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a b s t r a c t 

In this work, a new displacement-based Trefftz plate element is developed for size-dependent bending analysis 

of the thin plate structures in the context of the modified couple stress theory. This is achieved via two steps. 

First, the Trefftz functions, that are derived by introducing the thin plate bending assumptions into the three- 

dimensional governing equations of the modified couple stress elasticity, are adopted as the basis functions for 

designing the element’s displacement interpolations. Second, the generalized conforming theory is employed to 

meet the interelement compatibility requirements in weak sense for ensuring the convergence property. The 

resulting 4-node displacement-based plate element performs like nonconforming models on coarse meshes and 

gradually converges into a conforming one with the mesh refinement. Numerical tests reveal that the new element 

can efficiently capture the size-dependent mechanical responses of thin microplates and exhibits satisfactory 

numerical accuracy and distortion tolerance. Moreover, as the element has only three degrees of freedom (DOF) 

per node, it can be easily incorporated into the commonly available finite element programs. 
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. Introduction 

Microplate structures have been widely used in various modern engi-

eering applications. Numerous experimental observations have shown

hat their mechanical behaviors are size dependent, and the classical

ontinuum theory is insufficient for capturing the size effect. Therefore,

or well understanding and effectively designing such structures, the

igh-order continuum theories containing additional internal material

ength scale parameters have been developed, including the strain gra-

ient theories [1–3] , the couple stress theories [4–6] and the non-local

lastic theories [7 , 8] , to name a few. Based on these high-order contin-

um theories, diverse non-classical plate models have been successfully

stablished during the past decades. For instance, Tsiatas [9] , Ma et al.

10] and Gao et al. [11] respectively proposed the non-classical Kirff-

hoff plate model, the Mindlin plate model and the third order shear de-

ormation plate model based on the modified couple stress theory; Thai

t al. [12] developed a microplate model based on the modified cou-

le stress theory and the refined higher order shear deformation theory;

hakalo and Niiranen [13] and Mirsalehi et al. [14] respectively pro-

osed the non-classical Mindlin plate and Kirffchoff plate models based

n the strain gradient theory; Reddy and Berry [15] studied the non-
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inear axisymmetric bending behaviors of circular plates based on the

odified couple stress theory. For keen readers, a comprehensive liter-

ture review can be found in Thai et al. [16] . 

However, as these size-dependent plate models are much more math-

matically complicated than those based on the classical continuum the-

ry, only restricted problems with simple geometries and certain bound-

ry conditions can be analytically or semi-analytically solved [17] . Con-

equently, developing reliable numerical approaches with high accuracy

nd efficiency is of great importance. The finite element method (FEM)

s commonly recognized as the most efficient and convenient numerical

ool for analysis of plate structures. In recent years, many efforts have

een devoted to developing three-dimensional (3D) solid elements based

n the non-classical high-order continuum theories. For example, Torabi

t al. [18] formulated a 4-node non-conforming tetrahedral element for

he strain gradient elasticity; Kwon and Lee [19] developed hexahedral

lements with rotation DOFs and Lagrange multiplier DOFs based on

he mixed formulation; Shang et al. [20] proposed a penalty 8-node

8 DOF hexahedral element based on the modified couple stress the-

ry and the unsymmetric FEM [21–23] . Compared with solid elements,

he plate elements are generally more preferred in analysis of plate-

ike structures because of efficiency. But there are only limited studies
 January 2021 
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Fig. 1. The schematic representation of the thin microplate. 
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f size-dependent plate elements in the literature. The major challenge

ncountered in developing advanced microplate elements is that the nu-

erical implementation of the size-dependent plate models may lead to

ven higher continuity requirements than solid element models, with the

tandard FEM generally suffering from insufficient continuity. It should

e emphasized that, the construction of strictly higher-order continuous

nterpolations is far from a trivial task. 

The most straightforward way for solving this problem is to increase

he node number and the degrees of freedom (DOFs) used for the ele-

ent construction. For example, Zhang et al. [24] developed a 4-node

0-DOF non-classical Mindlin plate element based on the modified cou-

le stress theory but its shape is restricted to rectangle; Ansari et al.

25] proposed a 9-node quadrilateral Mindlin microplate element based

n the micromorphic theory which has 13 DOFs per node; Dadgar-Rad

26] proposed a 4-node 36-DOF microplate element based on the strain

radient elasticity which was reduced from a parent 8-node 72-DOF ele-

ent through a very complicated derivation. It should be noted that, this

ethod not only makes the element construction procedure and final

ormulation quite tedious but it also dramatically increases the compu-

ational cost. In addition, the isogeometric analysis (IGA) [27] which

dopts the non-uniform rational B-splines (NURBS) functions as the

hape functions to approximate both the geometric model and the anal-

sis model is an effective approach to circumvent this obstacle. For in-

tance, Liu et al. [28 , 29] studied the size and surface effects on mechan-

cal behavior of thin nanoplates using the isogeometric finite element;

atarajan et al. [30] investigated the size-dependent vibration analysis

f nanoplate using the isogeometric based FEM; Thanh et al. [31 , 32]

roposed finite element model for analysis of composite laminated and

unctionally graded microplates based on the IGA and the modified cou-

le stress theory; Thai et al. [33] performed the size-dependent analysis

f functionally graded microplates based on the IGA and the strain gradi-

nt theory. Despite the advantages of generating highly continuous basis

unctions, the computational cost of the isogeometric finite elements is

ften significantly higher than the standard FEM. 

Another deficiency caused by the higher-order continuity require-

ents is that the performance of FEM is very susceptible to mesh dis-

ortion [34 , 35] . The mesh distortion, which typically occurs in mesh-

ng complex geometries or simulating large deformations, may substan-

ially deteriorate the numerical accuracy and in worst cases, even lead

o abnormal termination of simulation. Indeed, developing distortion-

nsensitive finite elements has always been an important and challeng-

ng topic in the community of computation engineering, and it has

rawn considerable attentions from the FE scholars [36–38] . 

The generalized conforming Trefftz finite element method [39 , 40]

hich successfully blends the attributes of the hybrid-Trefftz FEM

41–44] with the usual displacement-based FEM is a promising ap-

roach to effectively overcome the above problems. In the Trefftz-type

lement formulations, the Trefftz functions that can a priori satisfy the

elated governing equations are adopted as the basic functions for con-

tructing element interpolations. As a result, better numerical accuracy

nd distortion tolerance than the usual FEM can be achieved. However,

s these Trefftz functions are in general not compatible across the inter-

ace between two adjacent elements, special treatments should be em-

loyed for the enforcement of the compatibility conditions, which play

 key role for the FEM convergence. The generalized conforming theory

45] is a novel technique to make the non-conforming displacement-

ased element meet the requirement of interelement compatibility in

eak sense. The resulting generalized conforming element is a kind of

imiting conforming element which performs like non-conforming mod-

ls on coarse meshes but tends to be conforming with the mesh refine-

ent. 

The aim of this work is to propose a simple and robust 4-node 12-

OF generalized conforming Trefftz plate element for size-dependent

ending analysis of thin plates. To this end, the modified couple stress

heory [5] which requires just one additional material parameter to rep-

esent the size effect of microstructures is adopted as the theoretical
47 
asis, and then the polynomial Trefftz functions that correspond to the

on-classical thin microplate are derived. Next, these Trefftz functions

re employed as the basis functions for designing the new element’s de-

ection and rotation interpolations in a straightforward manner, while

he compatibility requirements are enforced in week sense by using

he generalized conforming conditions. Several benchmark tests are ex-

mined to validate the proposed element’s capability in predicting the

ize-dependent mechanical behaviors of thin microplates. The numeri-

al results show that the element can efficiently capture the size effects,

xhibiting satisfactory numerical accuracy and good robustness to the

ross mesh distortion. Besides, the element can also reproduce the re-

ults of the classical Kirchhoff plate model when the plate thickness is

ar greater than the material length scale parameter. Moreover, as the

ew 4-node plate element has only three conventional DOFs per node,

t can be easily incorporated into commonly available FE programs. 

