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TIME-DEPENDENT BEHAVIOR OF FLUID BUFFER MODELS
WITH MARKOV INPUT AND CONSTANT OUTPUT RATES*

THOMAS M. CHEN' AND VIJAY K. SAMALAM?

Abstract. The authors study a method for the analysis of fluid buffer models with Markov input
rate and constant output rate. In telecommunications applications, the constant output rate typically
represents a fixed-rate transmission channel. Given the initial system state, the conditional (time-
dependent) survivor function and moments of the buffer content are characterized as the solution of
an integral equation. The method depends on the solution of a first passage time problem for the
cumulative input process (an integrated Markov process) which is described by a Fredholm integral
equatjon of the second kind. Under appropriate conditions, the integral equation has a Neumann
series solution that can be found by successive approximations. Numerical results are presented
for a specific example of a buffer shared by a number of input sources varying as independent
Ornstein~Uhlenbeck diffusion processes, which may be used, for instance, as a model for statistically
multiplexed variable bit-rate video.
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1. Introduction. Fluid buffer models are natural for problems involving con-
tinuous flow, e.g., the control of dams (see Zuckerman [27]), the virtual waiting time
in the G/G/1 queue (Prabhu [20]), or some stochastic problems arising in economics
(Harrison [8]). In addition, fluid models are often useful as approximate models for
certain queueing and inventory systems where the flow consists of discrete entities,
but the behavior of individuals is not important to identify for performance analysis.
For instance, rush-hour traffic congestion has been approximated by a deterministic
fluid model (Newell [18]). A diffusion approximation for the GI/GI/1 queue can be
made under heavy traffic conditions based on a Central Limit Theorem argument
(see Gelenbe [5] and Kobayashi [13]). Another example is a queue with time-varying
arrival rate that may temporarily exceed the service rate; fluid approximations are
capable of capturing the queue fluctuations occurring during those overload intervals
(see Norros et al. [19]).

In telecommunications applications, fluid buffer models are usually assumed to
have a constant output rate which typically represents a fixed-rate transmission chan-
nel. An example is the stochastic fluid model with birth-death input rate process
and constant output rate proposed by Anick et al. [1] for statistically multiplexed
on-off data sources. The model has also been successfully applied to the steady-state
analysis of statistically multiplexed packet voice (see Daigle and Langford [3]) and
packet video (Maglaris et al. [16]). A related fluid model, where the input rate is an
Ornstein-Uhlenbeck (O-U) diffusion process, has been considered for packet video
(Simonian [24]). .

Although fluid buffer models are often simple to describe, their analysis may be
unexpectedly difficult. Most studies of fluid buffer models have been limited to the
steady-state distribution of the buffer content, e.g., [1]. In this paper. we consider
general fluid buffer models with Markov input and constant output rates which in-
cludes the models of [1], [3], [16], and [24]. Markov processes are a broad class of
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stochastic processes useful for modeling many physical phenomena, and they often
allow a tractable analysis. Instead of the usual approach involving partial differential
equations, our approach depends on a sample path mapping and the solution of a
first-passage time problem described by a Fredholm integral equation of the second
kind. Under appropriate conditions, the integral equation has a series solution that
can be calculated by successive approximations. The method is capable of yielding the
conditional (time-dependent) survivor function and moments of the buffer content, as
well as the steady-state distribution. The time-dependent behavior is important for
some control applications and studies of the rate of convergence to a steady state.
In comparison with the approach of partial differential equations, the method is not
necessarily more tractable for explicit results, but integral equations are often more
amenable for numerical solutions.

Numerical results are given for a specific example of a statistical multiplexer with
input sources varying as independent O-U diffusion processes. This particular case
arises, for instance, in the characterization of low-motion variable bit-rate video [16],
[24]; the heavy-traffic limit of the stochastic fluid model when the number of sources is
large (see Knessl and Morrison [12]); and the approximation of large video conference
networks (Ustunel and Choukri [26]).

