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Abstract:
It is well-known that the Multimedia traffic is statisti-

cally self-similar, with fractal-like behavior, that is, net-
work traffic exhibits scale-invariance at a wide range of
scales. Such scale-invariance is different from traditional
models of network traffic. It is also well-known that self-
similarity degrades the network performance by requiring
large queueing buffers, causing delay and packet dropping
problems, and that the traditional queueing theory is inad-
equate to predict network performance. The conventional
wisdom is that the higher the load on the network, the
higher the degree of self-similarity.

In this paper we first show a method of how to approxi-
mate a queueing buffer size with self-similar input process,
then we will derive a theoretical network load limit when
self-similarity has no adverse effect on the network. This
load limit was found to be about the same load value pub-
lished in literature, on average delay, with actual Ethernet
traffic traces compared against curve obtained from the
traditional Queueing Network Analyser.

I. Fractional Brownian Motion Storage Model

In [1], the authors plotted the logarithm of the probabil-
ity of queue length exceeding a value of x, log (P [ Queue
length > x]), on the y-axis versus the Queue length x
on the x-axis. Then the curve using real Internet trace
and the curve obtained by simulation, using the Fractional
Brownian Motion, are almost identical, showing that for
large data, asymptotically the fluid model using Fractional
Brownian Motion gives good estimates in the case of large
traffic flows.

Materials in this section were taken from [2], [3] and [4].
Please refer to these published articles for more details.

Traditionally, a normalized Fractal Brownian Motion
model Z(t), −∞ < t < ∞, with self-similarity parameter
H ∈ [ 12 , 1), is assumed to satisfy ([2]) following properties

• Z(t) has stationary increments
• Z(0) = 0, E[Z(t)] = 0,∀t
• E[Z2(t)] =| t |2H ,∀t
• Z(t) has continuous paths
• Z(t) is Gaussian, i.e. its finite-dimensional distribu-

tions are multivariate Gaussian distributions
• For H = 1

2 , Z(t) is the standard Brownian motion.
Most results in [2], [3] and [4] do not depend on the Gaus-
sian character of Z(t), so they can be immediately gen-
eralized by replacing Z(t) by a more general self-similar
process.

Definition 1:
The stationary storage model with fractional Brownian

net input is a stochastic process V (t), where

V (t) = Sups≤t[A(t)−A(s)− C(t− s)], (1)

where
t ∈ −(∞,∞),
A(t) = mt +

√
amZ(t),

Z(t) is a normalized fractional Brownian motion,
m is the mean input rate, m > 0,
a is the variance coefficient, a > 0,
H ∈ [ 12 , 1) is the self-similarity parameter of Z(t), and
C > m is the service rate.
Although we have introduced a traffic model A(t) and a

constant leak rate C, it is in fact mathematically relevant
for V (t) only that the net input process

V (t) = A(t)− Ct

is of the form c1Z − c2t, with c2 > 0.
Clearly, V (t) is a stationary process by definition. The

equation

V (t) = Sups≤t[A(t)−A(s)− C(t− s)]
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is similar to the well-known expression for the amount of
work (or virtual waiting time) in a queueing system with
service rate C, cumulative work arrival process A(t). Benes
called it ‘Reich’s formula’.

We have
Proposition: ([2], Proposition 2.2)
Let Ai(t) be processes

Ai(t) = mit +
√

miaZi(t),∀t

where a > 0, mi > 0, i = 1,2, ... K, and Zi’s are Fractional
Brownian Motion processes with the common parameter
H. Then

A(t) ≡
∑K

i=1 Ai(t)
= mt +

√
maZ(t),

where m =
∑K

i=1 mi and Z(t) is a Fractional Brownian
Motion process with the same parameter H.

2

Heuristically, a and H characterize the ‘quality’ of the
traffic, while the long run mean rate m characterize its
‘quantity’.

Since by (1)

V (t) ≡ Sups≤t[A(t)−A(s)− C(t− s)]

as defined above, and as Z(αt) =(d) αHZ(t), where =(d)

means ‘equal in distribution’, so we have

V (αt) = Sups≤t[A(αt)−A(αs)− C(αt− αs)]
=(d) Sups≤t[mαt +

√
amZ(αt)

−mαs−
√

amZ(αs)− C(αt− αs)]
=(d) Sups≤t[mαt +

√
amαHZ(t)

−mαs−
√

amαHZ(s)− C(αt− αs)]
=(d) αHSups≤t[mα1−Ht +

√
amZ(t)

−mα1−Hs−
√

amZ(s)
−α1−HC(t− s)]

=(d) αHSups≤t[
√

amA(t)−
√

amA(s)
−(m + α1−H(C −m)(t− s))].

