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Abstract— Rate control is an automated defense to slow down
a worm outbreak to buy time for conventional defenses to take
effect. In this study, we apply the community of households
model from biological epidemiology to evaluate rate control
strategies. We find that rate throttling of outbound worm traffic,
implemented in the network or hosts, can be effective in slowing
down a new worm outbreak given sufficient coverage of hosts.
An outbreak is slowed down exponentially as the fraction of
protected hosts is increased. We also find that throttling both
inbound and outbound traffic can be much more effective than
rate throttling only outbound traffic.

I. INTRODUCTION

Automated worm programs take advantage of network con-
nectivity to spread from infected hosts to vulnerable hosts.
A worm such as SQL Slammer has been called “bandwidth
limited” because compromised hosts were put into a simple
execution loop to send out 404-byte UDP packets containing
a copy of the worm to random IP addresses as fast as they
could transmit packets [1]. Slammer was observed to saturate
the bandwidth on many links and would probably have taken
advantage of more bandwidth had it been available.

Faster worm outbreaks will compel organizations to depend
more on automated blocking defenses compared to manual
responses such as software patching and reconfiguring router
access lists and firewalls. Current automated worm defenses
consist of antivirus software, firewalls, and intrusion detection
or prevention systems (IDS/IPS) [2], [3]. These defenses
attempt to detect and then block worms by a combination
of misuse detection and anomaly detection. Misuse detection
based on signature matching is the preferred approach of com-
mercial antivirus and IDS/IPS due to its accuracy in detecting
known (and similar) worms. However, new signatures may
take hours to days to develop, test, and distribute after an
unknown worm is discovered.

Anomaly detection looking for deviations from “normal”
baseline behavior has the potential to detect new worms
without a known signature. Commercial products often in-
clude heuristic behavior-blocking rules in addition to signature
matching. For example, SMTP worm blocking checks if the
process initiating SMTP outgoing email is an attachment in
the current email; if it is, this self-mailing software is blocked
[3]. Another heuristic rule may look for any signs of a buffer
overflow exploit which is a type of attack often used by worms.

While anomaly detection is considered useful to catch broad
classes of unknown worms, it has been prone to false positives
because normal behavior is difficult to characterize precisely.

A high rate of false positives is problematic because legit-
imate traffic may be blocked. Since blocking is a destructive
action, detection accuracy is critical but detection with no false
positives is not likely. As an alternative, Williamson and others
have advocated the use of rate throttling as a “benign” action
[4]. In false positive cases, legitimate traffic will be mostly
delayed or at worst dropped if the throttle queue overflows.
Hence detection accuracy is not as critical with rate throttling
as with blocking (filtering). It is still desirable to minimize the
impact on legitimate traffic, so detection accuracy continues
to be an issue. Detection of worm-like epidemic behavior is
discussed later.

Rate throttling of worm traffic is particularly appealing
for high-speed networks because it effectively counteracts the
abundant bandwidth offered by the network. Moreover, rate
control is entirely complementary to existing worm defenses.
In epidemiological terms, rate control does not provide for
any “removals” (returning an infected host to normal state
protected from subsequent infection). Removals are enabled by
signature-based antivirus software or software patching. Rate
control serves to slow down and minimize the spread of a new
worm outbreak to buy time for conventional signature-based
worm defenses.

Host-based rate control such as Williamson’s virus throttling
is attractive because hosts can best monitor themselves for
signs of worm intrusions. However, host-based controls are
vulnerable to compromise if the host is infected and may
be difficult to deploy universally because most hosts are
not managed centrally. It is clear that the same approach
of limiting the rate of new outbound connections can be
implemented in access routers. Network-based rate control has
the advantage that a single access router could cover many
hosts. Also, routers with rate control could be deployed easily
by network providers. Implementation of rate control in access
routers is discussed in Section 2. The existing epidemiological
models for worm flow are discussed in Section 3. Little
theoretical work has been done to evaluate the network-wide
effectiveness of rate control. We apply the community of
households epidemic model to compare different rate control



strategies in Section 4. Numerical results are presented in
Section 5.

