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Abstract

This paper develops an analytical framework to model and compare different
distributed approaches for network monitoring. The performance of each scheme is
evaluated in terms of traffic, completion time, and processing and memory resources.
It is shown that distributed approaches have considerable advantages over traditional
centralized network management, but a single distributed approach may not be best
for all applications. Analytical results suggest that the weak mobility approach
performs well for routine monitoring, and the mobile agent approach is well suited for
searching types of applications. However, the best approach for a given application
will depend on many parameters requiring careful quantification.
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1. Introduction

Network management is mainly concerned with the practical problem of monitoring
networks and maintaining their integrity and performance. Network management
systems today are predominantly based on the SNMP (simple network management
protocol) paradigm [1]. In the SNMP paradigm, a centralized network management
system (NMS) communicates with simple agents residing in each managed node. This
approach is clearly inefficient for certain applications. For example, the potential
processing and traffic bottleneck at the NMS can prevent scalability to large
networks. If the NMS is searching for data, it will poll nodes repeatedly until the data
is found, involving many messages through the network and processing burden
concentrated at the NMS.

On the other hand, the processing capabilities of most network nodes have vastly
improved in the past few years, making possible sophisticated agents with intelligence
or mobility. There are major potential advantages to distributing and automating
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network management functions. First, data processing and searching can be moved
closer to the locations where data resides, thereby reducing the network traffic.
Second, distributed data processing will eliminate the' potential processing bottleneck
at the central NMS. Third, automated and distributed data processing may find
specific data faster by eliminating the delays involved in repeated polling. Fourth,
distributed network management is inherently more robust because it does not rely
completely on the central NMS and continuous communications through the network.

Various distributed approaches to network management have been proposed [2-
6). There are trade-offs between different approaches but quantitative comparisons
have been very limited. This paper seeks to develop analytical models which can lead
to quantitative comparisons of prototypical approaches. The objective of the
analytical framework is to help evaluate the most appropriate management scheme for
a given management application, e.g., monitoring, searching. Section 2 overviews
example distributed approaches and presents the basic models and assumptions for
analysis. Section 3 gives an analysis of each management approach for routine
monitoring in terms of performance and costs. Section 4 evaluates the trade-offs
between the different approaches for a searching application.

2. Distributed Network Management Approaches

Network management functions may be distributed to a hierarchy of mid-level
managers, each responsible for managing a usually separate portion of the entire
network [2]. The hierarchy may conceptually consist of multiple layers where the
lowest level managers still operate by polling managed nodes within its subnetwork
and communicate up the hierarchy layers with higher managers. The main advantage
compared to non-hierarchical polling is that subnetworks can be managed in parallel,
reducing the traffic and processing burden on the highest level NMS. However, the
distribution of network management functions and the organization of managers are
static. The static structure can be a liability when new management functions need to
be initiated or when some management functions are used only infrequently.

In the management by delegation (MBD) approach, management functions may
be distributed dynamically by dispatching ‘delegated agents’ to a managed node
where the agent code is executed [3]. This dynamic approach offers the advantage of
instantiating management functions only when they are needed, at a cost of additional
complexity. Here we assume the mobility of the delegated agent is limited to its
transfer from a manager to a managed node, i.e., a ‘weak mobility’ capability [7].

A ‘strong mobility’ capability allows an agent to autonomously transfer both
code and execution state, usually referred to as a mobile agent [4]. Strong mobility
might be expected to be particularly useful for tasks involving searching for data at an
unknown location or collection of data that is spread out geographically. The
flexibility of mobile agents is achieved at a cost of additional complexity (a common
infrastructure to support migration) and more security issues.

For tractability, some simplifying assumptions must be made for the different
schemes. Generally, most assumptions are similar to other previous studies of traffic
involved in agent-based network management [8-10]. Our study differs from other
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work in some details of the models; inclusion of delays and computing resources in
the analysis as well as traffic requirements; and the consideration of different types of
applications.

CS (client-server) model: As shown in Figure 1(a), the traditional SNMP client-
server approach is modeled as a centralized NMS communicating with N network
nodes. The communications between the NMS and agents is characterized by
pairs of query-response messages for every.