Thus, we have
Theorem 1:
Define process V (t) as above, with parameters m, H, a

and C. Then for every α > 0, the process V (αt) is dis-
tributed like αH times the corresponding Fractional Brow-
nian Motion process with parameters m+α1−H(C−m)(t−
s), H, a and C.

2

In telecommunication, a typical requirement in an appli-
cation is for the probability of a certain amount of work in
the system to exceed a certain level x to be upper-bounded
by a ‘Quality-of-Service’ parameter ε.

P [V > x] = ε.

This equation also defines the storage requirement x. This
equation also defines a hypersurface in the space of system
parameters, separating the acceptable parameters from the
unacceptable ones.

We call x the storage requirement, C the service rate,
and ρ ≡ m

C the utilization, at the critical boundary (the
hypersurface mentioned above).

We have the following theorem
Theorem 2:
Assume

P [V > x] = ε.

then

1− ρ

ρ1/(2H)
C(H− 1

2 )/Hx(1−H)/H = constant(= a1/(2H)f−1(ε)),

(2)
where the constant a1/(2H)f−1(ε) on the right-hand side
depends only on a, H and ε.

Proof:
We have

ε = P [V > x]
= P [Supt≥0(

√
amZ(t)− (C −m)t) > x]

= P [Supt≥0(Z(t)− (C−m)√
am

t) > x√
am

]

= f(
(

x√
am

)(1−H)/H
(C−m)√

am
)

Let ρ ≡ m
C , then

f−1(ε) =
(

x√
am

)(1−H)/H
(C−m)√

am

= x(1−H)/H(aρC)−(1−H)/2H(C − ρC)(aρC)−1/2

so that

1− ρ

ρ1/(2H)
C(H− 1

2 )/Hx(1−H)/H = a1/(2H)f−1(ε) = constant.

2

In the case of without self-similarity, when H = 1
2 , we

have by (2)

1− ρ

ρ
x = af−1(ε) = constant.

This is a traditional case of a heavy traffic approximation
of the M/D/1 queue. Solving for x, we have then for H = 1

2

x1/2 = (af−1(ε))
ρ

1− ρ
= (constant)

ρ

1− ρ
. (3)

For the general case, we have by (2)

1− ρ

ρ1/(2H)
C(H− 1

2 )/Hx(1−H)/H = constant = a
1

2H f−1(ε),
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so solving for x in the general case for H, we have

xH = (a
1

2H f−1(ε))
H

1−H

(
C

2H−1
2(1−H)

)( ρ
1
2

(1− ρ)H

) 1
1−H

, (4)

which explicitly involves C also.
We have thus by (3) and (4)

xH

x1/2
=

(
a

1
2(1−H)−1f−1(ε)

H
1−H−1C

2H−1
2(1−H)

)
=

(
ρ

1
2

(1−ρ)H

) 1
1−H (

1−ρ
ρ

)
=

(
(aC)

1
2 f−1(ε)

) 2H−1
1−H

(
ρ

1
2

1−ρ

) 2H−1
1−H

.

And so, we have

xH

x1/2
=

(
βρ

1
2

1− ρ

) 2H−1
1−H

, (5)

where
β ≡ (aC)

1
2 f−1(ε) (6)

is a constant.
Theorem 3:
Let xH be the storage size.
1. If H is fixed, when 1

2 < H < 1, then the ratio r(ρ) ≡
xH

x1/2
increases monotonically with respect to the utilization

factor ρ, where r(0) = 0, r((−β+
√

β2+4

2 )2) = 1 and r(1) =
∞. Thus, specifically,

• If 0 ≤ ρ <

(
−β+

√
β2+4

2

)2

, then xH < x1/2.

• If
(
−β+

√
β2+4

2

)2

< ρ ≤ 1, then xH > x1/2.

2. Let ρ be fixed, when 0 ≤ ρ ≤ 1, and let the ratio r(H)
be defined as r(H) ≡ xH

x1/2
, then

• If 0 ≤ ρ <

(
−β+

√
β2+4

2

)2

, then xH < x1/2 and r(H)

approaches 0 when H approaches 1.

• If
(
−β+

√
β2+4

2

)2

< ρ ≤ 1, then xH > x1/2 and r(H)

becomes infinite when H approaches 1.
Proof:
1. If H is fixed, when 1

2 < H < 1, then 2H−1
1−H > 0.

Let

f(ρ) ≡ βρ
1
2

1− ρ
,

then by (5)

xH

x1/2
=

(
βρ

1
2

1− ρ

) 2H−1
1−H

= (f(ρ))
2H−1
1−H .

