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ABSTRACT— The optimal design of broadband switchingprocess, and a simple method is presented for estimating the
systems depends on an understanding of the statistical nature of fawametel. In section 3, the MLEs fom andf3 are derived,
broadband traffic. An important practical problem isand their mean and variance are found. The MLEs are shown
characterization of the network traffic by fitting stochastic models t&y be unbiased, consistent, and asymptotically normal.
actual traffic measurements. This paper studies the problem gfection 4 presents numerical results that compare the

characterization of ATM cell traffic by maximum likelihoodperformance of the MLEs with the method of moment
estimation of the commonly used Markov on-off model. Thaatching.

maximum likelihood estimators (MLEs) and their probability

distribution function are derived. The MLEs are shown to be 1. M ARKOV ON-OFF MODEL

unbiased, consistent, and asymptotically normal. Maximum

likelihood estimation is compared numerically with the method gk. Model Parameters

moment matching for a simulated on-off packet trace, which |n the model, active periods alternate with idle periods
indicate that the MLEs result in smaller variance and betteaccording to a continuous-time Markov chain. Active periods

accuracy than moment matching. are exponentially distributed with meam1and idle periods
are exponentially distributed with meaf3.1During an active
|. INTRODUCTION period, packets are generated at regular periodB &We

assume that an active period typically consists of multiple

The optimal design of broadband switching systemgonsecutive packetsa{l <1) which is the case of practical
depends on an understanding of the statistical nature of tagerest.

broadband traffic. Typically, stochastic models are assumedror estimation, the on-off source is more conveniently
for traffic sources, and queueing analysis or simulations ajgewed as a renewal process with interarrival time
conducted to evaluate network performance. Many stochasgjgtribution given by

models have been proposed for broadband traffic [1]. A F(t) =[1-aTe P DJut - T) 1)

practical issue in traffic modeling and performanc%vhereu(t)isthe unit step function [3]

evaluation is the validity of any assumed stochastic traffic A traffic trace is assumed to consist of a set of measured
models. There has been relatively less work on statistical ) . ;
cket arrival timeqa,,a,,...,a,}, or equivalently, a set of

methods to fit stochastic models to actual traffi®?
measurements taken at the sources or points withinpacket interarrival time%tl,...,tN} wheret, =a, —a,,. The

broadband network. _ _._given traffic trace is assumed to be free of jitter; in practice,

The simple Markov on-off traffic model has been widelyhhysical transmission layer factors may cause small random
used for characterization of packet speech and data sourgggiations in the packet arrival times that would complicate
[1-3], and has served as the basis for stochastic fluje problem of model fitting. The measured interarrival times
approximations [4,5]. In the model, active periods alternatg, } are used as the basis for estimating the on-off
with idle periods according to a continuous-time Markowt *" /'™
chain. Active periods are exponentially distributed with meafiiode! parameterst, 8, andT.
1/a, and idle periods are exponentially distributed with me L .
1/B. During an active period, packets are generated at regufyrEStimation of T if Unknown _ _
periods ofT. A If T is not knowna priori, a natural estlmatorAfoT is

This paper investigates the method of maximum likelihood = min(t,,...,ty). It can be easily shown thal is a
estimation to infer the parameters of the Markov on-offonsistent but biased estimator. Fortunately, the bias rapidly
model from ATM cell measurements (a trace of cell arrivaliminishes whenN becomes large. The probability
times). Maximum likelihood estimation is often used becaus§stribution function forT is
maximum likelihood estimators (MLEs) are well known to be Pr(T <) =1 Pr(t. >t)..-Pr(t. >t >
consistent, asymptotically normal, and asymptotically (T=t)= (4 >1) (ty >1) @)
efficient under certain “regularity” conditions [6,7]. In =[1-(aT)"e ™ P ut-T).
section 2, the Markov on-off model is described as a renewal
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equal toT (or less tharT + A for arbitrarily smallp), then the
MLEs for a andf3 are given by:
~ N-K

N N
The mean isE(T) =T + (al;lr[; , therefore the estimator has a

small positive biagaT)" / NB that diminishes quickly with a= , B: NN K . (8)
N. The estimator will converge t® in probability since NT th -NT
Pr((T-Tlké&) - 1asN - o« foranye > 0. n=l

Because the estimator is highly likely to be exatthyith The MLEs are consistent with intuition. FirstT is
large samples, we will assume tHahas been accurately estimating the relative fraction of interarrival times that are

estimated before proceeding to estimate the other modifFater tharT which has a probability aiT. It will be more

parametersy andp. In all the numerical simulations in this COnvenient at this point to defire=1/ g and use the MLE

study, we found thaf quickly found the true value of C t =NT

within a few samples. b= )
. N-K
IIl. M AXIMUM LIKELIHOOD ESTIMATION instead of the MLESB because the probability distribution of

b will be easier to find. The MLBb is estimating the mean

A. Likelihood Function ; X ;
Maximum likelihood estimators (MLES) are often use(Jengt.h of interarrival times that are greater thanin the

because they are known to be consistent, asymptoticafipecial case whek = N, the MLE b is undefined but we
normal, and asymptotically efficient under certairwill selectb=0.