II. ROUTER-BASED RATE CONTROL

The problem in implementing rate control in access routers
is detection of unknown worm traffic, although detection
accuracy is not as critical as for conventional defenses that
filter traffic. Essentially, any infectious “epidemic-like” traffic,
which might include spam and certain legitimate applications,
is suspect and would be rate throttled. Several traffic indicators
of epidemic-like behavior have been studied.

A. Traffic Indicators of Epidemics

Rate of new connections: It is obvious that an infected host
should attempt to contact as many vulnerable hosts as quickly
as possible, in order to spread successfully before it is stopped
by network-based and host-based defenses. Williamson’s throt-
tle limits the number of outgoing connections to less than 5
unique hosts per second [4]. Porras et al. takes essentially the
same approach further to limit the number of new outbound
connections that any host can make within each time interval
[5]. Ganger et al. proposed to correlate the rate of new out-
bound connections with DNS (domain name system) lookups
[6].

Rate of connection failures: A random scanning worm will
hit a number of addresses that are unused or unreachable
on a particular port. For a TCP-based worm, these cases
would result in a significant number of TCP resets returned
in response to TCP SYN packets. Chen et al. proposed to
record the sources of these failed TCP connections, and when
the failure rate of an offending source crosses a threshold, the
source is deemed to be possibly infected [7], [8]. Schechter et
al. proposed a monitoring system to observe the first-contact
connection requests made by hosts on a LAN and the rate of
connection failures [9]. Berk et al. suggested to monitor ICMP
Destination Unreachable messages [10].

Fan-out of identical packets: Singh et al. noted that an
indicator of worm behavior is a high volume of identical
traffic [11]. Their EarlyBird system does packet matching by
generating a hashed signature of every packet’s payload and
destination port and then comparing it against previously seen
signatures. Martin et al. proposed a similar signature-based
scheme which enables a router to count how many times it
has forwarded a packet of the same signature, and to trigger
an alarm when a threshold is exceeded [12]. This approach
by itself is limited to non-polymorphic worms which do not
change their forms signficantly.

Matching inbound and outbound packets: Chen noted that
an incoming worm will infect a host that will subsequently
try to exploit the same vulnerability in the outbound direction
[13]. They proposed an algorithm for access routers to match
inbound and outbound packets with the same destination
port numbers. Gu et al. proposed a similar idea [14]. Toth
proposed a detection algorithm that involves looking for a
similar correlation between inbound and outbound packets,
with additional information about connection failures [15].

B. Inbound versus Outbound Rate Control

Access routers could look for the traffic characteristics
above to identify likely infected hosts and rate throttle their
suspicious outbound traffic. An access router could also use
some of these traffic characteristics to identify incoming worm
probes, and impose a rate throttle on traffic from these of-
fending sources. However, the detection of inbound epidemic-
like traffic is more complex than detection in the outbound
direction. Inbound traffic is coming from many different
sources, whereas outbound epidemic traffic is generated from
a single source. Due to the complexity, inbound detection
requires a significant detection time compared to outbound
throttling which can be always on.

The capability for combined inbound and outbound rate
throttling is an advantage of network-based rate control that
is not as easily done with host-based rate control. The case
of extreme rate throttling in both directions acts as quaranti-
ning. Moore et al. examined several general issues related to
quarantining [16]. Also, Zou et al. investigated a temporary
quarantining scheme where hosts suspected of being infected
are quarantined only for some length of time [17].

III. EPIDEMIC MODELING

Rate control has been proposed as a worm defense, but little
is currently known about the network-wide effectiveness or
optimal strategies for deployment. Wong et al. compared rate
limiting done at hosts, access routers, and backbone routers
[18]. They concluded that host-based and access router-based
rate control result in a slowdown that is linear to the number
of hosts or routers with the rate limiting filter, and that rate
control should be deployed at the backbone routers to be most
effective. However, the analysis was approximate and relied on
a star network topology (leaf nodes interconnected through a
centralized hub) that was not representative of the Internet.

