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ABSTRACT— The optimal design of broadband switching
systems depends on an understanding of the statistical nature of the
broadband traffic. An important practical problem is
characterization of the network traffic by fitting stochastic models to
actual traffic measurements. This paper studies the problem of
characterization of ATM cell traffic by maximum likelihood
estimation of the commonly used Markov on-off model. The
maximum likelihood estimators (MLEs) and their probability
distribution function are derived. The MLEs are shown to be
unbiased, consistent, and asymptotically normal. Maximum
likelihood estimation is compared numerically with the method of
moment matching for a simulated on-off packet trace, which
indicate that the MLEs result in smaller variance and better
accuracy than moment matching.

I. INTRODUCTION

The optimal design of broadband switching systems
depends on an understanding of the statistical nature of the
broadband traffic. Typically, stochastic models are assumed
for traffic sources, and queueing analysis or simulations are
conducted to evaluate network performance. Many stochastic
models have been proposed for broadband traffic [1]. A
practical issue in traffic modeling and performance
evaluation is the validity of any assumed stochastic traffic
models. There has been relatively less work on statistical
methods to fit stochastic models to actual traffic
measurements taken at the sources or points within a
broadband network.

The simple Markov on-off traffic model has been widely
used for characterization of packet speech and data sources
[1-3], and has served as the basis for stochastic fluid
approximations [4,5]. In the model, active periods alternate
with idle periods according to a continuous-time Markov
chain. Active periods are exponentially distributed with mean
1/α, and idle periods are exponentially distributed with mean
1/β. During an active period, packets are generated at regular
periods of T.

This paper investigates the method of maximum likelihood
estimation to infer the parameters of the Markov on-off
model from ATM cell measurements (a trace of cell arrival
times). Maximum likelihood estimation is often used because
maximum likelihood estimators (MLEs) are well known to be
consistent, asymptotically normal, and asymptotically
efficient under certain “regularity” conditions [6,7]. In
section 2, the Markov on-off model is described as a renewal

process, and a simple method is presented for estimating the
parameter T. In section 3, the MLEs for α and β are derived,
and their mean and variance are found. The MLEs are shown
to be unbiased, consistent, and asymptotically normal.
Section 4 presents numerical results that compare the
performance of the MLEs with the method of moment
matching.
 

 II. M ARKOV ON-OFF MODEL
 
 A. Model Parameters

In the model, active periods alternate with idle periods
according to a continuous-time Markov chain. Active periods
are exponentially distributed with mean 1/α, and idle periods
are exponentially distributed with mean 1/β. During an active
period, packets are generated at regular periods of T. We
assume that an active period typically consists of multiple
consecutive packets (αT < 1) which is the case of practical
interest.

For estimation, the on-off source is more conveniently
viewed as a renewal process with interarrival time
distribution given by

F t Te u t Tt T( ) [ ] ( )( )= − −− −1 α β (1)
where u(t) is the unit step function [3].

A traffic trace is assumed to consist of a set of measured
packet arrival times   a a aN0 1, , ,K{ }, or equivalently, a set of

packet interarrival times   t tN1, ,K{ }  where t a an n n≡ − −1 . The

given traffic trace is assumed to be free of jitter; in practice,
physical transmission layer factors may cause small random
variations in the packet arrival times that would complicate
the problem of model fitting. The measured interarrival times

  t tN1, ,K{ }  are used as the basis for estimating the on-off

model parameters: α, β, and T.
 

 B. Estimation of T if Unknown
If T is not known a priori, a natural estimator for T is

  
ˆ min( , , )T t tN= 1 K . It can be easily shown that ̂T  is a

consistent but biased estimator. Fortunately, the bias rapidly
diminishes when N becomes large. The probability

distribution function for T̂  is

  Pr( ˆ ) Pr( ) Pr( )T t t t t tN≤ = − > >1 1 L (2)

                    = − −− −[ ( ) ] ( )( )1 α βT e u t TN N t T .
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The mean is E T T
T

N

N

( ˆ)
( )= + α

β
, therefore the estimator has a

small positive bias ( ) /α βT NN  that diminishes quickly with
N. The estimator will converge to T in probability since

Pr(| ˆ | )T T− ≤ →ε 1 as N → ∞  for any ε > 0.
Because the estimator is highly likely to be exactly T with

large samples, we will assume that T has been accurately
estimated before proceeding to estimate the other model
parameters, α  and β. In all the numerical simulations in this
study, we found that ̂T  quickly found the true value of T
within a few samples.

