
850 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

A Model and Evaluation of Distributed Network
Management Approaches

Thomas M. Chen, Senior Member, IEEEand Stephen S. Liu, Senior Member, IEEE

Abstract—This paper develops an analytical framework to
model and compare centralized and distributed approaches
for network management. Each scheme is evaluated in terms
of performance and scalability for two applications, network
monitoring, and data searching. The results support the intuitive
argument that distributed approaches can have considerable
advantages over traditional centralized network management, but
a single approach may not be best for all types of applications.
Instead, the most appropriate approach for a specific application
should be selected after a careful evaluation. The modeling
framework presented in this paper is intended to quantify the
tradeoffs between different approaches to lend a basis for the
selection decision.

Index Terms—Distributed network management, mobile agents.

I. INTRODUCTION

CURRENTLY, DATA networks are managed mainly
by simple network management protocol (SNMP)

and telecommunications networks by common management
information protocol (CMIP) which are both client-server
approaches [1], [2]. Centralized network management systems
(NMSs) are clients to management agents residing permanently
in each managed network element (NE). Although adequate
for most practical management applications, the limitations
of SNMP—for example, the potential processing and traffic
bottleneck at the NMS—have been recognized for many years.

It has been observed that decentralizing network manage-
ment functions may achieve several benefits [3]–[5]. Distributed
network management offers several perceived advantages: net-
work traffic and processing load in the NMS can be both re-
duced by performing data processing closer to the NEs; scala-
bility to large networks is improved; searches can be performed
closer to the data, improving speed and efficiency; and dis-
tributed network management is inherently more robust without
depending on continuous communications between the NMS
and NEs. Recent attention to distributed network management
has increased because the processing capabilities of routers and
switches have improved considerably and the popularization of
Java and CORBA have brought mobile code concepts closer to
mainstream acceptance [6], [7].

Despite the perceived benefits however, commercial deploy-
ment has been slow for various reasons. The main issue has been
concerns about security and safety [8]. Second, a common plat-

Manuscript received March 20, 2001; revised November 30, 2001.
T. M. Chen is with the Department of Electrical Engineering, Southern

Methodist University, Dallas, TX 75275 USA (e-mail: tchen@engr.smu.edu).
S. S. Liu is with the Verizon Laboratories, Inc., Waltham, MA 02254 USA

(e-mail: steve.liu@verizon.com).
Publisher Item Identifier S 0733-8716(02)03064-0.

form is required to support code mobility [9]. Although various
mobile code systems have been developed over the years, none
has been widely deployed except for the Java virtual machine
and interoperability standards such as Mobile Agent System
Interoperability Facility (MASIF) have been started only re-
cently [10], [11]. Third, misperceptions have often been associ-
ated with mobile code systems. For example, contrary to some
claims, mobile code systems are usually intended to augment
traditional network management systems, not to replace them.
Not every management application warrants the additional com-
plexity and costs (for security, safety, agent mobility, coordina-
tion).

Unfortunately, quantitative studies of decentralized network
management approaches have been infrequent and limited
[12]–[15]. The objective of analysis is not necessarily to
uncover new insights; a quantitative treatment can lend support
to previously known but intuitively argued tradeoffs. However,
it is difficult to model all complexities of a managed network
and any model will be an approximation to a real system.
This paper attempts to present a more comprehensive model
and evaluation than previous studies in a few respects: costs
considered here include more than traffic; the network may be
nonuniform (distances to each NE may differ); the existence
of security and safety mechanisms is recognized; and different
management applications are examined. In Section II, we
develop the basic models and assumptions for four prototypical
management approaches. In Section III, the four approaches
are evaluated for a routine monitoring application to detect
a change in network status. In Section IV, the different ap-
proaches are analyzed for a searching application. Section V
presents a comparative discussion of the results.

II. DISTRIBUTED NETWORK MANAGEMENT

A. Approaches

Centralized network management is inefficient because
every management action depends on the NMS. Clearly, the in-
efficiency can be reduced by distributing network management
functions to a hierarchy of midlevel managers, each responsible
for managing a portion of the entire network, as in SNMPv2
[16]–[18]. Subnetworks can be managed in parallel, reducing
the traffic and processing burden on the highest level NMS.
Typically, the distribution of network management functions
and the organization of managers are fairly static.

