

.3.1. Reliability analysis for case 1
In this case, the reference result is calculated from MCS with a sample size of 1 × 107 and the corresponding

failure probability is 2.859 × 10−2. The results calculated from FORM and SORM, and those by adaptive Kriging
approaches, namely the AK-MCS\AK-MCSi\AK-MSS [63], and the AK-SS\AWL-MCS [62] directly taken from
the corresponding references are also used for comparison purpose, as summarized in Table 4 along with the results
provided by the proposed ABSVRs.

One can see from Table 4 that the failure probability estimated by FORM exhibits the largest error (i.e. ϵP̂ f
=

8.71%) among the investigated methods, albeit its high efficiency for this particular case. The accuracy of FORM
can be improved by SORM, but at the expense of substantially higher computational effort than FORM, i.e. the total
number of functional calls N f increased from 48 to 128. Although AK-MCS and AK-SS both exhibit high precision,
.e. respectively with a relative error ϵ = 0.24% and ϵ = 0.91%, the required number of functional calls is
P̂ f P̂ f
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Table 4
Reliability analysis results for Example 3 — Case 1 using different methods.

Methods P̂ f β̂ N f ϵP̂ f
(%)

MCS 2.859 × 10−2 1.902 1 × 107 –
FORM 3.108 × 10−2 1.865 48 8.71
SORM 2.900 × 10−2 1.896 128 1.43
AK-MCS 2.852 × 10−2 1.903 530 0.24
AK-SS 2.833 × 10−2 1.906 410 0.91
AK-MCSi 2.830 × 10−2 1.906 85 1.01
AK-MSS 2.870 × 10−2 1.900 86 0.38
AWL-MCS 2.826 × 10−2 1.907 65 1.15
ABSVR1 2.855 × 10−2 1.903 46.8 0.15
ABSVR2 2.871 × 10−2 1.900 45.4 0.41

Fig. 14. The convergence history of failure probability: (a) The results of ABSVR1; (b) The results of ABSVR2. (For interpretation of the
references to color in this figure, please refer to the web version of this article.)

prohibitively high compared with other adaptive algorithms. On the contrary, the other three adaptive Kriging-
based approaches, namely the AK-MCSi, the AK-MSS and the AWL-MCS are capable of providing a balanced
performance for this case. Remarkably, the proposed ABSVR1 and ABSVR2 show excellent performance in terms
of accuracy and efficiency, i.e. with a relative error less than 0.5% using less than 50 functional calls, indicating the
capability of ABSVRs to reach a balanced performance for structural reliability analysis of this dynamic system.
The convergence history of failure probability by three independent runs of ABSVRs are depicted in Fig. 14, where
the estimation results are seen to have quickly converged to the reference solution for both ABSVR1 and ABSVR2
after fluctuated significantly in the first 8 iterations.

7.3.2. Reliability analysis for case 2
For problems with extremely low failure probabilities, the MCS-based adaptive algorithm is not efficient since

he required number of candidate samples is prohibitively high. To address this issue, the adaptive algorithms can
e combined with advanced simulation methods such as importance sampling (IS) [35,64] and subset simulation
SS) [63] to further improve computational efficiency. For illustrative purposes, the proposed algorithm is integrated
ith the IS presented in [35] to investigate its applicability to rare failure events. In this approach, the center of the

mportance sampling density is the most probable point (does not have to be very accurate) being found by FORM
n a few iterations (3 iterations in this case), and the samples generated from the importance density are used as
he candidate samples in the learning process, which is quite different from the MCS-based approaches.

The reference result obtained by MCS is 1.55×10−8 with a coefficient of variation equal to 2.68%, and the results

of FORM and SORM are calculated using the UQLab [59]. The results of the proposed algorithm along with various
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Table 5
Reliability analysis results for Example 3 — Case 2 using different methods.

Methods P̂ f β̂ N f ϵP̂ f
(%)

MCS∗ 1.55 × 10−8 5.536 9 × 1010 –
FORM 1.56 × 10−8 5.535 96 0.65
SORM 1.52 × 10−8 5.540 176 1.94
AK-IS∗ 1.53 × 10−8 5.538 67 1.29
AK-MCSi∗ 1.44 × 10−8 5.549 77 7.10
AK-ARBIS∗ 1.56 × 10−8 5.535 76 0.65
ABSVR1-IS 1.50 × 10−8 5.542 38.6 3.27
ABSVR2-IS 1.53 × 10−8 5.538 43.9 1.29

Note: ∗ Results reproduced from [64].

Table 6
Reliability analysis results for Example 4 using different methods.