. Governing equations and Trefftz functions 

.1. The basic governing equations in modified couple stress elasticity 

The modified couple stress theory [5] has been increasingly popu-

ar in the FE implementation in recent years due to its verifiability and

implicity. In this size-dependent continuum theory, the strain tensor

omponents 𝜀 ij and the physical rotation vector components 𝜔 ij are de-

ned as the first-order spatial derivatives of the displacements u i : 

 𝑖𝑗 = 

𝑢 𝑖,𝑗 + 𝑢 𝑗,𝑖 

2 
, 𝜔 𝑖 = 

1 
2 
𝑒 𝑖𝑗𝑘 𝑢 𝑘,𝑗 , (1)

nd the symmetric curvature tensor components 𝜒 ij are given by 

𝑖𝑗 = 

𝜔 𝑖,𝑗 + 𝜔 𝑗,𝑖 

2 
, (2)

here e ijk is the Levi-Civita symbol. 

For the linear elastic isotropic materials, the stress tensor compo-

ents 𝜎ij and the couple stress tensor components m ij , which respectively

re the conjugate pairs of the strain and curvature, can be calculated us-

ng the constitutive equations: 

𝑖𝑗 = 𝜆𝜀 𝑘𝑘 𝛿𝑖𝑗 + 2 𝐺 𝜀 𝑖𝑗 , 𝑚 𝑖𝑗 = 2 𝐺 𝑙 2 𝜒𝑖𝑗 , (3)

n which 𝛿ij is the Kronecker delta, 𝜆 and G are the two Lamé constants

nd l denotes the additional material length scale parameter. 

Considering that the external body couple force can be decomposed

nto an equivalent system of body forces and surface forces [4] , the equi-

ibrium equations are given by 

𝜎𝑖𝑗,𝑗 + 𝑓 𝑖 − 

1 
2 
𝑒 𝑖𝑗𝑘 𝑚 𝑗𝑚,𝑚𝑘 = 0 , (4)

here f i represents the component of the external body force vector. 

.2. The governing equations for thin microplates 

The typical model of a thin flat microplate subjected to a transverse

istributed load q on the top surface is illustrated in Fig. 1 . The mid-

urface of the plate is defined as the x - y plane whilst z denotes the plate

hickness direction ( − 

ℎ ≤ 𝑧 ≤ 

ℎ ) . For the bending behavior of the thin
2 2 
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e

 

 

t  
icroplate in the absence of in-plane external loads, the three displace-

ent components can be expressed by 

𝑢 = − 𝑧 𝜓 𝑥 , 𝑣 = − 𝑧 𝜓 𝑦 , 𝑤 = 𝑤 ( 𝑥, 𝑦 ) , (5)

n which the plate rotations 𝜓 x and 𝜓 y are determined in accordance

ith the Kirchhoff thin plate assumptions: 

𝜓 𝑥 = 

𝜕𝑤 

𝜕𝑥 
, 𝜓 𝑦 = 

𝜕𝑤 

𝜕𝑦 
. (6)

Then, by substituting Eqs. (5) and (6) into the kinematic equations

iven in Section 2.1 , the non-zero components of the strain and physical

otation are expressed as 

𝜀 𝑥𝑥 = − 𝑧 
𝜕 2 𝑤 

𝜕 𝑥 2 
, 𝜀 𝑦𝑦 = − 𝑧 

𝜕 2 𝑤 

𝜕 𝑦 2 
, 𝛾𝑥𝑦 = 2 𝜀 𝑥𝑦 = −2 𝑧 𝜕 

2 𝑤 

𝜕 𝑥𝜕 𝑦 
, (7)

𝜔 𝑥 = 

𝜕𝑤 

𝜕𝑦 
, 𝜔 𝑦 = − 

𝜕𝑤 

𝜕𝑥 
, (8)

nd the non-zero components of the curvature can be further obtained

y 

𝜒𝑥𝑥 = 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
, 𝜒𝑦𝑦 = − 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
, 2 𝜒𝑥𝑦 = 

𝜕 2 𝑤 

𝜕 𝑦 2 
− 

𝜕 2 𝑤 

𝜕 𝑥 2 
. (9)

In general, the stress and couple stress, which are directly calculated

y substituting Eqs. (7) and (9) back into the three-dimensional consti-

utive Eq. (3) , cannot satisfy the equilibrium equations and the stress

oundary conditions. Therefore, an alternative approach to derive the

tress and couple stress is employed in this work. 

The three in-plane stress components are determined by using the

educed constitutive relationship of the plane stress state, as follows: 

𝜎𝑥𝑥 = 

𝐸 

1 − 𝜈2 

(
𝜀 𝑥𝑥 + 𝜈𝜀 𝑦𝑦 

)
= − 

𝑧𝐸 

1 − 𝜈2 

( 

𝜕 2 𝑤 

𝜕 𝑥 2 
+ 𝜈

𝜕 2 𝑤 

𝜕 𝑦 2 

) 

, (10)

𝜎𝑦𝑦 = 

𝐸 

1 − 𝜈2 

(
𝜀 𝑦𝑦 + 𝜈𝜀 𝑥𝑥 

)
= − 

𝑧𝐸 

1 − 𝜈2 

( 

𝜕 2 𝑤 

𝜕 𝑦 2 
+ 𝜈

𝜕 2 𝑤 

𝜕 𝑥 2 

) 

, (11)

𝜎𝑥𝑦 = 𝐺 𝛾𝑥𝑦 = −2 𝑧𝐺 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
, (12)

n which E and 𝜈 are the Young’s modulus and Poisson’s ratio that can be

educed from the Lamé constants; 𝐺 = 𝐸∕ 2( 1 + 𝜈) is the shear modulus.

eanwhile, the couple stresses are still calculated using Eq. (3) : 

𝑚 𝑥𝑥 = 2 𝐺 𝑙 2 
𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
, 𝑚 𝑦𝑦 = −2 𝐺 𝑙 2 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
, 𝑚 𝑥𝑦 = 𝐺 𝑙 2 

( 

𝜕 2 𝑤 

𝜕 𝑦 2 
− 

𝜕 2 𝑤 

𝜕 𝑥 2 

) 

. (13)

Substitutions of Eqs. (10) –(13) back into the first two equilibrium

quations given in Eq. (4) yield 

𝜎𝑥𝑧,𝑧 = 

𝑧𝐸 

1 − 𝜈2 
𝜕 

𝜕𝑥 

(
∇ 

2 𝑤 

)
, (14)

𝜎𝑥𝑧,𝑧 = 

𝑧𝐸 

1 − 𝜈2 
𝜕 

𝜕𝑥 

(
∇ 

2 𝑤 

)
, (15)

n which ∇ 

2 is the Laplace operator. Then, by integrating them along

he plate thickness and applying the zero-value boundary conditions at

he top and bottom surfaces, the transverse shear stresses are given by

𝜎𝑥𝑧 = 

𝐸 

2 
(
1 − 𝜈2 

)( 

𝑧 2 − 

ℎ 2 

4 

) 

𝜕 

𝜕𝑥 

(
∇ 

2 𝑤 

)
, (16)

𝜎𝑦𝑧 = 

𝐸 

2 
(
1 − 𝜈2 

)( 

𝑧 2 − 

ℎ 2 

4 

) 

𝜕 

𝜕𝑦 

(
∇ 

2 𝑤 

)
. (17)

Next, by inserting Eqs. (13) , (16) and (17) into the last equilibrium

quation in Eq. (4) , we can obtain 

𝐸 

2 
(
1 − 𝜈2 

)( 

𝑧 2 − 

ℎ 2 

4 

) 

∇ 

2 ∇ 

2 𝑤 − 

1 
2 
𝐺 𝑙 2 ∇ 

2 ∇ 

2 𝑤 + 𝜎𝑧𝑧,𝑧 = 0 . (18)
48 
Also, by integrating Eq. (18) along the plate thickness and consider-

ng the zero-value boundary condition at the plate’s bottom surface, the

ollowing expression of 𝜎zz is delivered: 