In the management by delegation (MBD) approach, manage-
ment functions may be distributed dynamically by dispatching
“delegated agents” to a managed NE where the agent code is ex-
ecuted [3], [19]. The NEs include an “elastic process” that can

0733-8716/02$17.00 © 2002 IEEE

CHEN AND LIU: A MODEL AND EVALUATION OF DISTRIBUTED NETWORK MANAGEMENT APPROACHES 851

dynamically add functions (patches) carried by delegated agents
and delete them after a function is carried out. This dynamic ap-
proach offers the advantage of instantiating management func-
tions (e.g., delegating agent code) only when they are needed,
but involves a cost of additional complexity. Hence, MBD was
proposed only for certain applications where the cost was jus-
tified by the need to reduce processing delay or network traffic
[19].

MBD is an example of “weak mobility” where delegated
agents do not migrate after execution at a NE [12]. Weak
mobility can be implemented by two basic methods: remote
evaluation (REV) or code on demand (COD) [5], [13]. In the
REV method, the code for the delegated task is sent directly
from the manager to the NE where it is executed [20]. In
the COD method, a task but not the code is delegated to the
managed node (the necessary code is fetched from the network,
possibly a trusted code server).

In contrast, a “strong mobility” capability allows an agent to
suspend its execution at one NE, transfer its code and execution
state (and perhaps data) to another NE and resume execution
there. This is usually referred to as a mobile agent although this
term is used inconsistently in the literature [21]. The itinerary
of a mobile agent may depend on the data it finds, so strong
mobility might be expected to be particularly useful for tasks
involving searching for data at an unknown location or collec-
tion of data that is spread out geographically.

B. Models and Assumptions

Previous studies have concentrated on traffic costs assuming a
uniform network (equidistant nodes) and negligible computing
costs. Carzaniga, Picco, and Vigna identified four approaches:
client-server, remote evaluation, code on demand, and mobile
agent [13]. For a uniform network, the approaches were com-
pared in terms of overhead traffic for a data mining application.
Baldi and Picco also evaluated the same approaches for an ex-
ample network monitoring application in terms of total traffic
and the traffic concentrated at the NMS [14]. Mobile agents
were found to be always disadvantageous and remote evalua-
tion was better than client-server under certain conditions. A
similar study is reported by Fuggetta, Picco, and Vigna [12]. Li-
otta, Knight, and Pavlou considered a mobile agent architecture
(only weak mobility) with a hierarchy of network managers and
modeled traffic (bandwidth) costs for a monitoring application
as a function of monitoring duration [15]. Our study examines a
slightly different classification of approaches for a nonuniform
network and attempts to include additional cost metrics such
as delays, computing resources, and security measures in the
model. To discern the relative strengths of each approach, we
consider two scenarios: network monitoring and data searching.

The network management approaches considered here are
shown in Fig. 1. In Fig. 1(a), theclient-server (CS)model repre-
sents the traditional SNMP paradigm where a centralized NMS
polls a network of network elements. The communications
between the NMS and agents is characterized by pairs of query-
response messages for every interaction. Fig. 1(b) represents a
hierarchical static (HS)approach modeled asmidlevel man-
agers, each managing a separate subnetwork ofnetwork el-
ements. A two-level hierarchy is considered here although mul-

Fig. 1. Centralized and distributed network management approaches.(a)
Client-server. (b) Hierarchical static. (c) Weak mobility. (d) Strong mobility.

tiple hierarchical layers may evidently be possible. Each subnet-
work is managed in a client-server manner and midlevel man-
agers may communicate with a centralized high-level NMS as
needed.