2. Model description. We consider a fluid buffer model with stochastic input
ratc X, and constant output rate R. As mentioned, this situation is often encountered
in telecommunications where the constant output rate represents a fixed-rate trans-
mission channel. It is assumed that X, is a Markov process such that the integrated
process fo X dr, the cumulative input, has continuous sample paths (for instance,
X: may be piecewise-continuous). When the buffer is not empty, the rate of change
in the buffer content or queue length, Q,, depends on the difference X; — R; and when
the buffer is empty, it remains empty until X, exceeds R. More specifically, Q; evolves
according to

(1) —(—Z—Q— Xy — R, ifQ;>00r X; > R or both,
dt ¥t )0, if Q; =0and X; <R.

It should be recognized that Q; is a deterministic function of the sample path of
X¢, but it is useful to consider (X;,Q;) as a bivariate Markov process representing
the state of the system. Given the initial state (Xo, Qo) = (a,b), b > 0, our objective
is the joint conditional survivor function

(2) h(t,z,qla,b)dz = Pr{z < X; < z + dz,Q; > qla,b}.
From h(t,z,qla,b) we will obtain the conditional survivor function of Q;,
3) H(tgla,t) = [ hit.z.qla,8)dz = Pr{Q. > dla,b),
and the conditional moments E(QF|a, b).

3. Relation between Q; and Y;. In many cases, the usual approach of partial
differential cquations for the bivariate process (X;, Q;) is tractable only for the steady-
state distribution; cf. [1], [16], and [24]. Instead, we shall introduce the integrated
process

(4) YtEb+/t(X,—R)dT
0
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which has the same behavior as Q; described in (1) except ignoring the zero boundary,
and then relate Y; to the actual Q;. Note that Y; has continuous sample paths by
previous assumption. The transition density function p(t,z,y|a,b) of the bivariate
Markov process (X, Y;) satisfies the same partial differential equations as the tran-
sition density of (X, @:) except freed from the complicated boundary condition at
Q: = 0 and thus may be simpler to solve. For instance, if X, is a diffusion process with
infinitesimal mean p(z) and infinitesimal variance o?(x), then p(t, z,y|a, b) requires
the solution of the backward equation

8 1, & 9 9
(5) 5P =35° (l‘)wp'f-ﬂ(x)égp"'(x-}?)a—yp, —00 <y < oo

or the corresponding forward equation. This backward equation for (X;,Y;) is very
similar to the backward equation for X; alone except for the presence of the last
term, and the usual solution methods can be attempted. (For examples of diffusion
processes with solvable backward equations, see [10, Ch. 15].) The following approach
can be applicable if p(t, z, y|a, b) is known explicitly or computable.

Let the conditional probability density function of ¥; be denoted as r(t,y|a,b) =
ffzo p(t,z,yla, b) dz. Our approach is to obtain the survivor function of Q, in terms of
p(t,z,yla,b) and r(t, y|a,b), which is possible by means of a direct mapping between
the sample paths of ¥; and Q;. Define the minimum of Y; within the time interval
[0,1] as

(6) L= O%EfstYT'

Then one can verify the sample path relation:
(7) Q: =Y, — min(0, L,)

(see Harrison [8]). On the right-hand side, Y; represents the cumulative input minus
the cumulative potential output, and the second term may be interpreted as the
amount of potential output lost due to the buffer being empty.

It can be inferred from (4) and (7) that Q; will remain bounded in the limit
t — oo if and only if.

¢
(8) lim [ (X, - R)dr < oc.

t—00 0

Assuming that X, is ergodic in the sense that its time-average converges to its steady-
state mean, one can substitute (E(X;) — R)t in the limit in (8); then it follows that

E(Xo)

1
& <

(9) p=

is a sufficient condition for the system to be stable, where p is the utilization factor.
Not surprisingly, (9) means that the system is stable if the long-term average input
rate is less than the output rate R.
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From the relation (7), we can rewrite (2) as
h(t,z,qla,b) dx

=/ Priz < X, <z +dz,y <Y; < y+dy,min(0, L) < y — gla, b}

y=—o00

(10) o

=dw/ p(t,z,yla,b) dy
q

q
+/ Priz < X; <z +dz,y<Y; <y+dy L <y—qla,b}.
y=—00

The unknown quantity is the joint probability distribution of (X,Y,L) in the last
integral. Since the minimum of a random process is directly related to its first passage
times (or hitting times), we have now essentially a first passage time problem for the
process Y;.