𝜎𝑧𝑧 = 

1 
2 
𝐺 𝑙 2 ∇ 

2 ∇ 

2 𝑤 

(
𝑧 + 

ℎ 

2 

)
− 

𝐸 

2 
(
1 − 𝜈2 

)∇ 

2 ∇ 

2 𝑤 

[ 
1 
3 

( 

𝑧 3 + 

ℎ 3 

8 

) 

− 

ℎ 2 

4 

(
𝑧 + 

ℎ 

2 

)] 
. (19) 

Finally, by imposing the condition that 𝜎zz should be equal to the

xternal transverse distributed load q at the plate’s top surface, we can

btain 

𝐷 𝑒 ∇ 

2 ∇ 

2 𝑤 = 𝑞 , with 𝐷 𝑒 = 𝐷 + 𝐷 𝑙 , (20)

n which 

𝐷 = 

𝐸 ℎ 3 

12 
(
1 − 𝜈2 

) , 𝐷 𝑙 = 

1 
2 
𝐺 𝑙 2 ℎ. (21)

It can be easily observed that Eq. (20) can directly degenerate into

he classical Kirffchoff plate model when the material length scale pa-

ameter is neglected. 

It is noted that although the above out-plane stress components given

y Eqs. (16) , (17) and (19) violate the constitutive equations, the in-

uced errors are almost negligible because the thin plate’s thickness is

ar less than the other two dimensions. 

.3. The Trefftz functions for thin microplates 

The solution of plate governing Eq. (20) consists of two parts, the

omogeneous solution w 

0 and the particular solution w 

∗ , which should

espectively satisfy 

𝐷 𝑒 ∇ 

2 ∇ 

2 𝑤 

0 = 0 , (22)

nd 

𝐷 𝑒 ∇ 

2 ∇ 

2 𝑤 

∗ = 𝑞. (23)

The solution of homogeneous Eq. (22) yields to fourteen linearly in-

ependent polynomial functions and the dependent rotation, strain and

urvature solutions can further be derived. For brevity, they are directly

ummarized in Table 1 while their derivation procedures are given in

ppendix . On the other hand, the particular solution part should be de-

ermined in accordance with the external load. For instance, when the

late is subjected to a uniformly distributed transverse load q , the par-

icular solution can be simply set as 

𝑤 

∗ = 

𝑞 

48 𝐷 𝑒 

(
𝑥 4 + 𝑦 4 

)
. (24)

Correspondingly, the plate rotations are 

𝜓 ∗ 
𝑥 
= 

𝜕𝑤 

𝜕𝑥 
= 

𝑞 

12 𝐷 𝑒 

𝑥 3 , 𝜓 ∗ 
𝑦 
= 

𝜕𝑤 

𝜕𝑦 
= 

𝑞 

12 𝐷 𝑒 

𝑦 3 , (25)

hile the strains and curvatures are 

𝜀 ∗ 
𝑥𝑥 

= − 𝑧 
𝑞 

4 𝐷 𝑒 

𝑥 2 , 𝜀 ∗ 
𝑦𝑦 

= − 𝑧 
𝑞 

4 𝐷 𝑒 

𝑦 2 , 2 𝜀 ∗ 
𝑥𝑦 

= 𝛾∗ 
𝑥𝑦 

= 0 , (26)

𝜒∗ 
𝑥𝑥 

= 0 , 𝜒∗ 
𝑦𝑦 

= − 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
= 0 , 2 𝜒∗ 

𝑥𝑦 
= 

𝑞 

4 𝐷 𝑒 

(
𝑦 2 − 𝑥 2 

)
. (27)

. Finite element formulations 

.1. The variational principle 

For ensuring the computation convergence, the derivation of the

on-conforming element should start with the sub-region potential en-

rgy principle [45] , in which the energy functional is given by 

Π𝑒 
𝑚𝑃 

= Π𝑒 
𝑃 
+ H 𝑖𝑐 . (28)

In the above equation, Π𝑒 
𝑃 

is the conventional potential energy func-

ional. With respect to the present size-dependent thin microplate in the
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Table 1 

Trefftz functions for homogeneous solution of the thin plate based on the modified couple stress elasticity. 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

𝑤 0 
𝑖 

1 x y x 2 xy y 2 x 3 x 2 y xy 2 y 3 x 3 y xy 3 x 4 –y 4 6 ×2 y 2 –x 4 –y 4 

𝜓 0 
𝑥𝑖 

0 1 0 2 x y 0 3 ×2 2 xy y 2 0 3 ×2 y y 3 4 ×3 12 xy 2 –4 ×3 

𝜓 0 
𝑦𝑖 

0 0 1 0 x 2 y 0 x 2 2 xy 3 y 2 x 3 3 xy 2 –4 y 3 12 ×2 y –4 y 3 

𝜀 0 
𝑥𝑥𝑖 

0 0 0 –2 z 0 0 –6 zx –2 zy 0 0 –6 zxy 0 –12 zx 2 12 zx 2 –12 zy 2 

𝜀 0 
𝑦𝑦𝑖 

0 0 0 0 0 –2 z 0 0 –2 zx –6 zy 0 –6 zxy 12 zy 2 12 zy 2 –12 zx 2 

2 𝜀 0 
𝑥𝑦𝑖 

0 0 0 0 –2 z 0 0 –4 zx –4 zy 0 –6 zx 2 –6 zy 2 0 –48 zxy 

𝜒0 
𝑥𝑥𝑖 

0 0 0 0 1 0 0 2 x 2 y 0 3 ×2 3 y 2 0 24 xy 

𝜒0 
𝑦𝑦𝑖 

0 0 0 0 –1 0 0 –2 x –2 y 0 –3 ×2 –3 y 2 0 –24 xy 

2 𝜒0 
𝑥𝑦𝑖 

0 0 0 –2 0 2 –6 x –2 y 2 x 6 y –6 xy 6 xy –12 y 2 –12 ×2 24 ×2 –24 y 2 
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bsence of the external couple force loads, it can be expressed in the

ollowing matrix form: 

Π𝑒 
𝑃 
= 

1 
2 ∫

ℎ 

2 

− ℎ 2 
∫Ω

(
𝜺 𝑇 𝝈 + 𝝌𝑇 𝐦 

)
d Ωd 𝑧 − ∫Ω 𝐮 𝑇 𝐟 d Ω − ∫

ℎ 

2 

− ℎ 2 
∫Γ 𝐮 

𝑇 𝐭 d Γd 𝑧 , (29)

n which z represents the plate thickness direction and varies from − 

ℎ 

2 to
ℎ 

2 ; Ω and Γ respectively denote the domain and boundary of the plate’s

id-surface ( z = 0); 𝜺 and 𝝌 are the strain and curvature produced by

he displacement u , while 𝝈 and m are the work-conjugated stress and

ouple stress; f and t are the external forces imposed on the plate’s top

urface and lateral boundaries. 

H ic in Eq. (28) is the additional energy produced by the interelement

ncompatibilities. As discussed previously, the generalized conforming

heory is an effective method to make the non-conforming displacement-

ased element meet the compatibility requirements in weak sense, in

hich the key idea is to ensure H ic → 0 as the mesh refined. Thereby,

he effects of H ic can be neglected for the sake of simplicity in the devel-

pment of the generalized conforming element models, whist the con-

ergence property can still be guaranteed. 