In the weak mobility (WM)approach, the NMS distributes
code to specific NEs where the code is executed, as shown in
Fig. 1(c). After performing its specific task, the code will typ-
ically report results back to the NMS and expire at the NE.
During execution, the code does not have a capability for au-
tonomous migration to other NEs. In thestrong mobility (SM)
approach, the NMS dispatches one or more agents to carry out a
specific task, as shown in Fig. 1(d). Agents have the capability to
autonomously travel (execution state and code) among different
NEs to complete its task. The route may be predetermined or
chosen dynamically depending on the results at each NE.

Generally, a performance metric of interest will be the time to
complete a specific task. To model nonuniform delays through
the network, we represent packet delay by a parameterized
random variable which is dependent on the size of
the network, nodes. The average packet delay is denoted
by . Packet processing times are generally assumed to
be constants, although they may be variable and effected by
processor load in actuality. We will also be concerned with the
scalability of each approach in terms of costs in traffic (at the
NMS and NEs), memory resources and average utilization of
processing resources.

The CS approach represents a network being managed within
a single administrative domain and the need for security is as-
sumed to be minimal. In the HS approach with multiple midlevel
managers, packets may need to be authenticated and encrypted
against unauthorized access to management data. The authenti-
cation and encryption mechanisms in the SNMPv3 user-based
security model are assumed to be sufficient in this case [22].
These mechanisms involve the computation of MD5 or SHA-1
message digests for authentication and encryption by DES. The
additional security is factored as longer packet processing times
and additional message overhead.

852 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Many current mobile code systems are based on Java, there-
fore, we examine the Java security model for the WM and SM
approaches [8], [23], [24]. The original Java Development Kit
(JDK) security model depended on the sandbox model con-
sisting of byte-code verification, a class loader to install each
applet in a separate name space and a security manager to me-
diate run-time access to system resources. JDK 1.1 introduced
digital signatures to allow correctly signed remote code to be
treated as trusted local code. JDK 1.2 enabled fine-grained ac-
cess control based on individual access permissions. A new Java
Authentication and Authorization Sevice allows authentication
by a variety of credentials such as passwords, Kerberos tickets,
or public key certificates [25]. As an example, we might assume
additional time will be required to fetch and process certificates
and certificates will increase bandwidth requirements.

III. A N ETWORK MONITORING APPLICATION

We first consider the problem of detecting a random change
in a variable at an arbitrary NE. Changes in the variable
are assumed to occur randomly as a Poisson process with rate

(i.e., times between changes are independent exponential
random variables with mean) at any NE. The main per-
formance metric of interest is the mean timeto detect the
change. The costs of interest include:

amount of traffic measured as capacity (b/s) at the NMS
and NEs;
average amount of memory (bits) consumed at NEs;
average utilization of processing resources at the NMS
and NEs.

A. CS Approach

In the CS approach, the NMS will regularly poll each NE to
retrieve the value of variable . The CS approach is character-
ized by these variables:

polling interval between consecutive requests;
size of each query message (bits);
size of each response message (bits);
size of packet header (bits);
processing time for a query or response message at a NE;
processing time for a query message at NMS;

: processing time for a response message at NMS.
Within any polling interval of , the Poisson process implies

that a variable change is likely to occur at any time uniformly
distributed within the interval. The average time until the next
query is received at the NE after a variable change is. After
receiving the query, the NE will transmit a response message to
the NMS. Including all processing times, the expected time for
the NMS to detect a variable change is the sum

(1)

Each poll consists of a pair of query-response messages, so
each NE will handle b/s. The NMS must handle
the total traffic from nodes

b/s (2)

The traffic bottleneck at the NMS is evident from the linear de-
pendence on .

A simple agent resides permanently at each NE and memory
consumption is not an issue. The agent spends a timeto
process a query or response message in every polling interval

. The fraction of time spent by each NE on packet processing
is . Of greater concern is the fraction of time spent by the
NMS on packet processing which is

(3)

The processing bottleneck at the NMS is obvious because the
NMS will be completely occupied when the network size is

B. HS Approach

In the HS model, the monitoring function is delegated from
the high-level NMS to midlevel managers which simulta-
neously manage subnetworks of nodes in client-server
fashion.The costs for encryption and authentication are repre-
sented by an additional packet processing delayat sender and
receiver and an overhead per packet ofb. The additional se-
curity delay may not be substantial compared with other de-
lays because encryption techniques and equipment are common.
With the same polling rate per node, the expected time for a mi-
dlevel manager to detect a variable change is

(4)

which is better than (1) if . We must
add the additional time to report the variable
change to the high-level NMS; then the total expected time for
the variable change to be detected by the high-level NMS is

(5)

The detection time is longer than (1) due to the additional secu-
rity and longer route through the midlevel manager.