As a practical matter, access routers with rate control can
not be expected to be deployed universally. If a fraction of
access routers are capable of rate control, it is necessary to
evaluate the slowdown of a worm outbreak as a function
of the percent of coverage. In order to gain insight into
these problems, we investigate a heterogeneous community
of households epidemic model that has been widely used in
biological epidemiology [19].

The main purpose of rate control is to slow down the spread
of a newly released worm to buy more time for traditional
defense mechanisms, which depend on developing a worm
signature and re-configuring routers and firewalls. A measure
of the effectiveness of a rate control mechanism is how much
the outbreak is dampened over an interval of time. Here,
the interval of interest is the time between the initial release
of the worm and the deployment of conventional defense
mechanisms at some time T . In epidemiological terms, the
number of infectives can only increase during this time and
there are no removals in the time window of interest (before
time T ).



A. Homogeneous Epidemic Model

Before introducing the community of households epidemic
model, it is illustrative to describe the homogeneous epidemic
model. A disease outbreak in a homogeneous biological pop-
ulation is usually characterized by the “simple epidemic” or
SI (susceptible → infective) model [19], [20]. Let S(t) and
I(t) denote the number of susceptibles and infectives at time
t, where S(t) + I(t) = N . By homogeneous mixing, each
infective is assumed to make an average βN contacts per
unit time but the probability of meeting a susceptible each
time is S/N . The parameter β is the pairwise infection rate
or infectious contact rate. Hence, the number of infectives
increases at a rate of

d

dt
I = (βN)(S/N)I = βIS = βI(N − I) (1)

Given the initial condition I(0) = I0, the solution is the
logistic curve

I(t) =
I0N

I0 + (N − I0)e−βNt
(2)

According to (2), an outbreak will reach an infection level
pN at time

Tp =
ln p(N − I0)− ln I0(1− p)

βN
(3)

The SI model appears to be a good candidate for early stages
of random scanning worm epidemics. These worms target IP
addresses pseudo-randomly which seems to conform to the
assumption of homogeneous mixing. Moore et al. showed
that the logistic curve predicted by the SI model could fit the
observed data for the growth of the Code Red worm well [21].
Liljenstam et al. fit the SI model to the initial spread of the
SQL Slammer worm [22]. Zou et al. agreed with the close fit
for the early stages of the Code Red outbreak but pointed out
a greater than predicted slowdown in the later stages [23]. The
discrepancy in the later stages was attributed to the fact that the
SI model did not account for network congestion and human
countermeasures (such as patching, filtering and isolation).

B. Heterogeneous Epidemic Model

It has long been recognized in biological epidemiology
that the assumption of homogeneous and uniform mixing in
the simple epidemic model is unrealistic and unnecessarily
restrictive. A more realistic assumption is a heterogeneous
population consisting of different subpopulations. The commu-
nity of households model views subpopulations as households,
where the infectious contact rates between separate households
can be different from infectious contact rates between indi-
viduals within the same household. Let m be the number of
households, and Nj is the size of household j (1 ≤ j ≤ m).
The number of infectives and susceptibles in household j are
Ij(t) and Sj(t) = Nj − Ij(t), respectively. The dynamics
of the epidemic change according to a system of differential
equations for j = 1, . . . , m:

d

dt
Ij = Sj

m∑

i=1

βijIi = (Nj − Ij)
m∑

i=1

βijIi (4)

The parameter βij is the pairwise infectious contact rate
of infectives in household i to susceptibles in household j.
According to (4), the number of infectives in household j
will increase due to intra-household contacts with rate βjj and
contacts with other households with rates βij (i 6= j). Unfor-
tunately, a general solution for the community of households
epidemic is not known, and the system of equations must be
solved numerically except for the simplest special cases.

The community of households model has been studied for
biological epidemics since 1955 when Rushton and Mautner
proposed a deterministic epidemic in a population divided
into groups with a higher infection rate within groups than
between groups [24]. Subsequent researchers have focused
on the problems of parameter estimation [25]; final epidemic
size [26]; and mostly immunization strategies [27]–[34]. Un-
fortunately, these analyses have typically assumed a removal
process (where infectives can recover or die) and the results are
not directly applicable to the rate control problem considered
here.