Define the first passage time T, = inf{t > 0: Y; = y < b} and the joint probability
density function,

(11) é(t, z,yla,b) dtdz = Pr{t <T, < t+dt,z < X; < 2+ dz|a, b}.

That is, (11) is the probability that Y; hits the level y from above for the first time
during (t,t + dt) with the slope (z — R). From the Markov property of the bivariate
process (X;,Y;), we can establish for z < b

Pri{r < X; <z+dzr,y<Y; <y+dy, L < z|a,b}

(12) R t
=dxdy/_ /0p(t—T,m,ylﬁ,z)¢(n§,zla,b)dfdé-

The event {L; < 2} in the left-hand side of (12) implies that Y; must hit the level
z with negative slope at some time 7 < t because Y; is continuous. The right-hand
side of (12) is the total probability of all such sample paths of (X;,Y:). (For related
results, see Goldman [6] and McKean [17].)

After substituting (12) into (10) and then observing that p(t, z, y|a,b) = p(t,z, y+
cla, b+ ¢), we obtain an expression for h(t, z, gla,b) in terms of the first passage time
probability density function ¢(t,z,yla,b).

LEMMA 3.1. Fort >0, —co<z <00, q=0,

A(t, 7, qla, b) = / p(t, 7. yla, b) dy

q
(13) Rt
T Ty dy 70 ) ab d d
+/_m/0p(t r, 2, ¢l€,0) f(r, £|a, b) dr dt

where we have defined

0
(14) f(t,xla,b)E/- o(t, z,yla,b) dy.

Ignoring z on both sides of (13), the lemma expresses the probability of the event
{Q. > q} as the sum of probabilities of the events {Y; > ¢} and {¥; < g and L; <
Y, — q}. The last term in (13) recognizes that Y¥; =y < ¢ and L; < y — ¢ implies Y-
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(0 < 7 < t) must have crossed the level (y — g) before time ¢; it sums the probability
of all such sample paths identified by their first level crossing times.
We offer an interpretation of f(t,z|a,b). For z < R, (14) is by definition

0
(15)  f(t,zla,b)drdt = / Prit<T, <t+dt,z < X; < z + dzl|a,b} dy.

y=—o0

It is relevant to apply a geometric argument made by Rice [22] and observed later by
Siegert [23] and Goldman [6]. Forall t < Ty(y < b), note that Y; 4y = Y;+(X;—R)dt >
y, and the event of Y; crossing the level y from above with slope (z — R) for the first
time during (¢,¢+dt) is equivalent to the event {Y; = Ly and y < Y; < y+ (R—z)dt}.
This implies the substitution dy = (R — z)dt in (15), which leads to

flt,zla,b)drdt

(16) 0
-——/ (R—x)Pr{a:<Xt<:c+dx,y<Yt=Lt<y+dyla,b}dt.
y=-00

Finally, after integration over y and recalling (7), one can make the interpretation
f(t,zla,b)de = (R—z)Pr{z < X; <z +dz,Y, = L; < Ola, b}

a7)
=(R-z)Pr{z < X; < T+dz,Q; = Ola, b}.

Through Lemma 3.1 we have translated the original problem into a first passage
time problem by expressing h(t, z, g|a, b) in terms of the unknown function f(t, z]a,b).
Now it remains to solve for f(t,z|a, b).

4. Fredholm integral equation for f(t,z|a, b). The usual approach for find-
ing first passage time probabilities via partial differential equations can be difficult,
even numerically, due to complicated boundary conditions (e.g., see Hagan [7]). We
follow a different approach here based on the fact that the probability density function
o(t, z,yla, b) also satisfies an integral equation.