Since 2H−1
1−H > 0, so that xH

x1/2
monotonically increases with

respect to f(ρ).
But the derivative of f(ρ) is

f ′(ρ) =
β(1− ρ)

2ρ1/2(1− ρ)2
,

so f ′(ρ) > 0 when 0 ≤ ρ ≤ 1. Thus, f(ρ) increases mono-
tonically with respect to ρ, when 0 ≤ ρ ≤ 1.

Thus, xH

x1/2
monotonically increases with respect to ρ,

when 0 ≤ ρ ≤ 1.
We notice that f(0) = 0, f(1) = ∞. Also, when

ρ =
(
−β+

√
β2+4

2

)2

, then f(ρ) = 1. Thus, when H is

fixed and 1
2 < H < 1, when 0 ≤ ρ <

(
−β+

√
β2+4

2

)2

, then

the storage requirement xH is smaller than the traditional
storage x1/2, but it will increase faster as ρ increases, and

reach x1/2 when the utilization is about
(
−β+

√
β2+4

2

)2

.

After the utilization ρ passes the value
(
−β+

√
β2+4

2

)2

,

then the storage requirement xH gets larger than the tradi-
tional storage requirement x1/2, when ρ gets larger, and xH

becomes infinitely larger than x1/2, when the utilization is
about 1.

2. If we fix ρ and let H vary, where 1
2 < H < 1, consider

the function
f(H) ≡ 2H − 1

1−H
,

then its derivative is

f ′(H) =
1

(1−H)2
> 0.

Thus the function f(H) increases monotonically with re-
spect to H.

We notice that f( 1
2 ) = 0 and f(1) = ∞.

Since by (5)

xH

x1/2
=

(
βρ

1
2

1− ρ

) 2H−1
1−H

and as ρ is fixed, so that

• xH

x1/2
will be less than 1 when βρ

1
2

1−ρ < 1, in which case
we have

0 ≤ ρ <

(
−β +

√
β2 + 4

2

)2

,

and xH

x1/2
approaches 0 when H approaches 1
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• xH

x1/2
will be greater than 1 when 1 < βρ

1
2

1−ρ , in which
case we have(

−β +
√

β2 + 4
2

)2

< ρ ≤ 1,

and xH

x1/2
becomes infinite when H approaches 1.

2

We notice a surprising result in Theorem 3 above: the
higher the degree of self-similarity H, the lower the stor-
age size requirement xH , comparing with the traditional
storage size when no self-similarity is detected, when the

utilization factor ρ is less than
(
−β+

√
β2+4

2

)2

. Thus, in

case of high degree of self-similarity in Internet traffic, we
want to keep the utilization factor as low as or lower than(
−β+

√
β2+4

2

)2

as possible.

Intuitively, when the network utilization is low, the ser-
vice rate is high enough to process data, thus less storage
area is required for data to wait to be processed. Since
long-range dependence tends to emphasize the trend, if the
trend is for the data to be processed quickly and thus re-
quiring less storage area, it continues to do so. On the other
hand, when the network utilization is high, the service rate
is low comparing to the rate of incoming data, more stor-
age area is required to contain unprocessed data. Again,
since long-range dependence tends to emphasize the trend,
if the trend is to put data in storage to wait to be processed,
long-range dependence will tend to amplify this trend, thus
requiring even more storage area than its counter-part of
almost purely random data.

We notice that the function

g(x) ≡ −β +
√

β2 + 4
2

has the derivative

g′(x) =
1
2

(
β −

√
β2 + 4√

β2 + 4

)
,

which is less than zero when β ≥ 0. Thus g(x) de-
creases when β ≥ 0. Since g(0) = 1 and g(∞) = 0, so

0 ≤
(
−β+

√
β2+4

2

)2

≤ 1, when β ≥ 0.

The constant β ≡ (aC)
1
2 f−1(ε) in (6) contains parame-

ters a, C and f−1(ε), where
• a is the variance coefficient
• C is the service rate
• f−1(ε) is related to the desired QoS.

Thus, normally the constant β does not depend too heavily
on the degree of self-similarity H, and we can then write

xH

x1/2
= (constant)

(
ρ

1
2

1− ρ

) 2H−1
1−H

.

Since xH

x1/2
= 1 when H = 1

2 , so that the constant in the
above equation is actually 1, in which case β = 1.

Also, even if the constant β does depend heavily on the
degree of self-similarity H, but if in the network, H varies
much slower than the utilization factor ρ, then we have

xH

x1/2
=

(
βρ

1
2

1−ρ

) 2H−1
1−H

= (β)
2H−1
1−H

(
ρ

1
2

1−ρ

) 2H−1
1−H

≈ (constant)
(

ρ
1
2

1−ρ

) 2H−1
1−H

.