In the context of worms, Liljenstam et al. proposed worm
simulations following the community of households model
where the households represent autonomous systems [22],
[35], [36]. The Internet is known to consist of separately
administered but interconnected autonomous systems or rout-
ing domains. The infection parameters were estimated to fit
historical worm traffic data. Wagner et al. chose to model
worm propagation through an Internet structured as an in-
terconnection of multiple subnetworks [37] characterized by
different bandwidth and latency.

IV. EPIDEMIC MODELS FOR DIFFERENT RATE
THROTTLING SCENARIOS

We consider the network structure shown in Fig. 1 as
a community of households. Each household represents a
subnetwork attached to an access router.

Fig. 1. Interconnected subnetworks represented as a community of house-
holds



1) Host-based Rate Throttling: We assume that a fraction q
of hosts are capable of throttling their outbound worm traffic,
while the other hosts are uncontrolled. For simplicity, we
also assume that infection rate parameters may take only two
possible values, one much lower than the other. Without rate
control, the infection rates are βij = β for all i, j. When
rate control is exercised, the rate throttling will cause certain
infection rate parameters to be attenuated to βij = αβ. In
this case, the population can be viewed as two households
as shown in Fig. 2. The first household of size qN has
intra-household and outbound infection rates αβ. The second
household of size (1− q)N has intra-household and outbound
infection rates β. The epidemic is governed by the system of
two differential equations:

d

dt
I1 = (qN − I1)(αβI1 + βI2)

d

dt
I2 = ((1− q)N − I2)(αβI1 + βI2) (5)

If the attenuation factor is very close to 0, then (5) becomes

d

dt
I1 ≈ (qN − I1)βI2

d

dt
I2 ≈ ((1− q)N − I2)βI2 (6)

2) Router-based Rate Throttling: If access router k is
capable of rate throttling outbound traffic, then the infection
rate parameters βkj for all j 6= k would be attenuated by a
factor of α. That is, the dynamics of the epidemic would be
changed to

d

dt
Ij = (Nj − Ij)(αβkjIk +

∑

i 6=k

βijIi)

, j = 1, . . . , m; j 6= k

d

dt
Ik = (Nk − Ik)

m∑

i=1

βikIi (7)

Additional routers with rate control could be incorporated
into the system of equations similarly by attenuating the
appropriate infection rate parameters.

Fig. 2. A community of two households, one representing hosts with and
without outbound rate throttling

If access router k is capable of throttling inbound and
outbound directions simultaneously, then the infection rate
parameter βik for all i 6= k would also be attenuated by a
factor of α. However, inbound rate throttling needs a certain
detection time before it can be initiated. Assuming that t1 is the
time for inbound worm detection, equations (9)-(10) represent
the outbreak for time 0 to t1, and the equations below represent
the outbreak from time t1 to T :

d

dt
Ij = (Nj − Ij)(αβkjIk +

∑

i6=k

βijIi)

, j = 1, . . . , m; j 6= k
d

dt
Ik = (Nk − Ik)(βkkIk +

∑

i 6=k

αβikIi) (8)

Again, additional routers with inbound rate throttling could
be factored into the equations similarly.

V. NUMERICAL RESULTS

A. Router-based Outbound Rate Throttling

For the sake of simulation, we assume that households
are all equal size N1 = · · · = Nm = N/m. Suppose
that a fraction q of access routers are capable of throttling
outbound worm traffic, while the remaining routers are not
controlled. Thus, the number of routers with rate control are
qm. For simplicity, we assume qm is an integer and the
capable routers are numbered 1 to qm (which routers are
capable does not matter because all households are equal size).
Thus, households 1 to qm have an intra-household infection
rate β but outbound inter-household infection rate αβ. The
remaining households qm + 1 to m have intra-household and
outbound inter-household infection rates β. These households
interact with each other homogeneously and may be viewed as
a single large household of size (1−q)N . Hence the epidemic
in this case changes according to the system of differential
equations:

d

dt
Ij = (

N

m
− Ij)(βIj +

∑

i≤qm,i 6=j

αβIi + βIqm+1)