HS (hierarchical static) model: A hierarchical static approach is modeled as L
mid-level managers, each managing a separate subnetwork of N/L nodes, as
shown in Figure 1(b). A two-level hierarchy is considered here although multiple
hierarchical layers may be possible in practice. Each subnetwork is managed by a
client-server scheme, and mid-level managers may communicate with a
centralized high-level NMS as needed.

WM (weak mobility) model: The NMS distributes code to specific nodes where
the code is executed and expires, as shown in Figure 1(c). This approach is
natural when management tasks are dynamic and the location of target data is
known by the NMS.

SM (strong mobility) model: The NMS dispatches one or more agents to carry out
a specific task, as shown in Figure 1(d). The agents have the capability to
autonomously travel among different nodes to complete their tasks. Strong
mobility includes migration of data (execution state) as well as code. This
approach is well suited for applications where the agents must correlate data from
multiple nodes or search for an unknown location.

messages

(a) (b)

NMS

messages

agents

() (CY

Figure 1: Centralized and distributed network management approaches.
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We may expect that no single approach will be best for all possible types of
network management applications. Hence the various approaches should be compared
in the contexts of different applications, such as: (i) routine network monitoring to
detect changes in the network status; (ii) searching for data at a known node location;
(iii) searching for data at an unknown node location. We are interested in the
performance of each approach in terms of time to complete a specific task and the
cost in terms of traffic and computing resources. After developing a model for each
approach, it is possible to evaluate the trade-offs among them for network monitoring.
Due to the necessary simplifications, there are certain factors (e.g., flexibility,
dynamicism, reliability) that are not considered in the analysis here but can be
important advantages in actual situations.

3. Routine Network Monitoring

We consider the problem of detecting a random change in a variable X at an arbitrary
node. It is assumed that changes in the variable occur randomly as a Poisson process

with rate A at any node within the network, independent of other nodes. Generally, the

performance metric of interest is the mean time T to detect the change. The costs
include:
C: amount of traffic (bits/s) measured in total, per node, and per NMS
M: average amount of memory consumed at nodes
U: average utilization of processing resources (fraction of total processing
time) at nodes and NMS.

3.1 CS Model

It is assumed that the NMS will regularly poll each node to retrieve the value of
variable X. Although SNMPv2 allows retrieval of muitiple variables in a single
query, only a single variable is considered here. The CS approach is characterized by
these variables:

I the polling rate per node (I"> A is assumed)

I,: size of each query message (bits)
I: size of each response message (bits)
1,: packet delay for query or response message (including transmission and

propagation, assumed to be equal between any points in the network)
t.. processing time for a message at a node
processing time for a query message at NMS
t;: processing time for a response message at NMS
The average time until the next query after a variable change is 1/2I". The

expected time for the NMS to detect a variable change is the sum:

q°

1
T =——=+t +1t,+t, 1)
CS 2r c P (
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Each managed node will handle I/ +1,) bits/s. The total traffic in the network is:

Ces = NI(1, +1)) bits/s )

The centralized NMS must handle the same total amount of traffic.

In this approach, agents reside permanently at each node. The memory
consumption in each node is simply a fixed amount M; = B bits.

Agents are assumed to consume negligible execution resources except for
processing query or response messages. Each node spends a time ¢, to process a
query or response message in every polling interval 1/I. The fraction of total

computing time spent by each node is:
Ug =2It, (©))

Naturally, this centralized approach imposes heavy computational burden on the
NMS. The fraction of total computing time spent by the NMS is:

Ues = NL(t, +1,) “)
3.2 HS Model

In the HS model, the previous assumptions are unchanged except some traffic is
offloaded from the high-level NMS to L mid-level managers. Within each subnetwork
managed by a mid-level manager, the performance is similar to the CS model. With
the same polling rate per node, the expected time for a mid-level manager to detect a
variable change is the same as (1). If we assume that it takes an additional packet

forwarding time f, and packet processing time f, to report the variable change to the

high-level NMS, then the total expected time for the variable change to be detected by
" the high-level NMS is:

Tys =EIFH‘ +21,+2, &)

which is slightly larger than (1).
The manager hierarchy does not effect the operation of each node, so each
managed node will handle I"(, +1,) bits/s as before. Each mid-level manager must

handle NI'(I, +1,)/ L bits/s between the N/L nodes that it manages. The mid-level

managers are advantageous if they perform some data filtering and report only
variable changes to the high-level NMS. The total traffic in the network is:

Cys = NI'(I, + 1,)+ NAI bits/s (6)
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Although the total traffic in the network is increased, the hierarchy should reduce
the amount of traffic handled by the high-level NMS to NAI, bits/s. This is certainly

a reduction from (2) if I"> A as assumed.