.2. The general element formulations 

In the generalized conforming Trefftz element formulations, the dis-

lacement interpolations are constructed at the base of the Trefftz func-

ions. With respect to the thin microplate element based on the modified

ouple stress theory, the transverse deflection field and the correspond-

ng plate rotation fields are initially approximated as the linear combi-

ation of k groups of the homogeneous Trefftz functions which are listed

n Table 1 with the addition of the particular solution part, as follows: 

𝑤 = 

𝑘 ∑
𝑖 =1 

𝑤 

0 
𝑖 
𝛼𝑖 + 𝑤 

∗ , 𝜓 𝑥 = 

𝑘 ∑
𝑖 =1 

𝜓 0 
𝑥𝑖 
𝛼𝑖 + 𝜓 ∗ 

𝑥 
, 𝜓 𝑦 = 

𝑘 ∑
𝑖 =1 

𝜓 0 
𝑦𝑖 
𝛼𝑖 + 𝜓 ∗ 

𝑦 
. (30)

It is worth to mention that k should be no less than the number

f the element’s DOFs. Accordingly, the displacement vector u can be

xpressed as 

𝐮 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑢 

𝑣 

𝑤 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 𝐔𝛂 + 𝐮 ∗ , (31)

n which 𝜶 is the coefficient vector 

= 

[
𝛼1 𝛼2 𝛼3 ... 𝛼𝑘 

]𝑇 
, (32)

hile the components of the matrix U are determined by the Trefftz

olutions listed in Table 1: 

𝐔 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
− 𝑧𝜓 0 

𝑥 1 − 𝑧𝜓 0 
𝑥 2 − 𝑧𝜓 0 

𝑥 3 ... − 𝑧𝜓 0 
𝑥𝑘 

− 𝑧𝜓 0 
𝑦 1 − 𝑧𝜓 0 

𝑦 2 − 𝑧𝜓 0 
𝑦 3 ... − 𝑧𝜓 0 

𝑦𝑘 

𝑤 

0 
1 𝑤 

0 
2 𝑤 

0 
3 ... 𝑤 

0 
𝑘 

⎤ ⎥ ⎥ ⎥ ⎦ 
, (33)
49 
Then, the strain and curvature vectors can be expressed in the similar

orm 

𝜺 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥𝑥 
𝜀 𝑦𝑦 
2 𝜀 𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 𝐄𝛂 + 𝜺 ∗ , (34)

𝝌 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜒𝑥𝑥 
𝜒𝑦𝑦 
2 𝜒𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ 
= X 𝛂 + 𝝌∗ , (35)

n which the matrices E and X are given by 

𝐄 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝜀 0 
𝑥𝑥 1 𝜀 0 

𝑥𝑥 2 𝜀 0 
𝑥𝑥 3 ... 𝜀 0 

𝑥𝑥𝑘 

𝜀 0 
𝑦𝑦 1 𝜀 0 

𝑦𝑦 2 𝜀 0 
𝑦𝑦 3 ... 𝜀 0 

𝑦𝑦𝑘 

2 𝜀 0 
𝑥𝑦 1 2 𝜀 0 

𝑥𝑦 2 2 𝜀 0 
𝑥𝑦 3 ... 2 𝜀 0 

𝑥𝑦𝑘 

⎤ ⎥ ⎥ ⎥ ⎦ 
, (36)

nd 

X = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝜒0 
𝑥𝑥 1 𝜒0 

𝑥𝑥 2 𝜒0 
𝑥𝑥 3 ... 𝜒0 

𝑥𝑥𝑘 

𝜒0 
𝑦𝑦 1 𝜒0 

𝑦𝑦 2 𝜒0 
𝑦𝑦 3 ... 𝜒0 

𝑦𝑦𝑘 

2 𝜒0 
𝑥𝑦 1 2 𝜒0 

𝑥𝑦 2 2 𝜒0 
𝑥𝑦 3 ... 2 𝜒0 

𝑥𝑦𝑘 

⎤ ⎥ ⎥ ⎥ ⎦ 
, (37)

here the detailed components can also be founded in Table 1 . When the

lement is subjected to an element-wise constant load q , the particular

olutions, the vectors u 

∗ , 𝜺 ∗ and 𝝌∗ , can be determined by Eqs. (24) ,

26) and (27) . 

Then, to get the relationship between the introduced unknowns

𝑖 , ( 𝑖 = 1 ∼ 𝑘 ) and the element nodal DOF vector q 

e , a proper set of

he generalized conforming conditions will be imposed to the above as-

umed displacement fields, and consequently the following expression

an be deduced: 

= 𝝀−1 ( 𝚲𝐪 𝑒 − H ) , (38)

n which the components of the matrices 𝝀, 𝚲 and H will be discussed

n details in Section 3.3 . 

Next, by substituting Eq. (38) back into Eqs. (31) , (34) and (35) , we

an obtain 

 = 𝐍 𝑢 𝐪 𝑒 + 𝐍 

∗ 
𝑢 
, 𝐍 𝑢 = 𝐔 𝝀−1 𝚲, 𝐍 

∗ 
𝑢 
= 𝐮 ∗ − 𝐔 𝝀−1 H , (39)

nd 

 = 𝐁 𝜀 𝐪 𝑒 + 𝐁 

∗ 
𝜀 
, 𝐁 𝜀 = 𝐄 𝝀−1 𝚲, 𝐁 

∗ 
𝜀 
= 𝜺 ∗ − 𝐄 𝝀−1 H , (40)

= 𝐁 𝜒𝐪 𝑒 + 𝐁 

∗ 
𝜒
, 𝐁 𝜒 = X 𝝀−1 𝚲, 𝐁 

∗ 
𝜒
= 𝝌∗ − X 𝝀−1 H . (41)

The stress 𝝈 and couple stress m are calculated using the constitutive

quations: 

= 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎𝑥𝑥 
𝜎𝑦𝑦 
𝜎𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 𝐃 𝜀 𝜺 , 𝐃 𝜀 = 

⎡ ⎢ ⎢ ⎣ 
𝐸∕ 

(
1 − 𝜈2 

)
𝐸𝜈∕ 

(
1 − 𝜈2 

)
0 

𝐸𝜈∕ 
(
1 − 𝜈2 

)
𝐸∕ 

(
1 − 𝜈2 

)
0 

0 0 𝐺 

⎤ ⎥ ⎥ ⎦ , (42)

 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑚 𝑥𝑥 

𝑚 𝑦𝑦 

𝑚 𝑥𝑦 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 𝐃 𝜒𝝌 , 𝐃 𝜒 = 

⎡ ⎢ ⎢ ⎣ 
2 𝐺 𝑙 2 0 0 
0 2 𝐺 𝑙 2 0 
0 0 𝐺 𝑙 2 

⎤ ⎥ ⎥ ⎦ . (43)



Y. Shang, Y.-H. Mao, S. Cen et al. Engineering Analysis with Boundary Elements 125 (2021) 46–58 

Fig. 2. The 4-node generalizing conforming microplate element. 
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Moreover, the corresponding bending moments and couple moments

f the thin microplate are defined by 

 𝑥𝑥 = ∫
ℎ 

2 

− ℎ 2 

𝑧 𝜎𝑥𝑥 d 𝑧 , 𝑀 𝑦𝑦 = ∫
ℎ 

2 

− ℎ 2 

𝑧 𝜎𝑦𝑦 d 𝑧 , 𝑀 𝑥𝑦 = ∫
ℎ 

2 

− ℎ 2 

𝑧 𝜎𝑥𝑦 d 𝑧 , (44)

 𝑥𝑥 = ∫
ℎ 

2 

− ℎ 2 

𝑚 𝑥𝑥 d 𝑧 , 𝑌 𝑦𝑦 = ∫
ℎ 

2 

− ℎ 2 

𝑚 𝑦𝑦 d 𝑧 , 𝑌 𝑥𝑦 = ∫
ℎ 

2 

− ℎ 2 

𝑚 𝑥𝑦 d 𝑧 . (45)

Finally, by substituting Eqs. (39) –(43) back into Eq. (29) and apply-

ng the stationary condition of functional, we can obtain the element

tiffness matrix 

 

𝑒 = ∫
ℎ 

2 

− ℎ 2 
∫Ω

(
𝐁 𝜀 

𝑇 𝐃 𝜀 𝐁 𝜀 + 𝐁 𝜒
𝑇 𝐃 𝜒𝐁 𝜒

)
d Ωd 𝑧 , (46)

nd the element nodal equivalent load vector 

 

𝑒 = ∫Ω 𝐍 𝑢 
𝑇 𝐟 d Ω + ∫

ℎ 

2 

− ℎ 2 
∫Γ 𝐍 𝑢 

𝑇 𝐭 d Γd 𝑧 

− ∫
ℎ 

2 

− ℎ 2 
∫Ω

(
𝐁 𝜀 

𝑇 𝐃 𝜀 𝐁 

∗ 
𝜀 
+ 𝐁 𝜒

𝑇 𝐃 𝜒𝐁 

∗ 
𝜒

)
d Ωd 𝑧 , (47) 

n which N u is given by Eq. (39) . 