With the same polling interval , the operation of each NE is
not drastically different from the CS case. Each NE will handle

b/s, a slight increase due to security
overhead. Each midlevel manager must handle

b/s between the network elements being
monitored and send b/s on average to the
high-level NMS if all variable changes are detected. The mi-
dlevel managers are beneficial if they perform some data fil-
tering and report only variable changes to the high-level NMS.
The NMS is relieved of sending query messages and just re-
ceives a total

b/s (6)

of response messages. Although the traffic (6) is still linearly
dependent on , it should be less than the CS case (2) if the
polling rate is greater than the variable change rate.

Processing resources are a more important issue than memory
consumption (which is constant as in the CS case). Each mi-
dlevel manager spends a total time
on packet processing in every polling interval, or fraction of
time . For the midlevel managers
to avoid being completely occupied with packet processing, we
need at least midlevel

CHEN AND LIU: A MODEL AND EVALUATION OF DISTRIBUTED NETWORK MANAGEMENT APPROACHES 853

managers. The fraction of total computing time spent by the
high-level NMS is

(7)

which is unavoidably dependent on the total rate of variable
changes in the network. The processing bottleneck at the NMS is
partially relieved and the NMS can cover up to
nodes.

C. WM Approach

In the WM approach, the code for network monitoring is dis-
patched initially from the NMS to all NEs, fetched from trusted
code servers, or copied from NE to NE. For routine network
monitoring, there is no need to dispatch code dynamically and
this advantage of the WM approach will be imperceptible. The
NEs may be programmed to report the variablevalue at pe-
riodic intervals of or more intelligently report only variable
changes. The former approach will reduce the traffic compared
with the CS case by eliminating the need for query messages,
while the latter approach will reduce the traffic further to simply

b/s (8)

to the NMS. We have assumed the same level of security as the
HS approach because only messages and not program code are
exchanged.

The agents may be programmed to detect variable changes
immediately or “sample” the current variable value at periodic
intervals of . The latter approach is assumed because a con-
tinuous process might consume excessive computing resources.
After a variable change, the average time until the next sample
will be . Including the time to generate and transmit a re-
sponse message to the NMS, the mean time to detect a variable
change will be

(9)

If agents sample the variable periodically, then processing
time and memory consumption at the NEs are not an issue.
The processing time at the NMS is more interesting and will
depend on whether agents report periodically or only variable
changes. If agents report periodically, the NMS may become a
processing bottleneck as in the CS case. If agents report only
variable changes, the fraction of processing time spent by the
NMS on packet processing will be the same as (7).

D. SM Approach

Mobile agents can monitor a number of nodes in turn,
reducing the amount of traffic between the NMS and NEs com-
pared with the CS approach. Compared with static approaches,
mobile agents will not continuously consume memory re-
sources. For routine monitoring, we assume thatmobile
agents each travel around a separate group of network
elements in a preset pattern. Each agent dwells for a time
at each node (long enough to sample variable) and moves
to the next node with forwarding delay . Each move
must be associated with an additional cost to authenticate and
install the agent at the next NE. This cost could be substantial
involving messages and computing time, but depends a great

deal on the particular system [26]. For generality, we represent
the additional cost as a random variable with mean .
If a variable change is detected, the agent will immediately
send a response message to the NMS. The time for an agent to
visit each NE is (), so the effective polling
interval per NE is . Including the
time to generate and transmit a secure response message to the
NMS, the mean time to detect a variable change will be

(10)

Although mobile agents may generally migrate state as well
as code, the capability to accumulate data is not needed for
the routine monitoring application under consideration. Thus,
agents are assumed to be a fixed size b including code and
certificate. Each NE must handle the receipt and forwarding of

b in every polling interval, or a total traffic of

b/s (11)

Assuming that agents report only variable changes, the NMS
handles the same traffic as the WM case (8).