, j = 1, . . . , qm
d

dt
Iqm+1 = ((1− q)N − Iqm+1)(βIqm+1

+
qm∑

i=1

αβIi) (9)

If the attenuation factor is very close to 0, then (9) becomes

d

dt
Ij ≈ (

N

m
− Ij)β(Ij + Iqm+1)

, j = 1, . . . , qm
d

dt
Iqm+1 ≈ ((1− q)N − Iqm+1)βIqm+1 (10)

The solutions were found numerically and plotted in Fig. 3
for increasing values of q. For these results, we used parameter



Fig. 3. Total epidemic size dependent on the fraction q of the population
protected by router-based outbound rate throttling

values for the SQL Slammer worm: β = 5.6 × 10−5 and
N = 120, 000. In addition, we set m = 10 households and the
initial conditions to I1(0) = · · · = Iqm(0) = 0, Iqm+1(0) = 1.

B. Router-based Inbound and Outbound Rate Throttling

Suppose that a fraction q of access routers are capable of
throttling inbound and outbound worm traffic simultaneously,
while the remaining routers are not controlled. Thus, protected
households will be effectively quarantined. For simplicity, we
again assume qm is an integer and the capable routers are
numbered 1 to qm. All households are equal size with N/m
hosts. Households 1 to qm can be quarantined with an intra-
household infection rate β but inter-household infection rate
αβ in both inbound and outbound directions. The remaining
households qm + 1 to m have intra-household and outbound
inter-household infection rates β. These households may be
viewed as a single large household of size (1− q)N .

Recall that inbound rate throttling requires a detection time
t1 before it can be initiated. From time 0 to t1, the outbreak is
governed by (9), the same as outbound-only throttling. Here
we assume t1 is the time for the uncontrolled outbreak to reach
25 percent saturation, which is t1 = 1.5 according to (3). From
time t1 onward, the epidemic with simultaneous inbound and
outbound throttling is governed by the system of differential
equations:

d

dt
Ij = (

N

m
− Ij)(βIj +

∑

i 6=j

αβIi) , j = 1, . . . , qm

d

dt
Iqm+1 = ((1− q)N − Iqm+1)(βIqm+1 +

qm∑

i=1

αβIi)(11)

If the attenuation factor is very close to 0, then (11) becomes

Fig. 4. Total epidemic size dependent on the fraction q of the population
protected by router-based inbound and outbound rate throttling

d

dt
Ij ≈ (

N

m
− Ij)βIj , j = 1, . . . , qm

d

dt
Iqm+1 ≈ ((1− q)N − Iqm+1)βIqm+1 (12)

It is evident that the outbreaks in each household will
progress independently of each other, which is the goal of
this strategy. After t = t1, the number of infectives in each
household will be

Ij(t) ≈ Ij(t1)N
Ij(t1)m + (N − Ij(t1)m)e−βN(t=t1)/m

, j = 1, . . . , qm

Iqm+1(t) ≈ Iqm+1(t1)(1− q)N
Iqm+1(t1) + ((1− q)N − Iqm+1(t1))e−β(1−q)N(t−t1)

(13)

and the total epidemic size will be

I(t) = I1(t) + · · ·+ Iqm+1(t) (14)

We wish to compare the effectiveness of throttling both
inbound and outbound directions with throttling only outbound
traffic. Numerical solutions of (14) are plotted in Fig. 4 using
the same parameter values as before. The results show that
the epidemic spreads quickly in the external Internet but the
outbreaks within the rate throttled subnetworks are slowed
down substantially due to their isolation from each other. As
expected, the rate throttling prevents “mass action” mixing of
many infectives and susceptibles. Clearly, in comparing Fig. 4
with Fig. 3, throttling inbound and outbound traffic appears to
be much more effective than outbound-only rate throttling, and
the difference is more dramatic with the amount of coverage
q.



VI. CONCLUSIONS

In this paper, we have attempted to demonstrate the use-
fulness of the community of households epidemic model. The
model is flexible enough to account for different rate control
strategies without being overly complicated. Unfortunately,
only simple special cases of the model can be analyzed in
closed form, but the general model can be solved numerically.