.3. The new 4-node thin microplate element 

The schematic representation of the new quadrilateral 4-node 12-

OF thin microplate element is illustrated in Fig. 2 , in which 1~4 are the

lement’s four nodes whilst the mid-side points ( M 1 , M 2 , M 3 , M 4 ) and the

auss points ( A 1 , B 1 , A 2 , B 2 , A 3 , B 3 , A 4 , B 4 ) with the Gauss parametric co-

rdinates 𝜉 = ± 

√
3 ∕3 are for imposing the generalized conforming con-

itions. The element nodal DOF vector can be given by 

 

𝑒 = 

[
𝑤 1 𝜓 𝑥 1 𝜓 𝑦 1 𝑤 2 𝜓 𝑥 2 𝜓 𝑦 2 𝑤 3 𝜓 𝑥 3 𝜓 𝑦 3 𝑤 4 𝜓 𝑥 4 𝜓 𝑦 4 

]𝑇 
.

(48) 

To ensure the fourth-order completeness of the deflection field in

artesian coordinates, fourteen groups of the homogeneous Trefftz func-

ions as listed in Table 1 are employed for constructing the new element,

.e., k in Eq. (30) is equal to 14. Accordingly, fourteen generalized con-

orming conditions are used for obtaining Eq. (38) in this new element.

hese fourteen generalized conforming conditions can be divided into

hree groups. First, the transverse deflections calculated by Eq. (30) at

he element’s four nodes should be equal to the corresponding nodal

eflection DOF: 

𝑤 

(
𝑥 𝑖 , 𝑦 𝑖 

)
= 𝑤 𝑖 , ( 𝑖 = 1 ∼ 4 ) , (49)

n which ( x i ,y i ) is the Cartesian coordinates of the node i . 

Second, at the eight Gauss points ( A 1 , B 1 , A 2 , B 2 , A 3 , B 3 , A 4 , B 4 ) as

hown in Fig. 2 , the normal rotations along the edges obtained from

q. (30) should be equal to the ones which are interpolated by 

𝜓 𝑛𝑖𝑗 = ( 1 − 𝑠 ) 𝜓 𝑛𝑖 + 𝑠 𝜓 𝑛𝑗 , ( 𝑖𝑗 = 12 , 23 , 34 , 41 ) , (50)
50 
here the local coordinate s is determined from the Gauss parametric

oordinate 𝜉 using 𝑠 = ( 1 + 𝜉) ∕2 ; 𝜓 ni and 𝜓 nj are the nodal normal ro-

ations along the element edge ij that are transformed from the nodal

OFs. 

Finally, the following two compatibility conditions for deflections at

he element’s mid-side points are considered: 

𝑤 ( 𝑥 𝑀 1 
, 𝑦 𝑀 1 

) + 𝑤 ( 𝑥 𝑀 3 
, 𝑦 𝑀 3 

) = 𝑤 𝑀 1 
+ 𝑤 𝑀 3 

, (51)

 ( 𝑥 𝑀 2 
, 𝑦 𝑀 2 

) + 𝑤 ( 𝑥 𝑀 4 
, 𝑦 𝑀 4 

) = 𝑤 𝑀 2 
+ 𝑤 𝑀 4 

, (52)

n which 𝑤 ( 𝑥 𝑀𝑖 , 𝑦 𝑀𝑖 ) , ( 𝑖 = 1 ∼ 4 ) are also calculated by substituting the

artesian coordinates into Eq. (30) whilst 𝑤 𝑀𝑖 , ( 𝑖 = 1 ∼ 4 ) are deter-

ined using the following equation which is deduced from the locking-

ree Timoshenko’s beam function by suppressing the transverse shear

eformations [46] : 

 𝑀𝑖 = 

1 
2 
𝑤 𝑖 + 

1 
2 
𝑤 𝑗 + 

𝑙 𝑖𝑗 

8 
𝜓 𝑠𝑖 − 

𝑙 𝑖𝑗 

8 
𝜓 𝑠𝑗 , ( 𝑖𝑗 = 12 , 23 , 34 , 41 ) , (53)

here w i and w j are the nodal deflection DOFs; 𝜓 si and 𝜓 sj are the nodal

angential rotations along the element edge ij which are derived from

he nodal rotation DOFs; l ij is the edge length. 

According to the above mentioned fourteen generalized conforming

onditions, the matrix 𝝀 in Eq. (38) can be expressed as 

= 

⎡ ⎢ ⎢ ⎣ 
𝝀𝑤 

𝝀𝜓 

𝝀𝑤 mid 

⎤ ⎥ ⎥ ⎦ , (54)

n which 

𝑤 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑤 

0 
1 
(
𝑥 1 , 𝑦 1 

)
𝑤 

0 
2 
(
𝑥 1 , 𝑦 1 

)
... 𝑤 

0 
14 
(
𝑥 1 , 𝑦 1 

)
𝑤 

0 
1 
(
𝑥 2 , 𝑦 2 

)
𝑤 

0 
2 
(
𝑥 2 , 𝑦 2 

)
... 𝑤 

0 
14 
(
𝑥 2 , 𝑦 2 

)
𝑤 

0 
1 
(
𝑥 3 , 𝑦 3 

)
𝑤 

0 
2 
(
𝑥 3 , 𝑦 3 

)
... 𝑤 

0 
14 
(
𝑥 3 , 𝑦 3 

)
𝑤 

0 
1 
(
𝑥 4 , 𝑦 4 

)
𝑤 

0 
2 
(
𝑥 4 , 𝑦 4 

)
... 𝑤 

0 
14 
(
𝑥 4 , 𝑦 4 

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (55)

𝑤 
mid = 

⎡ ⎢ ⎢ ⎣ 
𝑤 

0 
1 

(
𝑥 𝑀 1 

, 𝑦 𝑀 1 

)
+ 𝑤 

0 
1 

(
𝑥 𝑀 3 

, 𝑦 𝑀 3 

)
... 𝑤 

0 
14 

(
𝑥 𝑀 1 

, 𝑦 𝑀 1 

)
+ 𝑤 

0 
14 

(
𝑥 𝑀 3 

, 𝑦 𝑀 3 

)
𝑤 

0 
1 

(
𝑥 𝑀 2 

, 𝑦 𝑀 2 

)
+ 𝑤 

0 
1 

(
𝑥 𝑀 4 

, 𝑦 𝑀 4 

)
... 𝑤 

0 
14 

(
𝑥 𝑀 2 

, 𝑦 𝑀 2 

)
+ 𝑤 

0 
14 

(
𝑥 𝑀 4 

, 𝑦 𝑀 4 

)⎤ ⎥ ⎥ ⎦ , 
(56) 

𝜓 = 𝐓 𝑛 𝚽, (57)

ith 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜓 

0 
𝑥 1 

(
𝑥 𝐴 1 , 𝑦 𝐴 1 

)
𝜓 

0 
𝑥 2 

(
𝑥 𝐴 1 , 𝑦 𝐴 1 

)
... 𝜓 

0 
𝑥 14 

(
𝑥 𝐴 1 , 𝑦 𝐴 1 

)
𝜓 

0 
𝑦 1 

(
𝑥 𝐴 1 , 𝑦 𝐴 1 

)
𝜓 

0 
𝑦 2 

(
𝑥 𝐴 1 , 𝑦 𝐴 1 

)
... 𝜓 

0 
𝑦 14 

(
𝑥 𝐴 1 , 𝑦 𝐴 1 

)
... ... ... 