Methods P̂ f β̂ N f ϵP̂ f
(%)

MCS 1.978 × 10−3 2.882 1 × 106 –
FORM 2.152 × 10−4 3.521 168 89.12
SORM 2.494 × 10−3 2.808 3410 26.09
AK-MCS+U 2.037 × 10−3 2.877 356.4 2.98
AK-MCS+EFF 1.958 × 10−3 2.885 369.7 1.01
ABSVR1 1.955 × 10−3 2.886 77.8 1.16
ABSVR2 1.951 × 10−3 2.886 75.4 1.37

Note: The results of MCS, FORM, SORM, AK-MCS+U and AK-MCS+EFF are
calculated using the UQLab [59].

ther methods are illustrated in Table 5. It is observed from Table 5 that all the investigated methods give results with
ood agreement with the reference result, yet the converged solution of FORM and SORM require a higher number
f functional calls than the adaptive surrogate methods. Among the adaptive algorithms, the AK-MCSi method
xhibits the worst performance in terms of accuracy and efficiency, whereas the two proposed ABSVR approaches
rovide failure probability estimation with comparable accuracy as those of AK-IS and AK-ARBIS using much
ewer functional calls. The results indicate that the proposed algorithm is well-suited for calculating extremely low
ailure probability when combined with the IS method. It is noteworthy that other advanced simulation approaches
an also be integrated with the proposed algorithm for evaluating extremely low failure probabilities, which is a
opic worth further exploring.

.4. Example 4: A high dimensional problem

The fourth example considers a high-dimensional case, which is a typical benchmark problem in the structural
eliability analysis that has been investigated in [26,62,65]. The performance function is given as:

G(x) = n + 3σ
√

n −

n∑
i=1

xi (40)

here xi , i = 1, 2, . . . , n are the independent random variables following the Lognormal distribution with means
f µ = 1 and standard deviations of σ = 0.2. In this example, the dimensionality n is taken as 40.

The reliability analysis results of ABSVR1 and ABSVR2 are compared with those of FORM, SORM, AK-
CS+U and AK-MCS+EFF, which are all summarized in Table 6. The reference result is calculated from MCS
ith a sample size of 1 × 106 and the corresponding failure probability is P̂ f = 1.978 × 10−3 with a coefficient of
ariation smaller than 3%.

Table 6 shows that FORM underestimated the failure probability with a factor of almost 10 at the cost of 168
unctional calls. Although SORM can largely improve the accuracy of FORM, yet the estimation error is still
arge, e.g. with a relative error of 26.09%, let alone the large functional calls of SORM for this particular case.
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Fig. 15. The convergence history of failure probability: (a) The results of ABSVR1; (b) The results of ABSVR2. (For interpretation of the
references to color in this figure, please refer to the web version of this article.)

Fig. 16. A 2D truss structure.

The failure probability results provided by the investigated adaptive algorithms are all in close agreement with
the MCS result, albeit the required computational effort varies among these methods. Specifically, the functional
calls of AK-MCS+U and AK-MCS+EFF are much higher than those of ABSVR1 and ABSVR2, and a remarkable
trade-off between accuracy and efficiency is achieved by the proposed algorithm for this high-dimensional case.
The convergence history of failure probability by three independent runs of ABSVRs are depicted in Fig. 15, where
the estimation results of ABSVR1 and ABSVR2 are seen to fluctuate significantly in the first 50 iterations before
converged to the reference solution. Overall, the proposed algorithm provides a satisfactory estimation of failure
probability at a lower cost than FORM for this high dimensional case. Nevertheless, the reliance on more efficient
approaches such as dimension reduction techniques is rather necessary to more efficiently deal with extremely high
dimensional problems.

7.5. Example 5: Reliability of a truss structure

To test the proposed algorithm on a more realistic engineering benchmark, a 2D truss structure as sketched
in Fig. 16 is considered. There are 10 random variables involved in this structure, namely the cross-section and
Young’s modulus (A1, E1) of the horizontal bars, the cross-section and Young’s modulus (A2, E2) of the diagonal

ars and the six random loads (P1, P2, . . . , P6). The distribution information of these random variables is given in
able 7. The response of interest is the displacement ∆(x) at the midspan, and the performance function of this

truss structure is cast as [41]:

G(x) = ∆ − |∆(x)| (41)
t
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Table 7
Statistical information of the random variables.