We found that rate throttling, implemented in the network
or hosts, can be effective in slowing down a worm epidemic
given sufficient coverage of hosts. Moreover, throttling both
outbound and inbound traffic can be much more effective
than outbound-only rate throttling. Throttling both directions
is effective because it severely limits the infectious contacts
between infected hosts and potential targets. More generally,
we can conclude that complete quarantining will be the
most effective strategy because mixing between households
is totally stopped.

We believe the community of households model can account
for the effects of network congestion that helps to slow down
the late stages of an epidemic. This is a problem for future
investigation.

REFERENCES

[1] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “Inside the Slammer worm,” IEEE Sec. & Privacy, vol. 1,
pp. 33–39, July 2003.

[2] J. Nazario, Defense and Detection Strategies against Internet Worms.
Boston, MA: Artech House, 2004.

[3] P. Szor, The Art of Computer Virus Research and Defense. Upper Saddle
River, NJ: Addison-Wesley, 2005.

[4] M. Williamson, “Throttling viruses: restricting propagation to defeat
malicious mobile code,” in 18th Annual Comp. Sec. Appl. Conf., (Las
Vegas, NV), Dec. 9–13, 2002.

[5] P. Porras, L. Briesemeister, K. Skinner, K. Levitt, J. Rowe, and Y.-
C. A. Ting, “A hybrid quarantine defense,” in ACM Workshop on Rapid
Malcode (WORM 2004), (Wash. DC), pp. 73–82, 2004.

[6] G. Ganger, G. Economou, and S. Bielski, “Self-securing network inter-
faces,” Tech. Rep. CMU-CS-02-144, Carnegie Mellon U., Aug. 2002.

[7] S. Chen and Y. Tang, “Slowing Down Internet Worms,” in Proceedings
of the 24th International Conference on Distributed Computing Systems
(ICDCS’04), (Tokyo, Japan), pp. 312–319, Mar. 2004.

[8] S. Chen and S. Ranka, “An Internet-worm early warning system,” in
IEEE Globecom 2004, (Dallas, TX), pp. 2261–2265, Nov. 29 – Dec. 3,
2004.

[9] S. E. Schechter, J. Jung, and A. W. Berger, “Fast Detection of Scanning
Worm Infections,” in Seventh International Symposium on Recent Ad-
vances in Intrusion Detection (RAID), (Sophia Antipolis, French Riviera,
France), pp. 59–81, Sept. 15–17, 2004.

[10] V. Berk, G. Bakos, and R. Morris, “Designing a framework for active
worm detection on global networks,” in First IEEE Int. Workshop on
Info. Assurance (IWIAS 2003), pp. 13–23, Mar. 24, 2003.

[11] S. Singh, C. Estan, G. Varghese, and S. Savage, “The EarlyBird System
for Real-time Detection of Unknown Worms,” Tech. Rep. CS2003-0761,
University of California at San Diego, Aug. 2003.

[12] M. V. Martin, J.-M. Robert, and P. van Oorschot, “A Monitoring System
for Detecting Repeated Packets with Applications to Computer Worms,”
Tech. Rep. TR-04-02, School of Computer Science, Carleton University,
Ottawa, Canada, June 2004.

[13] X. Chen and J. Heidemann, “Detecting Early Worm Propagation through
Packet Matching,” Tech. Rep. ISI-TR-2004-585, USC Information Sci-
ences Institute, Marina del Rey, CA, Feb. 2004.

[14] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley, “Worm de-
tection, early warning and response based on local victim information,”
in 20th Annual Comp. Sec. Applic. Conf., pp. 136–145, Dec. 6–10, 2004.

[15] T. Toth and C. Kruegel, “Connection-history based anomaly detection,”
in 2002 IEEE Workshop on Info. Assur. and Sec., (West Point, NY),
June 17–19, 2002.

[16] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet quarantine:
requirements for containing self-propagating code,” in IEEE Infocom
2003, (San Francisco, CA), pp. 1901–1910, 2003.

[17] C. Zou, W. Gong, and D. Towsley, “Worm propagation modeling and
analysis under dynamic quarantine defense,” in ACM Workshop on Rapid
Malcode (WORM 2003), (Wash. DC), pp. 51–60, Oct. 27, 2003.