 III. M AXIMUM LIKELIHOOD ESTIMATION
 
 A. Likelihood Function

Maximum likelihood estimators (MLEs) are often used
because they are known to be consistent, asymptotically
normal, and asymptotically efficient under certain
“regularity” conditions [6,7]. Because interarrival times are
independent samples of the probability distribution function
(1), the likelihood function is the product

L f tN n
n

N

( , ) ( )α β =
=

∏
1

(3)

where f(t) is the probability density function for interarrival
times:

f t T t T Te u t Tt T( ) ( ) ( ) ( )( )= − − + −− −1 α δ αβ β (4)
and δ ( ) ( ) /t du t dt=  is the Dirac delta function. The
maximum likelihood estimators (MLEs) are the values that
maximize the likelihood function (3) or the log-likelihood
function

l f tN
n

N

n( , ) ln ( )α β =
=

∑
1

. (5)

The likelihood function is unfortunately difficult to
maximize due to the singularities (delta functions) in the
probability density function (4). For computation, we can
approximate the log-likelihood function by

l F t F tN
n

N

n n( , ) ln [ ( ) ( )]α β = + − −
=

∑
1

1
2∆

∆ ∆ . (6)

That is, for very small ∆  and all t T≥ , we replace the
probability density function f(t) by the central difference
approximation:

1
2∆

∆ ∆[ ( ) ( )]F t F t+ − − (7)

               =
< −

− ≤ < +
≥ +






− −
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The particular value of ∆ will not be important in determining
the MLEs.

The MLEs for α  and β can be found by taking partial
derivatives of the log-likelihood function (6) with respect to
α  and β, setting the result equal to 0, and then solving for α
and β, respectively. Let K be the number of samples that are

equal to T (or less than T + ∆ for arbitrarily small ∆), then the
MLEs for α and β are given by:

ˆ , ˆα β= − = −

−
=

∑
N K

NT

N K

t NTn
n

N

1

. (8)

The MLEs are consistent with intuition. First, α̂T  is
estimating the relative fraction of interarrival times that are
greater than T which has a probability of αT. It will be more
convenient at this point to define b ≡ 1 / β  and use the MLE

b̂

t NT

N K

n
n

N

=
−

−
=

∑
1 (9)

instead of the MLE ̂β  because the probability distribution of

b̂  will be easier to find. The MLE ̂b  is estimating the mean
length of interarrival times that are greater than T. In the

special case when K = N, the MLE b̂  is undefined but we

will select b̂ = 0 .
 

 B. Properties of the MLE
We are interested in the mean and variance of the MLEs as

measures of their accuracy for a given sample size. Also,
asymptotic properties of the MLEs give an indication of their
behavior for large samples.

Proposition 1: The MLEs α̂  and b̂  have the probability
distribution functions:

Pr( ˆ )
!

( )! !
( ) ( )α α α≤ =

−
−

=

 
−∑x

N

N k k
T T

k

xNT
k N k

0

1 (10)

Pr( ˆ )
!

!( )! !
( ) ( ) ( )b x

N

i N n n
T T nx e

i nn

N
n N n i nx≤ =

−
−

=

∞

=

− −∑∑
1

1α α β β

                               + −( )1 αT N

for x ≥ 0 , where x   is the floor function for the largest
integer less than or equal to x.

Proof: Appendix A. n
We can immediately find the means of the MLEs as

E E b b( ˆ ) , ( ˆ)α α= = (11)
and the variances of the MLEs as

var( ˆ )
( )α α α= −1 T

NT
(12)

var( ˆ)
!

( )! !
( ) ( )b

b

n

N

N n n
T T

n

N
n N n=

−
−

=

−∑
2

1

1α α .

The mean and variance are important measures of the
accuracy of the estimators for a given sample size of N. The
MLE usually displays desirable asymptotic properties such as
consistency and normality.

Proposition 2: The MLEs α̂  and b̂  are unbiased,
consistent, and asymptotically normal.

Proof: Appendix B. n

 IV. NUMERICAL RESULTS

We simulated on-off cell traffic traces to verify the
performance of the MLEs and to compare the method of
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maximum likelihood estimation to another method. Because
interarrival times in the on-off model are i.i.d. (independent
and identically distributed), another natural choice for
parameter estimation is the technique of moment matching.

The method of moments is a straightforward technique that
matches the sample mean and sample variance of the
measured interarrival times to their statistical mean and
variance, respectively:

m
N

t
T

n
n

N

= = +

=
∑1

1

( )α β
β

(13)

s
N

t m
T

Tn
n

N
2 2

1
2

1
1

2=
−

− = −
=

∑ ( ) ( )
α
β

α .

The solutions for α  and β are the moment-matching
estimators:

ˆ ( )
( )

α = −
+ −

2 2

2 2T

m T

s m T
(14)

ˆ ( )
( )

β = −
+ −
2

2 2

m T

s m T
For comparison with the MLEs, we use the moment-
matching estimator for b ≡ 1 / β  given by

ˆ ( )
( )

b
s m T

m T
= + −

−

2 2

2
. (15)

It is well known that the sample mean and sample variance
will converge to the true mean and variance when the
samples are independent and identically distributed, and
therefore the moment-matching estimators will converge to
their true values if the interarrival time distribution is truly
given by (1). Unfortunately, the mean and variance of the
moment-matching estimators are difficult to obtain, hence we
investigate their performance by means of simulations.