LEMMA 4.1. Forz < R, y <b,t >0, the first passage time density o(t, z,yla,b)
satisfies the following integral equation:

o(t, z,yla,b) = (R — z)p(t, z,yla, b)
(18)

Rt
- | [ (R= ot~ 72,06, 000(. &, yla.b) dr de.
R —o0 J0
Proof. Define
(19) Y(t,z,yla,b)dedy=Priz < X, <z +dr,y<Y, =1, < y + dyla, b}.

Recall the previous discussion concerning the interpretation of f(t,z]a,b) which es-
tablished that

(20) (R—z)¥(t,z,yla,b) dt dz = ¢(t,z,y|a, b) dt dz
for y < b, x < R. Equation (12) may be rewritten as

Pri{z < Xy <z +dz,y <Y, <y+dy, Ly > 2|a,b} = p(t, z,y|a, b) dz dy

(21) R t
—dzx dy/ /0 (R—=&p(t —7,2,yl¢,2)¥(r,£, z]a, b) dr dE.
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Multiplying by (R — z) and taking the limit as z — y~ yields the result, noting
that y < L, <Y; < y + dy implies L, = Y;. Related results are in [6], [23]. D

The right-hand side of (18) may be interpreted as the probability that Y; crosses
the level y from above with slope (z — R) during (¢, t + dt) minus the probability that
Y; has also crossed y at least once before time t. The resulting difference is therefore
the probability that Y; crosses y during (¢,¢ + dt) for the first time.

Equation (18) may be recognized as a Fredholm integral equation of the second
kind (with two independent variables, ¢ and z). The second kind of integral equation
is characterized by the presence of the unknown function é(t,r,4!a,b) both inside
and outside of the integral operator. Fredholm integral equations have fixed limits in
the integral term (strictly speaking, equation (18) is Volterra in the t variable, but
Volterra equations are generally regarded as special cases of Fredholm equations). In
the integral equation, we may identify the “kernel”

(22) K(t,l‘,f) = (R—Z')p(t,l',OIf,O)

and the “forcing function,” (R — z)p(t, z,ya, b).

Because (18) is valid for every y < b, we can integrate over —co < y < 0 to derive
an integral equation for f(¢, z|a,b).

PROPOSITION 4.2. Forz < R, t > 0, the function f(t,z|a,b) satisfies the integral
equation

R t
(23)  f(t,zla,b) = F(t,zla,b) - / /0 K(t - 7,2,€) f(r.|a,b) dr de,

where the forcing function is

0
(24) F(t,zla,b) = / (R - 2)p(t, 2, yla, b) dy.

— 00

This is also a Fredholm integral equation of the second kind (with two independent
variables).

Interpretation. Ignoring x on both sides, the left-hand side of (23) can be inter-
preted as the probability of the event Q; = 0, or equivalently, the event {Y; < 0 and
Y; = L:}. The right-hand side involves the probability of the event {Y; < 0} minus
the event {Y; < 0 and Y; # L.}. The integral term on the right hand side arises from
the fact that Y; # L; implies that Y, = L, = Y, for some 7 < t.

5. Neumann series solution and successive approximations. A series so-
lution usually exists for integral equations of the second kind (see Korn [14, p. 499)).
If (23) is repeatedly substituted into itself, it will yield an infinite series

R t
f(t.zla,b) = F(t,zla,b) - / / Ky(t - 7,2,6)F(r, €|, b) dr de
(25) —e° RO t
+/ /Kg(t—r,x,g)m,aa,b)drdg—--~
—o0 JO

known as the Neumann series solution, where the so-called iterated kernels are
Kl(t\Lf) = K(t,fl;,f),

(26) Rt
Kn(t,x,f)z/ /0Kl(t—T,x,n)Kn_l(T,n,Qden, n> 2.
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Let s, denote the nth term of the Neumann series (25). Note that (25) is an
alternating series because the integrals of probability density functions are always
nonnegative. By Leibniz’ test for alternating series, the Neumann series is convergent
if