Random variable Distribution Mean Standard deviation

A1 (m2) Lognormal 2.0 × 10−3 2.0 × 10−4

A2 (m2) Lognormal 1.0 × 10−3 1.0 × 10−4

E1 (Pa) Lognormal 2.1 × 1011 2.1 × 1010

E2 (Pa) Lognormal 2.1 × 1011 2.1 × 1010

P1, P2, . . . , P6 ( N) Gumbel 5.0 × 104 7.5 × 103

Table 8
Reliability analysis results for Example 4 using different methods.

Methods P̂ f β̂ N f ϵP̂ f
(%)

MCS∗ 1.52 × 10−3 2.96 1 × 106 –
FORM∗ 0.76 × 10−3 3.17 160 50.00
SORM∗ 1.63 × 10−3 2.94 372 7.24
AK-MCS∗ 1.52 × 10−3 2.96 300 0.00
A-bPCE∗ 1.48 × 10−3 2.97 129 2.63
ABSVR1 1.538 × 10−3 2.961 57.8 1.18
ABSVR2 1.512 × 10−3 2.965 54.9 0.53

Note: ∗ Results reproduced from [41].

here ∆t = 12 cm is the critical threshold that ensures the structure operates in the nominal range. Since the
structural displacement ∆(x) is implicitly defined in terms of the random variables, a finite element programme is
adopted to calculate the value of ∆(x).

The results of failure probability estimation using various methods are summarized in Table 8, where the results
of MCS, FORM, SORM, AK-MCS and A-bPCE are reproduced from [41]. One can see from Table 8 that FORM
yields an erroneous result with a relative error as high as 50%, at the cost of 160 functional calls. Although SORM
can notably improve the accuracy of FORM, the number of functional calls is seen to have increased significantly.
The results of FORM and SORM suggest the nonlinearity of the underlying problem in the transformed standard
normal space. As for the adaptive algorithms, the highest accuracy is achieved by AK-MCS (with the obtained
failure probability the same as the reference one), yet at the expense of higher computational cost. On the contrary,
both the ABSVR1 and ABSVR2 can provide results with comparable accuracy (slightly better) as that of A-bPCE
using fewer functional calls, indicating the effectiveness of ABSVR to reach a balanced performance in terms
of accuracy and efficiency. The convergence history of failure probability by three independent runs of ABSVRs
are depicted in Fig. 17, where the estimation results of ABSVR1 and ABSVR2 are seen to quickly converge to
the reference solution after significant fluctuation in the first 10 iterations. Moreover, for this case involving the
finite element analysis and non-normal random variables, no embedded optimization algorithm nor iso-probabilistic
transformation is required in the ABSVRs, which makes them easily implementable.

7.6. Example 6: A cantilever tube

The last example considers a cantilever tube as shown in Fig. 18. This tube is subjected to three external forces
F1, F2, P and one torsion T , and will fail when the yield strength σ is smaller than the maximum stress σmax.
Thus, the performance function can be expressed as [33,61]:

g(x) = σ − σmax (42)

where σmax is the maximum von Mises stress of the tube and is calculated as:

σmax =

√
σ 2

x + 3τ 2
zx (43)

here σx and τzx represent the normal stress and torsional stress on the top of surface of the tube at the origin,
hich are respectively given as:

σx =
P + F1 sin θ1 + F2 sin θ2

+
Md

(44)

A 2I
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Fig. 17. The convergence history of failure probability: (a) The results of ABSVR1; (b) The results of ABSVR2. (For interpretation of the
references to color in this figure, please refer to the web version of this article.)

Fig. 18. A cantilever tube (after [61]).

τzx =
T d
2J

(45)

here A is the cross-sectional area, M denotes the bending moment and I represents the moment of inertia. These
arameters can be calculated as:

M = F1L1 cos θ1 + F2L2 cos θ2 (46)

A =
π

4

[
d2

− (d − 2t)2] (47)

I =
π

64

[
d4

− (d − 2t)4] (48)

J = 2I (49)

A total of 9 random variables are involved in this example and their statistical information is listed in Table 9. The

esults of failure probability estimation using the proposed ABSVR1 and ABSVR2 along with other methods are
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Fig. 19. The convergence history of failure probability: (a) The results of ABSVR1; (b) The results of ABSVR2. (For interpretation of the
references to color in this figure, please refer to the web version of this article.)

Table 9
Statistical information of the random variables.