The hierarachy does not change the memory consumption M,s= B bits or
utilization of processing resources at each node which is (3). The fraction of total
computing time spent by each mid-level manager is:

Uys = N[[(t, +1,)+ 22, ]/ L ' 0)
The fraction of total computing time spent by the NMS is:
Uys = NAL, ®)

which is less than (4).
3.3 WM Model

In the weak mobility approach, for routine monitoring, the code is assumed to reside
permanently at the nodes after dispatching. This implies that the one-time cost of
dispatching the code will become negligible over the long term. If the agents report
only variable changes, the total traffic in the network will be:

Cypy = NAIL bits/s ©)

The NMS handles the same total amount of traffic. The overhead traffic is only the
initial code dispatched to nodes; if the code is I, bits, the overhead is a fixed one-

time cost of NIy, bits.

Code resides continuously at each node, so the memory usage per node is a fixed
amount My, =1,,,.

After the code is dispatched and executed, we assume that the process will sleep
and sample the variable at fixed rate I. The mean time for the NMS to detect a

variable change will be the same as (1). If the process requires #, processing time for
each sample, the utilization of processing resources at nodes will be:

Upw =T, (10)
The NMS spends a fraction of total processing time equal to

Uyp = NAz, (11)
3.4 SM Model

For routine monitoring, we assume that L mobile agents travel around the nodes in a
preset pattern. Each agent dwells for a time ¢, at each node (long enough to sample
variable X) and moves to the next node with forwarding delay t,. If a variable change
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is detected, the agent will immediately send a response message to the NMS. The
average time to detect a variable change and report it to the NMS is:

_N@, +1)

T,
MA 2L

+1 o+t L, 12)

Although mobile agents may generally transfer state as well as code between
nodes, this capability is not needed for the routine monitoring application under
consideration. Agents are assumed to be a fixed size I, . The traffic per node is

2LI,,

C,, =—22—+ Al bits/s 13
MA N(ts+tp) r Ot (13)

The total traffic in the network is:

Ll“t‘ + NAIL bits/s (14)

s 4

MA

The NMS handles only NAI bits/s. Mobility of the agents introduces the

additional overhead traffic, at a savings in memory usage per node.
The average memory usage per node is:

Lt ..
= —TMA's  hit . 15
MAUNG@, +1,) " (15

Finally, each node spends a processing time f, within each interval of
N(t, +t,)/ L, implying an average utilization of processing resources:

Lt
U, =—"s 16
YAONG, ) (16)

The utilization of processing resources at the NMS is the same as the WM approach
and equal to (11).

3.5 Comparative Discussion

The precise trade-offs will depend on many parameters, but some general qualitative
observations can be made which are mostly consistent with expectations. First, the
polling rate I" involves a basic trade-off between detection time and total traffic. The

detection time decreases asymptotically to a fixed delay with larger I, but the total
traffic increases linearly with I. With diminishing returns, there is no apparent reason
to choose I" greater than necessary to achieve a target detection time. Another

possible criterion for choice of I' might be a target sampling accuracy, e.g., the
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probability of missing a variable change should be less than some target y. A variable
change may be missed if 2 or more changes occur within a sampling period of 1/TI.
Because changes are a Poisson process, we have

Pr(2 or more changesin1/I") =1 —(1 + -I—{—)e’“r <y (17)

The sampling accuracy clearly increases as a function of I'. Given I, the CS approach

is not scalable to large networks because of the increasing traffic and processing
burden on the NMS.

Second, the HS approach involves more traffic for routine monitoring than the
CS approach. It also has longer delays for the NMS to detect changes. On the other
hand, it reduces the traffic and processing burden on the centralized NMS as
expected, which was the bottleneck in scaling the CS approach. Hence the HS
approach is much more scalable to large networks than the CS approach. In the HS
approach, the chosen number of L mid-level managers has no effect on the traffic or
detection time, but the choice of L is constrained by the traffic and processing burden
on each mid-level manager. Presumably, L should be small to minimize the cost of
implementing mid-level managers, but large L will reduce the traffic and processing
burden on each mid-level manager.