(i) lsnl Zlsntal, n21,

(ii) lim s, =0.
n—00

(27)

Furthermore, by the ratio test, the Neumann series is absolutely convergent if

Sn+1
Sn

(28) lim < 1.

n—00

Unfortunately, the physical interpretation of the Neumann series (25) is not sim-
ple, and it is not clear how to verify the conditions for convergence. However, it is
possible to make a general qualitative statement about convergence. Roughly speak-
ing, if the process Y; has a strong negative drift such that Y; = L; at any time with
high probability, then the kernel K(t,z,£) in (23) will be small and the Neumann
series may be expected to converge more quickly (as the integral terms in (25) will
be small). In general, this will be the usual case because Y; should have a negative
drift if the buffer is stable and satisfies (9). On the other hand, if ¥; does not exhibit
a significant negative drift, then the kernel in (23) may be large and the Neumann
series may be slow to converge.

In practice, the solution to integral equations of the second kind can be calculated
iteratively by the method of successive approximations. With the initial approxima-
tion fo(t,xl|a,b) = F(t,z|a,b), the nth successive approximation is calculated as

fn(t, z|a,b) = F(t,z|a,b)

29 R
( ) _/ /t K(t - Tax7§)fn—l(7-7§la7b) de§7 n > 1.
—oo JO0

One can verify that f,(t,z[a,b) is the partial sum of the first n + 1 terms of the
Neumann series. Hence if the Neumann series is convergent, we may expect the
successive approximations f,(t,z|a,b) to approach the actual solution in the limit as
7 increases. i

It is usually impractical to calculate the entire infinite series; therefore, we are
primarily concerned with the approximation error in the nth successive approxima-
tion:

(30) en(t, z|a,b) = | £(¢,7]a,b) = fu(t,zla, b)].
PROPOSITION 5.1. An upper bound for the approrimation error is

(31) ~ en(t zla,b) < snqal.

Proof. The nth successive approximation is

fn(t, z|a,b) = F(t,z|a,b) — - -

(32) R gt
‘+(—-1)"/_ AKn(t-—T,$,§)F(T,§|a,b)d'rd§,
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whereas the exact expression, from repeated substitution of (23) into itself, differs
only in the last term:

f(t,:t[a, b) = F(t,x|a,b) — e
(33)

R ot

+ [ [ Kalt=m2 1 lab) drde.
—oo0 JO

The approximation error is the following difference:

en(t,zla,b) =

R t :
/ /0 Kn(t—nx,ﬁ)[f(nﬂa,b)—F(T,§|a7b)]d7’d§‘

R t
/ / Kn(t—’T,fL',f)
—o0 JO

R T
/ /0K(T—%E,n)f('r,nla,b)dvdndfdi‘

(34)

R t
f_ /O Kn+1<t—r,x,f)ﬂnﬂa,b)drdsl.

Note that f(¢,z|a,b) < F(t,z|a,b), and therefore

R t
(35) enlt,zlasb) < [ [ [ Kunte-rzoF@eebar ds}.
—oc0 JO

The right-hand side of (35) may be recognized as |Sp+2|- 0

The error bound can be calculated conveniently, during the process of iterating suc-
cessive approximations, as the difference between the nth and (n + 1)th successive
approximation

(36) |3n+2j = lfn+1(t7x|a7 b) - fn(taxlav b)l

As expected, it is apparent from (36) that the error bound (and hence the error) will
vanish for large n if the Neumann series is convergent.