Unlike the weak mobility approach, mobile agents will con-
sume memory only during its dwelling time in each polling
interval. Hence, the average memory usage per node is

b (12)

Finally, considering the time to authenticate and install each
agent, each NE spends a processing time () in each
polling interval, implying an average utilization of processing
resources

(13)

The utilization of processing resources at the NMS is the same
as the WM and HS cases (7).

IV. A D ATA SEARCHING APPLICATION

Searching is often cited as one of the primary applications for
mobile code. We now consider a situation where specific data
must be found by sequentially searching a number of NEs. It is
assumed that variables must be examined at each NE; after
searching at the th NE, the search must continue to another
NE with probability or can be terminated with probability

. We assume that the CS approach must perform the
search sequentially, whereas the other decentralized approaches
are capable of a certain degree of parallelism. In the decentral-
ized approaches, searches are performed simultaneously in
disjoint groups of network elements. As shown in Fig. 2,
this is a fairly general navigation model that can cover the spe-
cial cases that the target data resides at a known NE (by letting

and for all), all NEs must be searched se-
quentially (by letting), or all NEs are searched at the
same time (by letting). If the data location is unknown
and equally likely among the network elements, as assumed
here, then and a search will cover

network elements on average.

854 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Fig. 2. Search patterns. (a) General pattern withL parallel searches and continuation probabilityp(n). (b) Special case withL = 1 andp(n) = 0 for all n. (c)
special case withL = 1. (d) Special Case withL = N .

A. CS Approach

The centralized polling approach is clearly disadvantageous
for searching because all data must be fetched and processed
by the NMS. We assume that a “bulk query” message (as in
SNMPv2) can retrieve a block of variables in a single bulk-
response message. Because the bulk-response message is now
larger, the bulk-response message is b and requires a
processing time and at the NE and NMS, respectively.
Each query-response message pair involves a total time of (

) including packet processing times
and forwarding delays. An average search will take a total time
of

(14)

The total traffic in an average search will consist of
query-response message pairs or b. Di-
vided by the average search duration, the total amount of traffic
through the NMS will be

b/s (15)

The processing burden on the NMS is a concern because the
search is conducted centrally. The NMS spends a processing
time () for each query-response message pair, implying
an average fraction of time spent on packet processing

(16)

B. HS Approach

In the HS approach, it would be advantageous to exploit the
midlevel managers to carry out searches in parallel, or otherwise
the search time will be similar to the CS case. The high-level
NMS can distribute an initial query message to all midlevel
managers. When the data is found, the final results are reported
to the high-level NMS in a response message which will then
terminate all searches with an appropriate message to all mi-
dlevel managers. The mean time to complete the entire search
is the sum of searching time by a midlevel manager and time to
report from the midlevel manager to the NMS

(17)

While the search time by a midlevel manager over nodes is
shorter than (14), there is an additional delay due to the response
message reporting the search result to the NMS.

The total traffic in an average search will be unchanged (i.e.,
each midlevel manager will handle query-response mes-
sage pairs on average). Instead of all traffic going through the
NMS, the management hierarchy will shift the traffic load to
the midlevel managers. The NMS handles only the initial query
messages and the final response message with the search results.
Divided by the average search time, the traffic through each mi-
dlevel manager will be

b/s (18)

CHEN AND LIU: A MODEL AND EVALUATION OF DISTRIBUTED NETWORK MANAGEMENT APPROACHES 855

The traffic is slightly higher than the CS case (15) because the
search areas are instead of network elements and the
packet forwarding time is shorter than .

The management hierarchy will also reduce the computa-
tional burden on the NMS to processing the final response mes-
sage. Instead, the processing burden will be shifted to the mi-
dlevel managers which will spend an average fraction of time
on packet processing

(19)

The processing is more intense than the CS case (16), again due
to the smaller search areas and shorter packet forwarding time.