“regularity” conditions [6,7]. Because interarrival times are

independent samples of the probability distribution functioB. Properties of the MLE

(1), the likelihood function is the product We are interested in the mean and variance of the MLEs as
= measures of their accuracy for a given sample size. Also,
Ly(a,B) = f(t,) ®3) asymptotic properties of the MLEs give an indication of their

n=.

wheref(t) is the probability density function for interarrival behavior for large samples,

Proposition 1:The MLEs@ and b have the probability

times: T :
f(t) = (L- aT)3(t - T) + aBTe P Du(t - T) @) distribution funcﬂoQST:D
and O(t) =du(t)/dt is the Dirac delta function. The Pr(a < x) = ; L(aT)k(l—aT)N“‘ (10)
maximum likelihood estimators (MLEs) are the values that = (N=K)IK
maximize the likelihood function (3) or the log-likelihood Pr(6< x) = N & N! (aT)" (L= aT) ™" (B &
function . =X)= nzﬂ; —i!(N—n)!n!
ly(@,B) =3 Inf(t,). ®) +1-aT)"
n=1

- " . for x=0, wh is the floor function for the | t
The likelihood function is unfortunately difficult to -or X wnere [x0 IS the Tloor function for the farges

maximize due to the singularities (delta functions) in thi1teger less than_or equabio
probability density function (4). For computation, we can roof Appendix A.W

approximate the log-likelihood function by We can immediateI)A/ find the means of the MLEs as
N 1 E(a)=a, E(b)=b (11)
In(a.p) = nzl Inﬂ[':(tn +4) - F(t, ~ 4)]. (6)  and the variances of the MLEs as
That is, for very smallA and allt=T, we replace the var(c?):M (12)
probability density functiorf(t) by the central difference N Lo | NT
approximation: var(b) = Zb— N (aT)"(@-aT)"™".
L [F(t+2) - F(t- ) ™ Fn (M=
2A The mean and variance are important measures of the
K] Lift<T-A accuracy of the estimators for a given sample siz¢. dthe
- E(l— aT)/24 | ifT-A<t<T+A MLE usually displays desirable asymptotic properties such as

HJ _p(t-T) T consistency and normality. )
) pre . "_ t‘T+A_ . Proposition 2: The MLEs @ and b are unbiased,
The particular value df will not be important in determining consistent, and asymptotically normal.

the MLEs. _ _ Proof: Appendix B.=
The MLEs fora andf can be found by taking partial
derivatives of the log-likelihood function (6) with respect to
o andp, setting the result equal to 0, and then solvingxfor
andp, respectively. LeK be the number of samples that are \ye gimulated on-off cell traffic traces to verify the

performance of the MLEs and to compare the method of

IV. NUMERICAL RESULTS



maximum likelihood estimation to another method. Becaus

interarrival times in the on-off model are i.i.d. (independer %[ 4 4e, true mean
and identically distributed), another natural choice fo :°%[g MRS S FY Y YOy W R R RS LS 2
parameter estimation is the technique of moment matching. 0-900f measured mean

The method of moments is a straightforward technique th  ©-800f
matches the sample mean and sample variance of { o.700f
measured interarrival times to their statistical mean ar ©.600f

variance, respectively: 0.500[
1 T(a+,8) 0.400f
NZ (13) 0.300f
n=l 0.200|
=_— -m2==(2- 0.100f
N—lnzzl(tn m) ﬁz(z aT) 10 )oY ) N T I N N N T T T T T T T T T T T T Y I A
The solutions fora andf3 are the moment-matching 100 200 30,3 400 500 000
estimators:
-_2 (m-T) | | (0) .
0d==—"— (14) Fig.1. Experimentally measured mean of MIcE compared to
T $?+ (m T) true mean. (b) Experimentally measured mean of
ﬁ_ 2(m-T) MLE b compared to true mean.
s +(m-T)?
For comparison with the MLEs, we use the moment-
matching estimator fob =1/ 3 given by 0.00800
2 2 .
62 S +(m—T) (15) 0.00700} true variance
2(m-T)
0.00600 |

It is well known that the sample mean and sample varian
will converge to the true mean and variance when tr 0.00s00f
samples are independent and identically distributed, a1 49400
therefore the moment-matching estimators will converge 1
their true values if the interarrival time distribution is truly
given by (1). Unfortunately, the mean and variance of th o.00200}
moment-matching estimators are difficult to obtain, hence w