6. Survivor function and moments of Q;. After obtaining f(t,z|a,b), the
survivor function and moments of Q; can be found immediately by integration.
PROPOSITION 6.1. Fort > 0, ¢ > 0, the conditional survivor function of Q; is

oo R t
(37) H(t.qla,b) = / r(t,yla,b) dy + / /0 r(t - 7,9l€,0) £ (7. £la.b) dr dE

q

and the conditional kth moment of Q; is
E@et) = [ drtvlat)dy
0
R =) t
[ [Tk [ rte = il 011 (7 6la. by dr da .
—o0 JO 0

_ If the approximation fn(t,x[a, b) is used instead to calculate an approximation
H,(t,qla,b) for H(t,qla,b), then the approximation error can be shown to be

) Rt
(39)  H(tglab) ~ Haltrglad)] = [ /0 r(t - 7,qIE, O)en(r, Ela, b) dr de,
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which is bounded by

(40) |H(t,qla,b) = Ha(t,qla,b)| < [Hps1(t,gla,b) — Hal(t, la,b)|.

Similarly, let EAn(Qic la, b) denote the approximate conditional moment of Q, calculated
by using f,(t,z|a,b) instead of f(t,z|a,b). The approximation error is bounded by

|E(Qa,b) — En(QFla,b)]
(41) / / / (t —T1,ql€,0)e,(1,€|a, b) dr dgdE
<| n+1(Qt la,b) — n(Qt la, b)].

The method is capable of yielding the steady-state distribution of Q; if the steady-
state exists in the limit ¢ — oco. There is a simple way to calculate the stcady-state
survivor function and moments of @Q; by taking advantage of the Final Value The-
orem of Laplace transforms [15], assuming that the appropriate Laplace transforms
exist. Let the Laplace transform of a function with respect to the time variable ¢
be denoted by a * superscript and complex variable s; for example, f*(s,zla,b) =
I estf(t, x|, b) dt.

Taking Laplace transforms in (23) yields the next corollary.

COROLLARY 6.2. For z < R, the Laplace transform f*(s,z|a,b) satisfies the
integral equation

R
(42) £*(5.2la,b) = F* (s, z|a,b) - / K*(s,2,6)f* (s, €la b) de
where the forcing function is
0
(43) F*(s,zla, b) = / (R - 2)p" (s, 2, yla,b) dy

and the kernel is
(44) K*(s,z,§) = (R - z)p*(s,z,0[¢,0).

Again, this is a Fredholm integral equation of the second kind (with one independent
variable now). Note that the Laplace transformation has reduced the integral term
from second order to first order.

The Neumann series solution is

R
f*(s,zla,b) = F*(s,zla,b) —/ K{(s,z,&)F*(s,£la,b) dE
(45) -

R
+/ K3 (s,, €)F* (s, €la, b) d€ — - -

where the iterated kernels are

Kf(5,$,§) = K*(s,x,ﬁ),
(46) P
Ki(s,2.€) = / Ki(s, 2Ky (s,m,€)dn,  n>2.
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As before, the partial sums of the Neumann series can be calculated by the method
of successive approximations.

After f*(s,z|a,b) is obtained, the steady-state survivor function and moments of
Q: follow directly from Laplace transforms of (37) and (38).

COROLLARY 6.3. The steady-state survivor function of Q; is

R

(47) PriQu >a} = lim s [ r(5,416.0)"(s,Ela,b) de
and the kth moment of Q; is

R oo
@) B =lms [ [Tk (s, 01 (s, elat) dgae

if these limits exist.

Proof. The results follow from taking Laplace transforms of (37) and (38), and
applying the Final Value Theorem. The first terms on the right-hand sides of (37)
and (38) vanish because Y; should drift to —co as ¢t — oo with probability one if the
buffer is stable. O

In practice, of course, it would be sufficient to evaluate (47) and (48) for a very
small value of s. Although the steady-state distribution of Q; may be found by this
mcthod, there are simpler approaches if only steady-state results are desired (cf. [25]).

7. Multiplexed O-U source rates. In this section, we consider a particular
example of a fluid buffer shared by N independent and identically distributed input
sources. This model may represent the output buffer of a packet switch [11]. The
constant output rate represents the fixed-rate transmission channel, and the inputs
may be on—off data sources or variable bit-rate video sources. The time-dependent be-
havior of the queue is of interest in the situation where the source rates are controlled
by feedback from the switch based on the level of queue occupancy [9].