C. WM Approach

In the WM model, agent code is dispatched to an NE to ex-
amine variables and report back the search result. Agents have
no autonomous migration capability and the search is controlled
centrally requiring continual communications with the NMS.
For efficiency, agents may be dispatched simultaneously. A
search by these agents involves a time to dispatch an agent of
size b consisting of code and certificate, authenticate and
install the code, perform the search ofvariables and report
the results to the NMS in a secure response message. The time
to dispatch an agent will be denoted by . For simplicity, the
time to authenticate and install the code will be assumed to be
the same random variable used earlier for the SM case. The
time to search variables is where was used earlier to
denote the time to sample one variable value. Including packet
forwarding times, the total expected time to complete the search
will be (). On av-
erage, this search may have to be repeated times before
the target data is found. Hence, the expected time to complete
the entire search will be

(20)
The centralized control raises concern about a possible traffic

bottleneck at the NMS. The NMS sendsagents and receives
response messages within an average search duration, implying
an average traffic flow of

b/s

(21)
The memory consumption and processing times at the NEs

are not a major concern because agents visit each NE for a frac-
tion of the total search time. Of greater concern may be the pro-
cessing burden at the NMS. The NMS spends processing time to
dispatch agents and processresponse messages within an
average search time. The fraction of time spent on processing
by the NMS will be

(22)

D. SM Approach

In the SM model, the NMS will dispatch mobile agents
that will each search through subnetworks of network el-

ements. On average, network elements will be visited
by each agent before the target data is found. When the data is
found, the agent will report the search results back to the NMS.
For efficiency, the infrastructure must support means for agent
coordination to terminate all searches after the data is found.
This approach reduces the processing burden on the NMS but
the state carried by the mobile agent may increase with each
node because agents retain some data about their completed
searches. In addition to b of code and certificate, a mobile
agent may carry b of state after visiting the th NE. For
simplicity, the state is assumed to be a linear function

.
The time for an agent to visit each NE is (

) consisting of a time to search variables, migrate to the
next NE and authenticate and install itself at the next NE. This
ignores the effect of the growing state on the forwarding delay.
Since each agent visits network elements on average, the
total expected search time including a secure response message
to the NMS will be

(23)
In this distributed approach, the NMS is relieved of traffic

and processing. Of greater concern is the traffic and processing
burden at NEs. Since an agent visits nodes, the average
agent size will be approximately b. The average
traffic handled by each NE will be

b/s (24)

For memory consumption, a mobile agent will reside at a NE
for a time . On average, nodes are visited; divided by

nodes and the mean search time, the average memory con-
sumption per NE will be

(25)

By a similar analysis considering that an agent will spend a
time at a NE during each search, the average fraction of
time by each NE on processing will be

(26)

V. COMPARATIVE DISCUSSION

A. Network Monitoring

The limited scalability of the CS approach for network mon-
itoring is obvious from the linear dependence of traffic and pro-
cessing utilization at the NMS on the network size. We found
that the processing bottleneck limits the network size to

.

856 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

To compare the HS approach, the packet forwarding time
might be considered as proportional to the diameter of

a circle with an area of . Reducing the circular area to
will reduce the diameter by a factor of . Hence, we can con-
sider a rough approximation .

In the HS approach, the number of midlevel managers,, is
clearly an important parameter effecting performance. There is
a minimum value of to avoid a processing bottleneck at the
midlevel managers depending on and . The HS approach
appears to be much more scalable than the CS approach, if
can be chosen sufficiently large, but in practice the improved
performance must be weighed against a cost for additional mi-
dlevel managers.

The WM approach exhibits favorable performance capable of
minimizing the detection time and traffic, under the assumption
that agents are programmed with the intelligence to report only
variable changes. However, we have not exploited the capability
of code mobility in this scenario.

The performance of the SM approach in (10) is very depen-
dent on the dwelling time per node,and the time to authenti-
cate and install agents, . It is likely that could be a signif-
icant factor because mobile agents will require strong security
measures for authentication. Performance can be improved to
some extent by increasing but this will linearly increase the
traffic and processing burden on each NE.