𝜓 

0 
𝑥 1 

(
𝑥 𝐵4 , 𝑦 𝐵4 

)
𝜓 

0 
𝑥 2 

(
𝑥 𝐵4 , 𝑦 𝐵4 

)
... 𝜓 

0 
𝑥 14 

(
𝑥 𝐵4 , 𝑦 𝐵4 

)
𝜓 

0 
𝑦 1 

(
𝑥 𝐵4 , 𝑦 𝐵4 

)
𝜓 

0 
𝑦 2 

(
𝑥 𝐵4 , 𝑦 𝐵4 

)
... 𝜓 

0 
𝑦 14 

(
𝑥 𝐵4 , 𝑦 𝐵4 

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (58)

 𝑛 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐓 1 

𝐓 2 

𝐓 3 

𝐓 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 𝐓 𝑖 = 

⎡ ⎢ ⎢ ⎣ 
− 

𝑦 𝑖𝑗 

𝑙 𝑖𝑗 

𝑥 𝑖𝑗 

𝑙 𝑖𝑗 

− 

𝑦 𝑖𝑗 

𝑙 𝑖𝑗 

𝑥 𝑖𝑗 

𝑙 𝑖𝑗 

⎤ ⎥ ⎥ ⎦ , 

( 𝑖𝑗 = 12 , 23 , 34 , 41 ) , (59) 

here x ij = x i − x j and y ij = y i − y j . 

Besides, the matrix H in Eq. (38) is given by 

H = 

⎡ ⎢ ⎢ ⎣ 
H 

𝑤 

H 

𝜓 

H 

𝑤 

⎤ ⎥ ⎥ ⎦ , (60)
mid 
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Fig. 3. Two distorted meshes for the patch test (unit: mm). 

Fig. 4. The model and basic mesh 2 × 2 of the square thin microplate. 
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n which 

H 

𝑤 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑤 

∗ (𝑥 1 , 𝑦 1 )
𝑤 

∗ (𝑥 2 , 𝑦 2 )
𝑤 

∗ (𝑥 3 , 𝑦 3 )
𝑤 

∗ (𝑥 4 , 𝑦 4 )
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (61)

H 

𝑤 
mid = 

⎡ ⎢ ⎢ ⎣ 
𝑤 

∗ 
(
𝑥 𝑀 1 

, 𝑦 𝑀 1 

)
+ 𝑤 

∗ 
(
𝑥 𝑀 3 

, 𝑦 𝑀 3 

)
𝑤 

∗ 
(
𝑥 𝑀 2 

, 𝑦 𝑀 2 

)
+ 𝑤 

∗ 
(
𝑥 𝑀 4 

, 𝑦 𝑀 4 

)⎤ ⎥ ⎥ ⎦ , (62)

H 

𝜓 = 𝐓 𝑛 𝚽∗ , (63)

ith 

𝚽∗ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜓 ∗ 
𝑥 

(
𝑥 𝐴 1 , 𝑦 𝐴 1 

)
𝜓 ∗ 
𝑦 

(
𝑥 𝐴 1 , 𝑦 𝐴 1 

)
... 

𝜓 ∗ 
𝑥 

(
𝑥 𝐵4 , 𝑦 𝐵4 

)
𝜓 ∗ 
𝑦 

(
𝑥 𝐵4 , 𝑦 𝐵4 

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (64)

The matrix 𝚲 in Eq. (38) can also be divided into three parts: 

𝚲 = 

⎡ ⎢ ⎢ ⎣ 
𝚲𝑤 

𝚲𝜓 

𝚲𝑤 
mid 

⎤ ⎥ ⎥ ⎦ , (65)

n which 

𝚲𝑤 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 
1 0 0 

1 0 0 
1 0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (66)

𝑤 
mid = 

⎡ ⎢ ⎢ ⎣ 
1 
2 − 

𝑥 12 
8 − 

𝑦 12 
8 

1 
2 

𝑥 12 
8 

𝑦 12 
8 

1 
2 − 

𝑥 34 
8 − 

𝑦 34 
8 

1 
2 

𝑥 34 
8 

𝑦 34 
8 

1 
2 

𝑥 41 
8 

𝑦 41 
8 

1 
2 − 

𝑥 23 
8 − 

𝑦 23 
8 

1 
2 

𝑥 23 
8 

𝑦 23 
8 

1 
2 − 

𝑥 41 
8 − 

𝑦 41 
8 

⎤ ⎥ ⎥ ⎦ , 
(67) 

nd 𝚲𝜓 has the following expression 

𝚲𝜓 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝚲𝜓 

11 𝚲𝜓 

12 
𝚲𝜓 

22 𝚲𝜓 

23 
𝚲𝜓 

33 𝚲𝜓 

34 
𝚲𝜓 

41 𝚲𝜓 

44 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (68)

ith 

𝜓 

𝑖𝑖 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 − 

1+ 1∕ 
√
3 

2 𝑙 𝑖𝑗 
𝑦 𝑖𝑗 

1+ 1∕ 
√
3 

2 𝑙 𝑖𝑗 
𝑥 𝑖𝑗 

0 − 

1− 1∕ 
√
3 

2 𝑙 𝑖𝑗 
𝑦 𝑖𝑗 

1− 1∕ 
√
3 

2 𝑙 𝑖𝑗 
𝑥 𝑖𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ 
, 

𝜓 

𝑖𝑗 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 − 

1+ 1∕ 
√
3 

2 𝑙 𝑖𝑗 
𝑦 𝑖𝑗 

1+ 1∕ 
√
3 

2 𝑙 𝑖𝑗 
𝑥 𝑖𝑗 

0 − 

1− 1∕ 
√
3 

2 𝑙 𝑖𝑗 
𝑦 𝑖𝑗 

1− 1∕ 
√
3 

2 𝑙 𝑖𝑗 
𝑥 𝑖𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ 
, (69) 

here ij = 12, 23, 34, 41. 

Now that the detailed expressions of the related matrices and vectors

n Eqs. (46) and (47) have been determined, the final element formu-

ation of the new generalized conforming Trefftz-type 4-node plate ele-

ent based on the couple stress theory, which is named as GCTP4-CS,

s obtained. In this paper, the proposed element is implemented in an

n-house computer code and a standard 4 × 4 Gauss quadrature scheme

s employed for calculating the integrals. 

. Numerical examples 

The newly developed plate element is applied to several numerical

enchmarks for validating its capabilities. Due to the absence of the ana-

ytical solutions of size-dependent plate bending problems, the tests are

rst analyzed based on the classical elasticity in which the analytical
51 
eference solutions are available in [47–49] for assessing the element’s

onvergence properties. Then, the tests are evaluated again in the con-

ext of the modified couple stress elasticity for checking the element’s

ffectiveness in simulating the size-dependent bending behaviors of mi-

roplate structures, in that the numerical results obtained by using the

efined meshes are employed as the reference values. 

.1. The patch test 

Fig. 3 illustrates the typical meshes used for the patch test which

ontain severely distorted elements whose shapes degenerate into trian-

ular or concave quadrilateral. The plate thickness is h = 0.02 mm and

he material properties are defined as E = 1.092Gpa, 𝜈= 0.3 and l = 20 𝜇m.

To validate the convergence property of the new element, the fol-

owing deformation mode is considered: 

𝑤 = 1 + 𝑥 + 𝑦 + 𝑥 2 + 𝑦 2 + 𝑥𝑦, 𝜓 𝑥 = 1 + 2 𝑥 + 𝑦, 𝜓 𝑦 = 1 + 2 𝑦 + 𝑥, (70)

n which both the bending moments and couple bending moments are

onstant. The deflections and rotations at the outer nodes 1~4 calcu-

ated by Eq. (70) are imposed to the rectangular plate as the prescribed

oundary conditions, while the values at the inner nodes 5~8 are mon-

tored. The numerical results given in Table 2 show that, no matter the

lements’ shapes are convex quadrilateral, concave quadrilateral or de-

enerated trilateral, the exact results can always be delivered, demon-

trating that the convergence can be guaranteed. 