In particular, each source rate Xt(") is assumed to vary as an O-U diffusion process

with infinitesimal mean, p1,(z) = 8—az, and infinitesimal variance, 02 () = o2, where

a, B, and ¢ are positive parameters. That is, Xt(") is the solution of the stochastic
differential equation

(49) dx{™ = (8 - aX{™)dt + cdW ™,

where the W, (n = 1,..., N) are independent standard Brownian motions. This
model may represent statistically multiplexed variable bit-rate video, for example,
where each O-U process is a continuous-time approximation for a first-order autore-
gressive video source [16], [24].

It can be shown that the total input rate X, = Xt(l) +-+ Xt(N) is then an O-U
process as well with infinitesimal mean u(z) = N8 — az and infinitesimal variance
o?(x) = No?. From (49), we have

dX, =dXx + - +dx™
(50) = [B=ax{") +- + (8- ax")]dt + o [aW " + - 4 aw{™M)]
= (NS — aX;)dt + VNodW,,
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where W, is a standard Brownian motion. Thus we consider the buffer with input
rate X; as equivalent to the fluid buffer with NV independent O-U sources. From (9),
the system is stable if p = NG/aR < 1..

It is known that X, is a Gaussian Markov process and (X, Y;) is a jointly Gaussian
Markov process (see Arnold [2]). The conditional mean and variance of X; are

me = E(X|a) = (a — pR)e™" + pR,

(51) N0'2

vy = var(Xila) = —2_04_(1 — et

K

and those of Y; are

my = E(Y|a,b) = b+ o~ a - pR)(1 — ™) + R(p— 1)1,

(52) 2
vy = var(Yila,b) = %[(3 —e ) (e7 — 1) + 2at].

The conditional probability density function of Y; is
(53) r(t.yla,b) = (2muy) "2 exp{—(y — my)?/2v,}.

The conditional joint density function of (X;,Y}) is

w 2
59) plt.2.viah) = ritvla. b)) exp{ = o = m. = Ly —my)| fuf,

where

2 2
(55) w = %(1—6““)2; uEQ(vz— %)

Not surprisingly, the time constant of m, and v, depends on the parameter a,
which determines the autocorrelation of the Y; process. It can be seen that the mean
of Y; (normalized as before by dividing by R) is unaffected by N but the standard
deviation of Y; (and hence the coefficient of variation of Y;) decreases by N~1/2. This
is, of course, an example of the Central Limit Theorem for the sum of independent
Gaussian processes. Thus, a larger value of N reduces the random fluctuations in Y3,
which in turn reduces Q; (recall the relation between Y; and Q;); this is the reason
for statistical multiplexing with large values of N.

We must solve an integral equation for the first passage time density of a bivariate
Gaussian Markov process (cf. [4] for an integral equation for the one-dimensional
case). We used the method of successive approximations (29) to solve for f(t,zla,b).
In this case, the forcing function in (23) is

(56) F(t,z|a,b) =

ﬂﬂ_i exp{—(z — my)?/2v,}® (—

where ®(z) is the standard normal distribution function, and the kernel in (23) is
(57) K(t,z,£) = (R — z)p(t, z,0[¢,0).

In the Neumann series (25), the integral terms were too complicated for explicit ex-
pressions, so the successive approximations were computed using numerical integra-
tion (see Press et al. [21, Ch. 4]). Fortunately, serious numerical difficulties were not

Vemy + w(T — mx))
vz (vy — w?) 7
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encountered because all functions were smooth. Over the range of parameters studied,
we found that the initial approximation f(¢,x|a,b) ~ fo(t,z|a,b) = F(t,z|a,b) was
reasonably close, i.c., the first term of the Neumann series (25) was dominant. Typi-
cally, only about two successive approximations were necessary to obtain an accuracy
of several digits. An example of the convergence of the successive approximations
fn(t,zla,b) is shown in Fig. 1. The reason for the fast convergence of the Neumann
series is because Y; demonstrates a strong negative drift even for a utilization factor
up to 0.8.