[18] C. Wong, C. Wang, D. Song, S. Bielski, and G. R. Ganger, “Dynamic
Quarantine of Internet Worms,” in Proceedings of the International Con-
ference on Dependable Systems and Networks (DSN-2004), (Florence,
Italy), pp. 73–82, June 28 – July 1, 2004.

[19] D. Daley and J. Gani, Epidemic Modeling: An Introduction. Cambridge,
UK: Cambridge University Press, 1999.

[20] N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and its
Applications. New York: Oxford University Press, 2nd ed., 1975.

[21] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study on the
spread and victims of an Internet worm,” in Proceedings of the 2nd
ACM SIGCOMM Internet Measurement Workshop (IMW), (Marseille,
France), pp. 273–284, Nov. 6–8, 2002.

[22] M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S. Gray, “Simulating
realistic network worm traffic for worm warning system design and
testing,” in 2003 ACM Workshop on Rapid Malcode (WORM), (Wash.
DC), pp. 24–33, Oct. 2003.

[23] C. C. Zou, W. Gong, and D. Towsley, “Code red worm propagation
modeling and analysis,” in Proceedings of the 9th ACM conference on
Computer and Communications Security (CCS ’02), (Washington, DC),
pp. 138–147, Nov. 18–22, 2002.

[24] S. Rushton and A. Mautner, “The deterministic model of a simple
epidemic for more than one community,” Biometrika, vol. 42, pp. 126–
132, 1955.

[25] N. Becker and J. Hopper, “The infectiousness of a disease in a commu-
nity of households,” Biometrika, vol. 70, pp. 29–39, 1983.

[26] D. Daley and J. Gani, “A deterministic general epidemic model in a
stratified population,” in Probability, Statistics and Optimization - a
Tribute to Peter Whittle (F. P. Kelly, ed.), Chichester: Wiley, 1994.

[27] F. Ball, D. Mollison, and G. Scalia-Tomba, “Epidemics with two levels
of mixing,” Annals of Applied Prob., vol. 7, pp. 46–89, 1997.

[28] F. Ball and O. Lyne, “Stochastic multitype SIR epidemics among
a population partitioned into households,” Adv. Appl. Prob., vol. 33,
pp. 99–123, 2001.

[29] F. Ball, “Stochastic multitype epidemics in a community of households:
estimation of threshold parameter R∗ and secure vaccination coverage,”
Biometrika, vol. 91, pp. 345–362, 2004.

[30] N. Becker and K. Dietz, “The effect of household distribution on
transmission and control of highly infectious diseases,” Math. Biosci.,
vol. 127, pp. 207–219, 1995.

[31] N. Becker and R. Hall, “Immunization levels for preventing epidemics
in a community of households made up of individuals of various types,”
Math. Biosci., vol. 132, pp. 205–216, 1996.

[32] N. Becker and D. Starczak, “Optimal vaccination strategies for a
community of households,” Math. Biosci., vol. 139, pp. 117–132, 1997.

[33] N. Becker and S. Utev, “The effect of community structure on the im-
munity coverage required to prevent epidemics,” Math. Biosci., vol. 147,
pp. 23–39, 1998.

[34] T. Britton, “Epidemics in heterogeneous communities: estimation of
R0 and secure vaccination coverage,” J. Royal Statist. Soc. B, vol. 63,
pp. 705–715, 2001.

[35] M. Liljenstam, Y. Yuan, B. J. Premore, and D. Nicol, “A mixed abstrac-
tion level simulation model of large-scale Internet worm infestations,” in
10th IEEE/ACM Symp. on Modeling, Analysis, and Simulation of Comp.
Telecom. Sys. (MASCOTS 2002), (Fort Worth, TX), pp. 109–116, Oct.
11–16, 2002.

[36] M. Liljenstam and D. Nicol, “Comparing passive and active worm
defenses,” in 1st Int. Conf. on Quantitative Eval. of Sys. (QEST 2004),
(Enschede, Netherlands), pp. 18–27, Sept. 27–30, 2004.
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