.2. The square microplate 

As shown in Fig. 4 , this test involves the size-dependent bending

ehavior of a thin square microplate in which the four edges are all

lamped or simply supported. First, the plate subjected to a uniformly
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Fig. 5. The convergences of the deflections 

and bending moments at the central point of 

the square plate subjected to a uniformly dis- 

tributed load (Clamped case). 

Fig. 6. The convergences of the deflections 

and bending moments at the central point of 

the square plate subjected to a uniformly dis- 

tributed load (Simply supported case). 

Fig. 7. The distributions of the deflections and 

bending moments along the x -axis of the square 

plate subjected to a uniformly distributed load 

(Clamped case). 
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istributed load q is analyzed, and only one quarter of the plate is mod-

led because of symmetry. The deflections and bending moments for

ve different ratios of the material length scale parameter to the plate

hickness ( l / h = 0, 0.1, 0.2, 0.3, 0.4) calculated at the central point are

ummarized in Figs. 5 and 6 , while their distributions along the x -axis

alculated using the mesh 16 × 16 are illustrated in Figs. 7 and 8 . Ad-

itionally, the square plate under a central concentrated load Q is also

onsidered, and the numerical results of the deflections are given in

igs. 9 and 10 . It is noted that the analytical reference solutions for the

ase l / h = 0 which corresponds to the classical elasticity are provided

n [47] , whilst for the other cases, the overkill numerical solutions are

mployed as the reference values. 

One can clearly see that the proposed new element exhibits good

onvergence and effectively captures the size effect. Besides, it can be

s  

52 
bserved that the results of the displacements have better convergence

ates than that of the stresses. Moreover, the material length scale pa-

ameter does not have obvious effects on the convergence rates of the

isplacements, but has some influences on the stress results. As the ma-

erial length scale parameter decreases, the numerical results of the

tresses converge more rapidly. 

.3. The test for sensitivity to mesh distortions 

To assess the new element’s sensitivity to the gross mesh distor-

ion, the clamped square plate subjected to a uniformly distributed

oad q in previous test is analyzed once again by using two differ-

nt coarse meshes which consist of only 2 × 2 distorted elements. As

hown in Fig. 11 , in these two meshes, the central mesh node is moved
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Fig. 8. The distributions of the deflections and 

bending moments along the x -axis of the square 

plate subjected to a uniformly distributed load 

(Simply supported case). 

Fig. 9. The convergences of the deflections at 

the central point of the square plate subjected 

to a central concentrated load. 

Fig. 10. The distributions of the deflections 

along the x -axis of the square plate subjected 

to a central concentrated load. 

Fig. 11. Two typical distorted meshes 2 × 2 for the sensitivity test to distortion. 
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53 
espectively along the diagonal to the corner and vertically to the edge.

ig. 12 depicts the variation of the central deflections versus the distor-

ion parameter Δ in which the results are normalized by w Δ = 0 . The max-

mum deviation is less than 5%, revealing that the new element has quite

ood tolerance to the mesh distortion. Moreover, the numerical results

lso show that the material length scale parameter does not have signif-

cant influences on the new element’s sensitivity to the mesh distortion.

.4. The circular microplate 

Fig. 13 shows a clamped circular thin microplate subjected to a uni-

ormly distributed load q or a central concentrated load Q [47] . Due

o symmetry, only one quarter of the plate is modeled. The model is

ivided into three parts, and then each part is successively meshed by
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Fig. 12. The variations of the normalized de- 

flections versus the distortion parameter. 

Fig. 13. The typical meshes for the circular thin plate. 
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Fig. 15. The typical mesh 3 × 2 × 2 for the equilateral triangular plate. 
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r

sing 1 × 1, 2 × 2, 4 × 4, 8 × 8 elements. The non-dimensional central de-

ections and bending moments of the plates for different material length

cale parameters are listed in Tables 3 and 4 . Additionally, the distribu-

ions of the deflections along the x -axis are given in Fig. 14 . This test

eveals once again that the new element has good numerical accuracy

nd can simulate the size-dependent mechanical behaviors well. 

.5. The equilateral triangular plate 

Fig. 15 depicts the simply supported equilateral triangular thin plate

ubjected to a uniformly distributed load q or a central concentrated

oad Q in which the point C is the plate’s centroid. The computations
54 
re operated by successively refining the basic mesh shown in Fig. 15 .

he numerical results of the deflections calculated at the centroid C are

ummarized in Fig. 16 , in which the reference values for the case l / h = 0

re obtained from [47] whilst that for the other cases are determined

y the overkill numerical results. In addition, the distributions of deflec-

ions along the y -axis calculated by using 192 elements are presented

n Fig. 17 . It can be observed that the new element can also converge

apidly and capture the size effects well in irregular shapes. 
Fig. 14. The distributions of deflections along 

the x -axis of the clamped circular plate. 
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Fig. 16. The convergences of the deflections at 

the centroid of the equilateral triangular plate. 

Fig. 17. The distributions of deflections along 

the y -axis of the equilateral triangular plate. 

Table 2 

The results of the patch test. 

Node Mesh A Mesh B 

Exact Numerical results Exact Numerical results 

w (mm) 125 125.0 125 125.0 

5 𝜓 x 21 21.0 21 21.0 

𝜓 y 17 17.0 17 17.0 

w (mm) 691 691.0 673 673.0 

6 𝜓 x 50 50.0 48 48.0 

𝜓 y 39 39.0 41 41.0 

w (mm) 1715 1715.0 1715 1715.0 

7 𝜓 x 79 79.0 79 79.0 

𝜓 y 61 61.0 61 61.0 

w (mm) 707 707.0 707 707.0 

8 𝜓 x 47 47.0 47 47.0 

𝜓 y 45 45.0 45 45.0 

4
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Table 3 

The results of the clamped circular plate subjected to a uniformly distributed 

load. 

Mesh 3 × 1 × 1 3 × 2 × 2 3 × 4 × 4 3 × 8 × 8 Reference 

The central deflections 𝑤 ∕ ( 𝑞 𝐿 4 ∕ 100 𝐷 ) 
l / h = 0 0.08032 0.09287 0.09642 0.09734 0.0977 [47] 

l / h = 0.1 0.07710 0.08913 0.09253 0.09342 

l / h = 0.2 0.06885 0.07952 0.08255 0.08334 

l / h = 0.3 0.05843 0.06741 0.06997 0.07064 

l / h = 0.4 0.04821 0.05556 0.05767 0.05822 

The central bending moments 𝑀 𝑟 ∕ ( 𝑞 𝐿 2 ∕ 10 ) 
l / h = 0 0.18016 0.19782 0.20184 0.20280 0.2031 [47] 

l / h = 0.1 0.17230 0.18969 0.19366 0.19461 

l / h = 0.2 0.15223 0.16885 0.17267 0.17359 

l / h = 0.3 0.12719 0.14265 0.14623 0.14711 

l / h = 0.4 0.10307 0.11712 0.12040 0.12121 

Table 4 

The results of the clamped circular plate subjected to a central concentrated 

load. 

Mesh 3 × 1 × 1 3 × 2 × 2 3 × 4 × 4 3 × 8 × 8 Reference 

The central deflections 𝑤 ∕ ( 𝑄 𝐿 2 ∕ 100 𝐷 ) 
l / h = 0 0.42829 0.47876 0.49263 0.49617 0.4974 [47] 

l / h = 0.1 0.41124 0.45949 0.47278 0.47617 

l / h = 0.2 0.36735 0.41000 0.42179 0.42480 

l / h = 0.3 0.31189 0.34759 0.35752 0.36007 

l / h = 0.4 0.25748 0.28654 0.29467 0.29676 
.6. The skew plate 

As shown in Fig. 18 , this test is concerned with the bending behav-

ors of rhombic plates subjected to a uniformly distributed load q for fur-

her checking the new element’s performance in skew shapes. First, the

0° thin plate in which the top and bottom edges are simply supported

hereas the other two edges are free, which is originally proposed in

48] , is investigated. Second, the 30° thin plate with all edges simply

upported, which is a more critical case because of the singularity of

ending moment at the obtuse corner [49] , is analyzed. The transverse

eflections and bending moments calculated at the node C of the two
55 
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Fig. 18. The skew thin plate subjected to a uniformly distributed load. 