After calculating f(¢,z|a, b) by successive approximations, the survivor function
and moments of Q; were found by numerically integrating (37) and (38). In the
following results, we chose o = 3.90, 3 = 2.03, and 02 = 0.42 to match the statistics
of the autoregressive video source model measured in [16]. The initial conditions were
Xo = E(X&) and Qg = 0; naturally, the rate of convergence to steady state depends
on the proximity of the initial state (Xo, Qo) to the expected steady state. Figure 2

04

03

Fi1G. 1. Successive approzimations fn(t,:z:|a,b) fort=1 sec, a = pR = F(Xx), b=0, N =1,
and p = 0.8.

t (sec)
0.0 0.5 1.0 1.5 20 25 3.0
0 T T H H H H
:N=1
:N=2
:N=4
2 e A ;st
Y §
o -4t iN=16
=3 :
T :
e
g’ T T O D L P '
: : : : : N=32
8 FHIl-f--- :~ T e \4....
o LU

F1G. 2. Conditional survivor function of Q: as function of t, for ¢ = 32 msec, a = pR = F(X ),
b=0, and p = 0.8.
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shows the survivor function H(t, ¢la,b) as a function of ¢ for ¢ =32 ms and p = 0.8.
In Figs. 3-4, the conditional mean and variance of Q; are plotted as functions of ¢
for p = 0.8. Figure 5 shows the survivor function H (%, gla,b) as a function of ¢ for
p =08, N =1, 2, 4. The accuracy of all results shown were verified by computer
simulations of the fluid buffer.

From these results, we may observe that the system seems to approach steady
state fairly quickly from the given initial conditions, on the order of seconds, with
a rate strongly dependent on «. As mentioned earlier, the dependence on « is not
surprising because o determines the autocorrelation of Y;. The rate of convergence
to steady-state appears weakly dependent, if at all, on N. As expected, the survivor
function and moments of (); do depend greatly on N. The results in Figs. 2—4 suggest

‘N=8

logi0 E(Q(t)|a,b) (sec)

0.0 0.5 1.0 15 20 25 3.0
t (sec)

Fi1G. 3. Conditional mean of Q¢ as function of t, for ¢ = 32 msec, a = pR = E(Xo), b =0,
and p=0.8.

iog10 var(Q(t)la,b)

0.0 0.5 1.0 1.5 20 25 3.0
t (sec)

Fi1G. 4. Conditional variance of Q¢ as function of t, for ¢ = 32 msec, a = pR = E(Xx), b= 0,
and p = 0.8.
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FiG. 5. Conditional survivor function of Q: as function of q, for a = pR = E(Xs), b = 0,
p=08, and (a) N=1, (b) N=2, and (c) N =4.
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that the logarithm of the survivor function and moments of Q; depend roughly linearly
with N.

We also computed the steady-state survivor function of Q; from (47) with s =
1073, These steady-state results were entirely consistent with previous results from
(16].

8. Conclusions. For the class of fluid buffer models with Markov input and
constant output rates, we have studied an approach for obtaining the conditional
distribution of buffer contents by solving a first passage time problem described by
a Fredholm integral equation of the second kind. In comparison with the usual ap-
proach via partial differential equations, the method is not necessarily advantageous
for analytical results, but integral equations are often easier for numerical solutions.
The time-dependent behavior of the buffer is important for some control problems
and studies of the rate of convergence to steady-state. The method is also capa-
ble of yielding the steady-state distribution but is not the simplest approach if only
steady-state results are desired.

For the particular example of a statistical multiplexer shared by independent O-U
input sources, we were able to numerically compute not only the time-dependent but
also the steady-state distribution and moments of buffer contents.

We believe that this approach can be extended in future work to obtain explicit
solutions for certain cases; to analyze fluid models with finite buffer spaces; and to
obtain first time-to-buffer-overflow probabilities.
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