We simulated M = 8 independent cell traffic traces with
interarrival time distribution given by (1) and the true values
T = 1, α  = 0.2, and b = 1.0. Figure 1 shows that the

experimentally measured means of the MLEs α̂  and b̂  are
consistent with their statistical means calculated in (11), as
expected. Likewise, Figure 2 shows that the experimentally
measured variances of MLEs α̂  and b̂  are consistent with
their statistical variances calculated in (12).
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Fig.1. Experimentally measured mean of MLE α̂  compared to

true mean. (b) Experimentally measured mean of

MLE b̂  compared to true mean.
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Fig. 2. Experimentally measured variance of MLE α̂  compared

to true variance. (b) Experimentally measured variance of

MLE b̂  compared to true variance.

Figure 3 shows simulation results for the moment-
matching estimators (14). Their measured means are close to
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the true values of α and b, indicating that these estimators are
unbiased (or their bias is small).
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Fig. 3. Experimentally measured mean of moment-matching α̂
compared to true mean of α. (b) Experimentally measured mean

of moment-matching ̂b  compared to true value of b.

Finally, Figure 4 compares the measured variances of the
MLEs and the moment-matching estimators as a function of
N. The results indicate that the MLEs have significantly less
variance than the moment-matching estimators.

 
V. CONCLUSIONS

The MLEs and their probability distribution function are
derived. They have been shown to be unbiased, consistent,
and asymptotically normal estimators. In numerical results
with a simulated cell trace, the MLEs compare favorably with
moment-matching estimators in terms of lower variance and
better accuracy.
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Fig. 4. Experimentally measured variance of MLE α̂  compared

to moment-matching estimator. (b) Experimentally measured

variance of MLE b̂  compared to moment-matching estimator.
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APPENDIX A

If K is defined as the number of samples equal to T, then N
- K is the number of samples greater than T. According to (1),
N - K is binomial with the probability mass function

Pr( )
!

( )! !
( ) ( )K N x

N

N x x
T x T N x− = =

−
− −α α1  for

  x N= 0, ,K . The probability distribution of ̂α  in (10)
follows from the observation that

Pr( ˆ ) Pr Pr( )α ≤ = − ≤



 = − ≤x

N K

NT
x N K xNT . (A.1)

Given that N K n− = , the MLE b̂  can be written as
ˆ /b n= τ  where τ  is the sum of n exponential random

variables with mean 1/β. That is, τ is a gamma(n, β) random

variable with probability density function p t
t e

n

n n t

( )
( )!

=
−

− −β β1

1
for x n> ≥0 1, . The conditional probability distribution

function of  b̂  is

Pr( ˆ )
( )!

b x N K n
t e

n
dt

n n tnx

≤ − = =
−

− −

∫ β β1

0
1

(A.2)

                                =
=

∞
−∑ ( )

!
β βnx

i
e

i

i n

nx .

The probability distribution function of  ̂b  given in (10)
follows from the earlier observation that N - K is binomial

(and recall that ̂b = 0 for the case N - K = 0).

APPENDIX B

The mean and variance of the MLE α̂  can be found from
(8) as

E
E N K

NT

NT

NT
( ˆ )

( )α α α= − = = (B.1)

var( ˆ )
var( )

( )
( )

( )
( )α α α α α= − = − = −N K

NT

N T T

NT

T

NT2 2

1 1

This shows that ̂α  is unbiased and approaches α  in
probability as N → ∞ . By the well-known DeMoivre-
Laplace limit theorem, the binomially distributed N - K will
approach a normal distribution with mean N Tα  and variance
N T Tα α( )1 −  in the limit as N → ∞ . Hence α̂  is

asymptotically normal with mean α and variance 
α α( )1 − T

NT
.

As noted earlier, given that N K n− = , the MLE b̂  can be
written as ˆ /b n= τ  where τ  is the sum of n exponential

random variables with mean 1/β. The conditional mean of  b̂
can be readily shown to be

E b N K n
E

n

nb

n
b( ˆ )

( )− = = = =τ
(B.2)

which is independent of n, hence b̂  is unbiased. The

conditional variance of ̂b  is

var( ˆ )
var( )

b N K n
n

nb

n

b

n
− = = = =τ

2

2

2

2

(B.3)

hence the unconditional variance of b̂  is given by (12).
The MLE  b̂  is a consistent estimator if the variance can

be demonstrated to reduce to zero when N → ∞ . The
binomially distributed N - K will approach a normal
distribution with mean N Tα  and variance N T Tα α( )1 −  in
the limit as N → ∞ . Then the variance approaches

var( ˆ)
( )

b
b

x N T T
=

−

∞

∫
2

0

1

2 1π α α
  (B.4)

                                    ⋅ − −
−









exp
( )

( )
x N T

N T T
dx

α
α α

2

2 1
The integral on the right hand side will diminish to zero as
N → ∞ , therefore ̂b  will converge to its mean b.

Finally, given N K n− = , the MLE b̂  can be
written as ˆ /b n= τ  where τ  is the sum of n exponential
random variables with mean 1/β. When N increases, N - K

will approach N Tα   and b̂  will be the sample mean of an
increasing number of exponential(β) random variables. By
the central limit theorem, ̂b  will be asymptotically normal

with mean b and variance 
b

N T

2

α
.