B. Searching for Data

The limitations of the CS approach are obvious for a
searching application because the search is conducted sequen-
tially and cannot take advantage of parallelism unlike the other
approaches. The search time for the other approaches can all
be reduced by a factor of, the degree of parallelism. For the
HS approach, if the packet forwarding delays are dominant
compared with packet processing times, the search time will
be approximately proportional to . For the WM
approach, the search time in (20) is proportional to , but
very large might cause a processing bottleneck at the NMS
which controls the search.

The search time for the SM approach is also proportional to
and can be reduced by increasing the number of mobile

agents, . It is not clear from (24) that higher will necessarily
increase the traffic burden on NEs; although each NE will be
visited by a mobile agent more often, the average size of mobile
agents will be shorter (they do not accumulate as much state
because the search time is shorter).

VI. CONCLUSION

Although results are not surprising, this study attempted to
provide a quantitative approach to evaluating different network
management approaches. The traditional CS approach appeared
to be worse than the distributed approaches in performance and
scalability. The HS approach with a sufficient number of mi-
dlevel managers can successfully eliminate the traffic and pro-
cessing bottleneck of the CS approach, but the benefits have to
be weighed against the practical costs of deploying more mi-
dlevel managers. The routine monitoring application did not
stress the advantages of the WM approach because the capa-
bility to dynamically delegate code was unnecessary. For data
searching, the WM approach can perform well by exploiting

parallelism, but the NMS can be a potential bottleneck. The SM
approach has the potential to perform well for monitoring but
not if the additional overhead required for strong security is sub-
stantial. Similarly for data searching, the potential benefits of
mobile agents have to weighed against the additional costs re-
lated to security and migration of code and state.

The study supports the argument that a single network man-
agement approach will not be best for all types of applications.
Instead, the most appropriate approach for a specific applica-
tion should be selected after a careful evaluation of the costs
following the modeling framework here.

REFERENCES

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network
Management Protocol (SNMP),” IETF, RFC 1157, 1990.

[2] “Information Technology—Open Systems Interconnection-Common
Management Information Protocol Definition,” ITU-T, Geneva, ITU
Recommendation X.711, 1992.

[3] G. Goldszmidt and Y. Yemini, “Delegated agents for network manage-
ment,” IEEE Commun. Mag., vol. 36, pp. 66–70, Mar. 1998.

[4] M. Kahani and H. Beadle, “Decentralized approaches for network man-
agement,”Computer Commun. Rev., vol. 27, pp. 36–47, July 1997.

[5] M. Baldi, S. Gai, and G. Picco, “Exploiting code mobility in decentral-
ized and flexible network management,” presented at the Int. Workshop
on Mobile Agents, Berlin, Apr. 1997.

[6] B. Joyet al., The Java Language Specification, 2nd ed. Reading, MA:
Addison-Wesley, 2000.

[7] S. Vinoski, “CORBA: Integrating diverse applications within distributed
heterogeneous environments,”IEEE Commun. Mag., vol. 35, pp. 46–55,
Feb. 1997.

[8] M. Greenberg, J. Byington, and D. Harper, “Mobile agents and security,”
IEEE Commun. Mag., vol. 36, pp. 76–85, July 1998.

[9] V. Pham and A. Karmouch, “Mobile software agents: An overview,”
IEEE Commun. Mag., vol. 36, pp. 26–37, July 1998.

[10] D. Milojicic, F. Douglis, and R. Wheeler,Mobility Processes, Computers
and Agents, D. Milojicic, F. Douglis, and R. Wheeler, Eds: ACM Press,
1999.

[11] D. Milojicic et al., “MASIF: The OMG mobile agent system interop-
erability facility,” in Proc. 2nd Int. Workshop on Mobile Agents, Sept.
1998, pp. 50–67.

[12] A. Fuggetta, G. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Trans. Software Eng., vol. 24, pp. 342–361, May 1998.

[13] A. Carzaniga, G. Picco, and G. Vigna, “Designing distributed applica-
tions with mobile code paradigms,” inInt. Conf. Software Engineering,
1997, pp. 22–32.