Again, in this case, the constant in the above equation is
actually 1, and so β = 1.

Thus, in the two situations above,
(
−β+

√
β2+4

2

)2

=

(−1+
√

5
2 )2 ≈ 0.38196601. So that in this case, when the

degree of self-similarity H starts to get too high, and the
packets start dropping, we want to keep the utilization fac-
tor as low as or lower than (−1+

√
5

2 )2 ≈ 0.38196601 as pos-
sible.

In [1], as described in section ‘Fractal Queueing’ above,
the authors plotted average delay on the y-axis versus uti-
lization on the x-axis, for time series of interarrival times.
In Figure 1 (page 254), the curve (A) with the actual Eth-
ernet traffic traces was plotted against curve (B) obtained
from the traditional Queueing Network Analyzer. We no-
tice that these two curves intersect around the utilization
value of 0.38, matching our value predicted above.

Comparing between the calculations of xH

x1/2
in (5) and

that of xH in (4), we note that
• xH in (4) involves explicitly variables a, f−1(ε), which

might be hard or impossible to obtain.
• Approximately, when the degree of self-similarity H

of the traffic does not vary excessively fast with time
(experimentally, it varies between 0.8 and 0.9 in Bell-
core data), then the constant part β of xH

x1/2
in (5) is

approximately 1, allowing easy calculations of xH

x1/2
.

• Since both x1/2 and xH tend to increase or decrease
together, under various network conditions, so xH

x1/2

should be more invariant in time and network condi-
tions than xH alone.

The discovery of self-similar traffic has posed a consid-
erable challenge on effort to approximate queue length, as
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the traditional methods are based on such assumptions like
independent increments, renewal process, Markovian as-
sumptions, etc. The explicit form for exact queue length
distribution seems to be unknown still for any queueing
system with a long-range dependent input process ([21]).
Thus, any good approximation for xH is welcome not only
for practical applications in Telecommunication, but also
is important theoretically as a check against further devel-
opments.

Under the general setting in Theorem 2, it is a good as-
sumption that in the heavy traffic condition, the ratio xH

x1/2

should give a good approximation under various network
conditions. A simple algorithm to approximate xH under
diversed network conditions could be described as follows:

1. Use the traditional methods to calculate x1/2, in
which case, there is no self-singularity.

2. Calculate xH

x1/2
in (5). If constant β is not known, and

if the degree of self-similarity H does not vary much, we
may assume that β = 1 in (5).

3. Approximate xH when the data traffic has self-
similarity by

xH(Φ, ρ, H) ≈ (x1/2(Φ))
(

xH

x1/2
(ρ,H)

)
,

where Φ is a set of parameters for x1/2. We note that Φ
might contain ρ.

4. If simulation is available, verify the above approxima-
tion expression for xH .

To approximate the constant β in Theorem 3, one pro-
cedure is to collect the delays under different utilization
factor values as done in [1], then these values are to be
plotted out against those values such as from the tradi-
tional Queueing Network Analyzer ([1]). The intersecting
value C2 between these two curves would give an approxi-

mate value for
(
−β+

√
β2+4

2

)2

. Solving for

(
−β +

√
β2 + 4

2

)2

= C2,

we have

β =
1− C2

C
.

We notice that its derivative is

β′ =
−1− C2

C2
< 0,

so when C varies from 0 to 1, β decreases from ∞ to 0.

II. Conclusion

As the theory was developed for a single server case, in
the case of multiple servers situation, if it could be parti-
tioned equivalently into a combination of queues with single
servers, obviously the above algorithm applies immediately.
In the case that the queue cannot be logically partitioned
into combinations of queues of single servers, if the ratio
xH

x1/2
does not vary much over the network environment, it

might still be possible to use the above algorithm, although
simulations ought to be used to verify that it is acceptable
to do so.

In the multimedia traffic case, where each stream has dif-
ferent H, assuming independence of these streams of data,
different xH ’s could be calculated and we could take the
maximum in case of multiplexed data.

For QoS and Performance control applications, we thus
have

1. An algorithm to approximate the buffer size in self-
similar traffic situation, which would tell us if buffer over-
flow conditions might have occurred in the router/switch
or in the network.

2. Also, as mentioned above, when due to self-similarity
of traffic data, the packet dropping probability starts to in-
crease and exceed a tolerable level, or when the delay starts
to be too excessive in this case, methods like Call Admis-
sion Control could be employed to admit only selected new
applications, to reduce down the utilization factor to about
perhaps 0.38196601 to eliminate the system degradation
due to high traffic self-similarity degree.

(This work was supported in part by National Science
Foundation grant 9980561. This work does not represent
the beliefs or policies of the NSF.)
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