Random variable Distribution Parameter 1 Parameter 2

t (mm) Normal 5 0.1
d (mm) Normal 42 0.5
L1 (mm) Uniform 119.75 120.25
L2 (mm) Uniform 59.75 60.25
F1 (kN) Normal 3 0.3
F2 (kN) Normal 3 0.3
P (kN) Gumbel 27 2.7
T (N m) Normal 90 9
σ (MPa) Normal 220 22

Note: For uniform distribution, parameters 1 and 2 are the lower and upper bounds, respectively,
while they represent the mean and standard deviation for Normal and Gumbel distributions.

summarized in Table 10, in which the results of AK-MCS+EFF, REAK and ISKRA (and their estimation errors) are
directly taken from [33] and the results of FORM and SORM are calculated using the UQLab [59]. The reference
result of this example is averaged over 10 independent runs of MCS with 1 × 106 sample points, giving the result
of P̂ f = 7.093 × 10−3 with a coefficient of variation δP f = 1.45%.

It is seen from Table 10 that, for this slightly nonlinear case, the result of FORM exhibits an error of 12.12%,
hereas the results provided by other investigated methods are in good agreement with the reference one. It is
oteworthy that due to different number of samples used in [33] and the present study, the reference results are
bit different, i.e. the coefficient of variation δP f for MCS∗ with 6 × 104 samples is δP f = 4.92% and the one

for MCS with 1 × 106 samples is δP f = 1.18%. Nevertheless, the proposed ABSVR1 and ABSVR2 show a good
rade-off between accuracy and efficiency for this case, i.e. reach a relative error within 0.5% with a functional call
ven less than that of FORM. The convergence history of failure probability by three independent runs of ABSVRs
re depicted in Fig. 19, where the estimation results are seen to have quickly converged to the reference solution
or both ABSVR1 and ABSVR2 after fluctuated significantly in the first 7 iterations.

. Conclusions

In this paper, an adaptive algorithm based on Bayesian SVR (ABSVR) is proposed for efficient and accurate

eliability analysis. According to the loss function employed to establish the BSVR model, two versions of ABSVR
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Table 10
Reliability analysis results for Example 6 using different methods.

Methods P̂ f β̂ N f ϵP̂ f
(%)

MCS∗ 6.850 × 10−3 2.465 6 × 104 –
AK-MCS+EFF 6.850 × 10−3 2.465 84 0
REAK 6.817 × 10−3 2.467 59 0.49
ISKRA 6.850 × 10−3 2.846 71 0
MCS 7.093 × 10−3 2.453 1 × 106 –
FORM 6.233 × 10−3 2.499 66 12.12
SORM 6.979 × 10−3 2.458 239 1.61
ABSVR1 7.074 × 10−3 2.453 31.9 0.27
ABSVR2 7.060 × 10−3 2.454 31.2 0.47

Note: The reference result MCS∗ in [33] is obtained by MCS with a population size of 6 × 104,
based on which the relative error of AK-MCS+EFF, REAK and ISKRA are calculated.

are proposed, namely the ABSVR1 based on square loss function and the ABSVR2 based on ε-insensitive square
loss function. Following the concept of the penalty function method in optimization, a new learning function known
as SLF is introduced for effective selection of informative sample points, e.g. points close to the limit state surface
(LSS) in critical regions with sufficiently high probability density. To improve the uniformity of samples in the
design of experiments, a distance constraint term is added to the learning function to control the density of samples.
Besides, the adaptive sampling region scheme originally developed for Kriging-based approaches is adapted here
to further enhance the computational efficiency by filtering out sample points with weak probability density, in that
these samples have little contribution to the failure probability evaluation. Moreover, a hybrid error-based stopping
criterion using the bootstrap confidence estimation is developed to terminate the active learning process to ensure
that the learning algorithm stops at an appropriate stage.

To illustrate the performance of the proposed ABSVRs for structural reliability analysis, six numerical examples
including one system reliability problem and four engineering cases are investigated, the results of which are
compared to those from other state-of-the-art reliability methods. The results have shown that both the proposed
ABSVR1 and ABSVR2 are well-suited for structural reliability analysis, and delivers failure probability estimation
with better performance in terms of accuracy and efficiency than other methods considered. Besides, the proposed
learning function exhibits excellent performance for guiding the search toward informative samples close to the
LSS and thus, contributing to the fast convergence of the failure probability evaluation using the BSVR model.

Overall, the proposed ABSVR is easy to implement since no embedded optimization algorithm nor iso-
probabilistic transformation is required, and its applicability and effectiveness for structural reliability analysis have
been validated through numerical examples featuring different levels of complexity. However, this work is still an
early step towards applying Bayesian SVR for reliability analysis of complex engineering structures, the integration
of ABSVR with more advanced simulation methods (e.g. the subset simulation) and dimension reduction techniques
(e.g. the principle of component analysis) is worth exploring to deal with rare failure events and/or extremely
high-dimensional problems.
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