[14] M. Baldi and G. Picco, “Evaluating the tradeoffs of mobile code de-
sign paradigms in network management applications,” inProc. ICSE’98,
Kyoto, Japan, Apr. 19–25, 1998, pp. 146–155.

[15] A. Liotta, G. Knight, and G. Pavlou, “Modeling network and system
monitoring over the internet with mobile agents,” inProc. NOMS’98,
1998, pp. 303–312.

[16] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Transport
Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2),” IETF, RFC 1906, 1996.

[17] M. Siegl and G. Trausmuth, “Hierarchical network management: A con-
cept and its prototype in SNMPv2,”Comput. Netw. and ISDN Syst., vol.
28, pp. 441–452, Apr. 1996.

[18] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Coexistence Be-
tween Version 1 and Version 2 of the Internet-Standard Network Man-
agement Framework,” IETF, RFC 1908, 1996.

[19] K. Meyer et al., “Decentralizing control and intelligence in network
management,” inProc. 4th Int. Symp. Integrated Network Management,
May 1995, pp. 4–16.

[20] J. Stamos and D. Gifford, “Remote evaluation,”ACM Trans. Prog. Lang.
and Syst., vol. 12, pp. 537–565, Oct. 1990.

[21] A. Bieszczad, B. Pagurek, and T. White, “Mobile agents for network
management,”IEEE Commun. Surveys, vol. 1, no. 4Q, pp. 2–9, 1998.

[22] U. Blumenthal and B. Wijnen, “User-Based Security Model (USM) for
Version 3 of the Simple Network Management Protocol (SNMPv3),”
IETF, RFC 2574, 1999.

[23] G. McGraw and E. Felten,Java Security: Hostile Applets, Holes, and
Antidotes. New York: Wiley, 1997.

CHEN AND LIU: A MODEL AND EVALUATION OF DISTRIBUTED NETWORK MANAGEMENT APPROACHES 857

[24] L. Gong et al., “Going beyond the sandbox: An overview of the new
security architecture in the Java development kit 1.2,” presented at the
USENIX Symp. Internet Technology and Systems, Dec. 1997.

[25] C. Lai et al., “User authentication and authorization in the java plat-
form,” presented at the 15th Annual Computer Security Applications
Conf., Dec. 1999.

[26] M. Powell and B. Miller, “Process migration in DEMOS/MP,” inProc.
9th ACM Symp. Oper. System Principles, Oct. 1983, pp. 110–119.

Thomas M. Chen (S’81–M’88–SM’96) received the B.S. and M.S. degrees
in electrical engineering from the Massachusetts Institute of Technology, Cam-
bridge, MA, and the Ph.D. degree in electrical engineering from the University
of California, Berkeley

He is an Associate Professor in the Department of Electrical Engineering and
a faculty affiliate of the Linda and Mitch Hart e-Center at Southern Methodist
University, Dallas, TX. Prior to joining SMU, he worked on ATM research at
GTE Laboratories (now Verizon), Waltham, MA. He is a senior technical editor
for IEEE Network, a senior technical editor forIEEE Communications Maga-
zine, past founding editor ofIEEE Communications Surveysand an associate
editor forACM Transactions on Internet Technology. He is the coauthor of the
monograph,ATM Switching Systems(Artech House, Norwood, MA, 1995).

Dr. Chen was the recipient of the IEEE Communication Society’s Fred W.
Ellersick best paper award, in 1996.

Stephen S. Liu (S’74–M’79–SM’88) received the B.S. and Ph.D. degrees
in electrical engineering from National Cheng-Kung University, Taiwan, and
Georgia Institute of Technology, Atlanta, GA, respectively.

He codeveloped the ISO and ANSI standard CRC-32 error detection code
polynomial used on Ethernet and various high-speed data networks and coau-
thored the book,ATM Switching Systems(Artech House, Norwood, MA, 1995).
Currently, he is a member of Technical Staff in the NGN Backbone Group, Ver-
izon Technology Organization. His current interests are in optical networking
technologies.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