Third, the WM approach has desirable performance in terms of traffic and
detection time, because the monitoring process takes place directly at the managed
node and only variable changes are reported back to the NMS. There is a trade-off in
the choice of sampling rate I'; a faster sampling rate I" will reduce the time to detect

changes (asymptotically to a fixed delay) but consumes linearly increasing processing
time. The selection of I" will depend on the target detection time and constraints on
processor utilization. Generally, this approach appears well suited for routine
monitoring, but our analysis is limited to monitoring a single variable. If multiple
variables are monitored, the memory and processing at each node would increase
proportionally with the number of variables.

Finally, as may be expected, routine monitoring does not show the advantages of
the SM approach. Indeed, all costs of this approach increase linearly with the number
of agents L. It turns out that:

L=NI(t,+1,) (18)

For this number of mobile agents, the mean detection time is equal to the CS and WM
approaches, and the total traffic is N(IT,,, + Al,) bits/s which is comparable to the

other approaches. However, the average memory usage per node is I7,,,?,, which will
increase with I" unlike the other approaches.
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4. Searching for Data at an Unknown Node Location

One of the target applications often cited for mobile code is searching. We now
consider a situation where specific data must be found by sequentially searching a
random number of nodes. It is assumed that Q variables must be examined at each
node; after searching at the n-th node, the search must continue to another node with
probability p(n) or is terminated with probability 1-p(n). This model can also cover
the situation of searching for data at a known node location by letting p(n) = 0 for all
n. If the node location is unknown and equally likely among the N nodes, as assumed
here, then p(n) = (N-n)/(N+1-n) and a search will cover N/2 nodes on average. The
performance of each scheme is measured by the mean time to complete a search. The
costs of interest are the amount of traffic (average capacity), average memory usage,
and utilization of processing resources. We assume that 1, I, ¢, t,, t,, and t, have the
same meaning as in routine network monitoring.

4.1 CS Model

Polling-based approaches are at a disadvantage for searching because all data must be
fetched and processed by the network manager. An average search will take a total
time:

Tos = NQ(t, +1, +2t, +2t,)/2 . (19)
The average traffic handled by each node will be:
Ces =01, +1,)/ 2T bits/s (20)

The total amount of traffic will be:
Ces = NQUI, +1,) 2T bits/s (21

The NMS handles the same total amount of traffic.
Again, agents reside permanently at each node so the memory consumption in
each node is simply a fixed amount M, = B bits.

The average utilization of processing resources per node is calculated as the
processing time for messages divided by the mean search time:

Ues =0t 1 T (22)

Similarly, the NMS spends a total processing time NQ(¢, +¢,)/2 over the duration of
the search, implying an average utilization of processing resources in the NMS:

Ues = NQ(t, +1,)/ 2T (23)
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4.2 HS Model

In the HS approach, it is possible to exploit the L mid-level managers to carry out
searches in parallel. When the data is found, the final results are reported to the high-
level NMS in a response message. It is assumed that all mid-level managers will be
able to terminate their searches when the data is found. The mean time to complete
the search is:

NO(t, +1, +2t. +21)
us = 2L

+2(1, +1t, +1,) 24)

This is approximately shorter than (19) by a factor of L.

The traffic capacity of each node is:
Cus = QU, +1,) ] 2Ty bits/s (25)
The traffic handled by each mid-level manager is approximately

Cys = NOUL, +1,)/ 2LT bits/s (26)

ignoring the initial query message from the high-level NMS. The NMS sends L query
messages and receives one response message over the duration of the search:

Cys = (LI, + 1)/ Tys 27

The hierarachy does not change the memory usage M, = B bits at each node.
The utilization of processing resources at each node is increased from (22) to:

Uys =0t [ Ty (28)
The fraction of total computing time spent by each mid-level manager is:
Uys = NQ(t, +1,)/ 2LT, (29

except for the mid-level manager that found the data will spend slightly more time to
generate a message to the NMS. The processing burden on the high-level NMS is:

Uys = (Ltq +1,)/ Tys 30)

4.3 WM Model

The WM approach differs from the CS approach by sending the agent code to a node
to examine Q variables there and reporting back a result at the end of the task. For
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speed, code may be dispached to L nodes in parallel. On average, N/2 nodes will be
searched. The expected time to complete the search is:

Ty = N(Qt, +1t, +1, +2t +2t))/2L 31
The average traffic handled by each node is

Cum = Uy + 1)1 2Ty (32)

The total traffic in the network is

Cuw = Ny +1,)/ 2T, (33)

The NMS handles the same total amount of traffic.
For memory usage, a dispatched code resides on a node for a time Qt,. The

average memory usage per node is

My = Ot 1y 1 2Ty (34)
The utilization of processing resources at each node is

Uwy = (01, +2t.)/ 2Ty, (3%5)
The utilization of processing resources at the NMS is

Uwu = N(t, +1,)1 2T, (36)

4.4 SM Model

In the SM model, the NMS initially dispatches L mobile agents that search the nodes
sequentially. When the data is found, the agent reports the results back to the NMS,
and all agents will be terminated. This approach reduces the processing burden on the
NMS but the state carried by the mobile agent may increase with each node.

The expected time to complete the search is

_ N(Qt, +1)

T,
MA 2L

1 b+ 428, : (37N

The traffic handled by a node divided by the mean search time is
Cus =(4L1,, +aN)/4LT,, (38)
The total traffic in the network is
Cus =N@4LI,, +aN)/8LT,, (39)

The NMS handles only initial transmission of L agents and receipt of the final
response message:
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Cua =(LIyy + 1) Ty ' (40)
For memory usage, the average memory usage per node is

M,, =Qt,(4LI,, +aN)/8LTy, (41)
The utilization of processing resources at each node is:

Uya =01, 12Ty, 7 (42)

The utilization of processing resources at the NMS is

Uya =Lt +1,)/ Ty, (43)

4.5 Comparative Discussion

We attempt general observations that are independent of the particular parameter
values. First, the CS approach is not scalable because the search time is proportional
to the size of the network. This centralized approach cannot take advantage of the
parallelism in the other approaches. The search time for the other approaches can all
be reduced by a factor of L, the degree of parallelism.
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Figure 2. Search time and total traffic for HS approach with I, =1, =100
bytes, Q =50, t, =t =t = 10 ms, t, = 100 ms, N = 1000.

On the other hand, parallelism will increase the total amount of traffic. Figure 2
shows that the search time (left axis) decreases rapidly with L, but the total traffic
(right axis) increases approximately linearly with L. Hence, there is diminishing
returns with too many mid-level managers. The WM approach exhibits a similar




Distributed Network Management Approaches 403

trade-off. The detection time decreases rapidly with'L, but the total traffic increases
linearly.
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Figure 3: Search time and total traffic for SM approach with a = 500 bits,
1,4 = 6000 bytes, 0 =50, t, =¢, =t, =10 ms, £,=100 ms, 1,=0.01 s, N = 1000.
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Figure 4: Memory usage per node for SM approach with a = 500 bits, I,,, = 6000
bytes, Q = 50, t,=t, =t = 10 ms, 7, = 100 ms, #, = 0.01 s, N = 1000.

The SM approach appears favorable for the searching application. Figure 3
shows that the total traffic for the SM approach grows less than linearly with L,
although the search time decreases rapidly with L. The reason is because the mobile
agents tend to be smaller size on average when the search time is shorter. As L
increases, there are more agents but the average agent is smaller.
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In other aspects as well, the SM approach compares well with the other
approaches. In terms of the traffic and processing burden on the NMS, both SM and
HS approaches are proportional to L and more scalable than the CS and WM
approaches.

Because the SM approach is entirely distributed among the nodes, the memory
usage in the nodes increases with L. That is, the SM approach may impose significant
processing and memory burden on the nodes. However, Figure 4 shows that the
memory usage is less than linear with L.

5. Conclusions

As might be expected, distributed approaches can have major advantages over
traditional centralized network management. However, a single distributed approach
may not be the best for all applications. With the models and analysis here, it appears
that the weak mobility approach performs well for routine monitoring, and the mobile
agent approach is well suited for searching types of applications. However, the trade-
offs between the different approaches need careful quantification before the best
approach can be determined for a specific application.

The relatively simplistic models developed here may be improved in several
ways. For example, the representation of memory and computing resources might be
more realistic. Also, the migration paths of mobile agents could be more complex.
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