Table 5 

The results of the 60° Razzaque’s skew plate subjected to a uniformly 

distributed load. 

Mesh 2 × 2 4 × 4 8 × 8 16 × 16 Reference 

The central deflections 𝑤 ∕ ( 𝑞 𝐿 4 ∕ 100 𝐷 ) 
l / h = 0 0.76245 0.78859 0.79078 0.79107 0.7945 [48] 

l / h = 0.1 0.72553 0.74708 0.74893 0.74919 

l / h = 0.2 0.64105 0.65358 0.65474 0.65495 

l / h = 0.3 0.54721 0.55202 0.55256 0.55269 

l / h = 0.4 0.46148 0.46119 0.46122 0.46127 

The central bending moments 𝑀 𝑦 ∕ ( 𝑞 𝐿 2 ∕ 10 ) 
l / h = 0 0.93976 0.97325 0.96075 0.96015 0.9589 [48] 

l / h = 0.1 0.90267 0.92799 0.91616 0.91554 

l / h = 0.2 0.81290 0.82274 0.81255 0.81195 

l / h = 0.3 0.70526 0.70316 0.69483 0.69431 

l / h = 0.4 0.60061 0.59198 0.58526 0.58484 
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Table 6 

The results of the 30° Morley’s skew plate subjected to a uniformly dis- 

tributed load. 

Mesh 4 × 4 8 × 8 16 × 16 32 × 32 Reference 

The central deflections 𝑤 ∕ ( 𝑞 𝐿 4 ∕ 100 𝐷 ) 
l / h = 0 0.04583 0.04262 0.04193 0.04160 0.0408 [49] 

l / h = 0.1 0.04428 0.04108 0.04037 0.04001 

l / h = 0.2 0.04021 0.03705 0.03631 0.03592 

l / h = 0.3 0.03490 0.031885 0.03112 0.03071 

l / h = 0.4 0.02950 0.02670 0.02596 0.02554 

The central maximum principle bending moments 𝑀 max ∕ ( 𝑞 𝐿 2 ∕ 10 ) 
l / h = 0 0.21711 0.19001 0.19417 0.19305 0.191 [49] 

l / h = 0.1 0.20963 0.18272 0.18668 0.18553 

l / h = 0.2 0.19008 0.16390 0.16736 0.16616 

l / h = 0.3 0.16467 0.13998 0.14282 0.14158 

l / h = 0.4 0.13887 0.11631 0.11856 0.11736 
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ment can always be guaranteed. 
hombic plates are respectively summarized in Tables 5 and 6 . Besides,

he distributions of the deflections along the path EF of these two cases

re given in Fig. 19 . One can observe that the new element produces

xcellent results for both deflection and stress. 

. Conclusions 

This work proposes a novel quadrilateral 4-node 12-DOF general-

zed conforming plate element for size-dependent bending analysis of

icroplate structures in the context of the modified couple stress the-

ry. The new element is constructed via two main steps. Firstly, the

refftz functions that are derived by introducing the thin plate bend-

ng assumptions into the three-dimensional governing equations of the

odified couple stress elasticity are adopted as the basis functions for

ormulating the element’s deflection and rotation fields. Afterwards, the
56 
eneralized conforming theory is employed to meet the interelement

ompatibility requirements in weak sense for ensuring the convergence.

he proposed new displacement-based plate element has the following

haracteristics: 

i) The new plate element is a kind of limiting conforming element that

performs like non-conforming models on coarse meshes but tends to

be conforming with the mesh refinement. As a result, the difficul-

ties in interpolation caused by the higher-order continuity require-

ments are effectively circumvented. Since the new quadrilateral 4-

node element still uses only three DOFs per node, it can be readily

incorporated into the commonly available finite element program

frameworks for practical engineering applications. 

ii) Different with the hybrid-Trefftz elements which also adopt the Tr-

efftz functions as the basis functions for interpolations, the new ele-

ment is a displacement-only model that is directly derived from the

potential energy principle. Thus, the new element can be extended

to the dynamic cases and the geometric nonlinear cases more easily.

ii) The numerical tests prove that the new element can efficiently pre-

dict the size-dependent bending responses of the thin microplate

structures, exhibiting satisfactory numerical accuracy and high tol-

erance to the gross mesh distortion. Besides, it can also reproduce the

results of the classical Kirchhoff plate model when the plate thickness

is far greater than the material length scale parameter. In particular,

the numerical results reveal that the element can always strictly pass

the patch test no matter the element’s shape is convex quadrilateral,

concave quadrilateral or degenerated trilateral, demonstrating that

the convergence property of the new generalized conforming ele-
Fig. 19. The distributions of deflections along 

the path EF of the skew plates. 
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ppendix 

In this section, the derivations of the Trefftz solutions of Eq. (22) are

riefly discussed. 

It can be easily proven that, the monomials of degree zero (1), one

 x, y ), two ( x 2 , xy, y 2 ) and three ( x 3 , x 2 y, xy 2 , y 3 ), i.e. the first ten

unctions listed in Table 1 , can automatically satisfy Eq. (22) which is a

ourth-order differential equation. Thus, each of them can be employed

s the Trefftz solution of Eq. (22) . 

To derive the linearly independent Trefftz functions of degree four,

he following function which is the linear combination of the monomials

 x 4 , x 3 y, x 2 y 2 , xy 3 , y 4 ) is considered: 

𝑤 = 𝑎 1 𝑥 
4 + 𝑎 2 𝑥 

3 𝑦 + 𝑎 3 𝑥 
2 𝑦 2 + 𝑎 4 𝑥 𝑦 

3 + 𝑎 5 𝑦 
4 , (A1)

n that a 1 , a 2 , a 3 , a 4 , a 5 are the coefficients. By substituting it into

q. (22) , the coming relation is delivered: 

24 𝑎 1 + 8 𝑎 3 + 24 𝑎 5 = 0 . (A2)

Then, we can obtain 

𝑎 3 = −3 𝑎 1 − 3 𝑎 5 . (A3)

Next, substitution of Eq. (A3) back into Eq. (A1) yields 

𝑤 = 𝑎 1 
(
𝑥 4 − 3 𝑥 2 𝑦 2 

)
+ 𝑎 2 𝑥 

3 𝑦 + 𝑎 4 𝑥 𝑦 
3 + 𝑎 5 

(
𝑦 4 − 3 𝑥 2 𝑦 2 

)
. (A4)

Considering the fact that a 1 , a 2 , a 4 , a 5 are the arbitrary undeter-

ined coefficients, Eq. (22) has four linearly independent Trefftz func-

ions of degree four, i.e. x 4 − 3 x 2 y 2 , x 3 y, xy 3 and y 4 − 3 x 2 y 2 . 

Finally, to make the physical implications of the corresponding rota-

ions and strains’ expressions more intuitive, the polynomials x 4 − 3 x 2 y 2 

nd y 4 − 3 x 2 y 2 are further replaced by their linear combinations in this

ork, without the loss of completeness and linear independence: (
𝑥 4 − 3 𝑥 2 𝑦 2 

)
− 

(
𝑦 4 − 3 𝑥 2 𝑦 2 

)
= 𝑥 4 − 𝑦 4 , (A5)

nd 

− 

(
𝑥 4 − 3 𝑥 2 𝑦 2 

)
− 

(
𝑦 4 − 3 𝑥 2 𝑦 2 

)
= 6 𝑥 2 𝑦 2 − 𝑥 4 − 𝑦 4 . (A6)
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