0.00300

measured variance

0.00100

investigate their performance by means of simulations. o000 *  seelebesss
_ We §|mulgtedM —_8 |r_1dep(_andent cell traffic traces with © -‘-‘-‘-‘-‘—‘-‘-‘-‘-‘-‘-‘-‘—‘-‘-‘-‘-‘-‘-‘-‘-‘—‘"—‘-‘-‘-‘-‘—100 00 200 200 00 500
interarrival time distribution given by (1) and the true value N
T=1,a = 0.2, andb = 1.0. Figure 1 shows that the
experimentally measured means of the MlEsand b are @
consistent with their statistical means calculated in (11), i | .,000,
expected. Likewise, Figure 2 shows that the experimenta o.30000}
. ~ " . . 0.28000 | .
measured variances of MLEs and b are consistent with 56000} | true variance
their statistical variances calculated in (12). 0.24000 |
0.22000 o
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0.18000 |
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" Figure 3 shows simulation results for the moment-

(@ matching estimators (14). Their measured means are close to



the true values aofi andb, indicating that these estimators are
unbiased (or their bias is small).
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Fig. 3. Experimentally measured mean of moment-matching
compared to true mean of (b) Experimentally measured mean

of moment-matchinga compared to true value bf [1]
Finally, Figure 4 compares the measured variances of the
MLEs and the moment-matching estimators as a function
N. The results indicate that the MLEs have significantly less
variance than the moment-matching estimators. 3

V. CONCLUSIONS

The MLEs and their probability distribution function are
derived. They have been shown to be unbiased, consistent,
and asymptotically normal estimators. In numerical resul{g]
with a simulated cell trace, the MLEs compare favorably with
moment-matching estimators in terms of lower variance and
better accuracy. [5]

[6]
[7]
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Fig. 4. Experimentally measured variance of MaEcompared
to moment-matching estimator. (b) Experimentally measured

variance of MLE b compared to moment-matching estimator.
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var(r) nb? :b_nz (8.3)

APPENDIX A var(b|N K=n)= .

hence the unconditional variance lofis given by (12).

The MLE b is a consistent estimator if the variance can
be demonstrated to reduce to zero when- «. The
binomially distributed N - K will approach a normal

If K is defined as the number of samples equal thhenN
- K'is the number of samples greater thaccording to (1),
N - K is binomial with the probability mass function

Pr(K =N =x) :L(aT)x(l aT)N™ for  distribution with meanNaT and varianceNaT(1-aT) in
(N-x)!x . the limitasN - . Then the variance approaches
x=0,...,N. The probability distribution ofa in (10) 1
i var(b _— B.4
follows froAm the obsglr\lvilt:gn thgt (b)= I « VZnNaT(l o) (B.4)
Pr(asx):PrD NT <X5= Pr(N-K < xNT). (A.1) (x - NaT)? de
Given that N-K =n, the MLE b can be written as 0 2NaT(l-aT)[

b=1/n wheret is the sum ofn exponential random The integral on the right hand side will diminish to zero as
variables with mean B/ That is,T is a gamma(,8) random N - «, thereforeb will converge to its meabh.

Bt ” Finally, given N-K=n, the MLE b can be
“(n-1)!  written as b=7/n wheret is the sum ofr exponential
for x>0,n>1. The conditional probability distribution "@ndom variables with meanfil/WhenN increasesN - K

will approach NaT and b will be the sample mean of an
increasing number of exponent{d)(random variables. By

variable with probability density functiom(t) =

function of b is
nx ﬁntn—l -pt

Pr(b< XN-K =n)= J’ﬁdt (A.2) the central limit theoremb2 will be asymptotically normal
= (B’ with meanb and varianceb—.

il
i=n I

The probability distribution function of b given in (10)
follows from the earlier observation thht - K is binomial

(and recall thab = Ofor the caseN - K = 0.
APPENDIX B

The mean and variance of the ML& can be found from

(8) as
E(&):M:ﬂ:a (B.1)
NT NT
var(@) = var(N —ZK) _ NaT(l—zaT) _ a(l-aT)
(NT) (NT) NT

This shows thata is unbiased and approaches in
probability as N - «. By the well-known DeMoivre-
Laplace limit theorem, the binomially distributéd- K will
approach a normal distribution with me&NoT and variance
NaT(l-aT) in the limit as N - . Hence a is
. . . a(l-aT)

asymptotically normal with meas and vananceT

As noted earlier, given thall - K =n, the MLEb can be
written as b=1/n wheret is the sum oh exponential
random variables with meanf3L/The conditional mean ob
can be readily shown to be

E(BIN-K =n) = =b (B.2)

n
which is independent oh, henceb is unbiased. The

conditional variance ob is

E(T)
n





